1.4.2有理数的除法(第1课时)
第1课时 有理数的除法法则 精品教案(大赛一等奖作品)
1.4.2 有理数的除法 第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数 教学难点:如何进行有理数除法的运算,求一个负数的倒数 教学过程: 一、复习引入: 1、倒数的概念;2、说出下列各数对应的倒数:1、-43、-(-4.5)、|-23| 3、现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:周日 周一 周二 周三 周四 周五 周六 -30c -30c -20c -3°c 0°c -2°c -1°c 问:这周每天上午8时的平均气温是多少? 二、探索新知:1、解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7, 即:(-14)÷7=?(除法是乘法的逆运算)什么乘以7等于-14? 因为(-2)×7=-14, 所以: (-14)÷7=-2 又因为:(-14)×71=-2 所以:(-14)÷7=(-14)×71 2、有理数除法法则除以一个不等于0的数等于乘以这个数的倒数; 0除以任何一个不等于0的数都等于0有此可见:“除以一个数,等于乘以这个数的倒数”,在引进负数以后同样成立。
问题1、计算: (1)36÷(-9)(2)(48)÷(-6)(2)0÷(-8) (3)(-21)÷(-32) (4)0.25÷(-0.5) (5)(-2476)÷(-6)(6)(-32)÷4×(-8) (7)17×(-6)÷5 ★1、能整除时,将商的符号确定后,直接将绝对值相除; 2、不能整除时,将除数变为它的倒数,再用乘法;3、有乘除混合运算时,注意运算顺序。
2022人教版数学《有理数的除法法则2》配套教案(精选)
1.4.2 有理数的除法第1课时有理数的除法法则教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1);(3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出y=a(x-h)2+k的图象.2.掌握形如y=a(x-h)2+k的二次函数图象的性质,并会应用.3.理解二次函数y=a(x-h)2+k与y=ax2之间的联系.一、情境导入对于二次函数y=(x-1)2+2的图象,你能说出它的顶点坐标、对称轴和开口方向吗?你能再说出一个和这个函数图象的顶点坐标、对称轴和开口方向一致的二次函数吗?二、合作探究探究点一:二次函数y=a(x-h)2+k的图象和性质【类型一】二次函数y=a(x-h)2+k的图象求二次函数y=x2-2x-1的顶点坐标、对称轴及其最值.解析:把二次函数y=x2-2x-1化为y=a(x-h)2+k(a≠0)的形式,就会很快求出二次函数y=x2-2x-1的顶点坐标及对称轴.解:y=x2-2x-1=x2-2x+1-2=(x-1)2-2,∴顶点坐标为(1,-2),对称轴是直线xx=1时,y最小值=-2.方法总结:把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)形式常用的方法是配方法和公式法.【类型二】二次函数y =a (x -h )2+k 的性质如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x =-1是对称轴,有下列判断:①b -2a =0;②4a -2b +c <0;③a -b +c =-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④解析:∵-b 2a=-1,∴b =2a ,即b -2a =0,∴①正确;∵当x =-2时点在x 轴的上方,即4a -2b +c >0,②不正确;∵4a +2b +c =0,∴c =-4a -2b ,∵b =2a ,∴a -b +c =a -b -4a -2b =-3a -3b =-9a ,∴③正确;∵抛物线是轴对称图形,点(-3,y 1)到对称轴x =-1的距离小于点(32,y 2)到对称轴的距离,即y 1>y 2,∴④正确.综上所述,选B. 方法总结:抛物线在直角坐标系中的位置,由a 、b 、c 的符号确定:抛物线开口方向决定了a 的符号,当开口向上时,a >0,当开口向下时,a <0;抛物线的对称轴是x =-b2a ;当x =2时,二次函数的函数值为y =4a +2b +c ;函数的图象在x 轴上方时,y >0,函数的图象在x 轴下方时,y <0.【类型三】利用平移确定y =a (x -h )2+k 的解析式将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( ) A .y =13(x -2)2-1 B .y =13(x -2)2+1 C .y =13(x +2)2+1 D .y =13(x +2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为:y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1,故选A. 探究点二:二次函数y =a (x -h )2+k 的应用【类型一】y =a (x -h )2+k 的图象与几何图形的综合如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为________.(用含a 的式子表示)解析:如图,∵对称轴为直线x =-2,抛物线经过原点,与x 轴负半轴交于点B ,∴OB =4,∵由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB =a +4.故答案是:a +4.方法总结:二次函数的图象关于对称轴对称,本题利用抛物线的这一性质,将四边形的周长转化到已知的线段上去,在这里注意转化思想的应用.【类型二】二次函数y =a (x -h )2+k 的实际应用心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (分钟)之间满足函数y =-110(x -13)2+59.9(0≤x ≤30),y 值越大,表示接受能力越强. (1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分钟时,学生的接受能力是多少?(3)第几分钟时,学生的接受能力最强?解:(1)0≤x ≤13时,学生的接受能力逐步增强;13≤x ≤30时,学生的接受能力逐步降低.(2)当x =10时,y =-110(10-13)2+59.9=59.故第10分钟时,学生的接受能力是59. (3)当x =13时,y 值最大,,故第13分钟时,学生的接受能力最强.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =a (x -h )2+k 的图象与性质,体会数学建模的数形结合思想方法.第2章 图形的轴对称复习课学习目标:1、理解轴对称与轴对称图形的概念,掌握轴对称的性质.2、掌握线段的垂直平分线、角的平分线的性质及应用.3、理解等腰三角形的性质并能够简单应用.4、理解等边三角形的性质并能够简单应用.5、能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏设计简单的轴对称图案.重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用.难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用复习过程:【课前准备】如何画一个图形关于某条直线对称的图形?【课内探究】知识点整理:1、如果一个图形沿着某条直线折叠..后,直线两旁的部分能够互相重合..,那么这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴.轴对称图形是—个具有特殊性质的图形.常见的轴对称图形有:线段、角、等腰三角形、等边三角形、矩形、菱形、正方形、等腰梯形、正n 边形、圆形.2、 把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关1、 什么叫轴对称图形?2、 什么叫做两个图形关于某一条直线成轴对称?3、 “轴对称图形”与“两个图形关于某一条直线成轴对称”有什么区别?4、 什么叫做线段的垂直平分线?线段的垂直平分线有什么性质?如何用尺规作出线段的垂直平分线?5、 角的平分线具有什么性质?如何做角平分线?6、 等腰三角形有哪些性质?等边三角形呢?已知哪些条件,可以用尺规做出等腰三角形?7、 如果两个图形关于某直线对称,那么这两个图形具有什么性质?E DBC A 于这条直线对称,这条直线就是它们的对称轴.而两个图形中的各自的相对应点叫做关于这条直线的对称点.(1) 轴对称是指两个图形之间的位置关系;(2) 关于某条直线对称的两个图形是互相重合的;如果两个图形关于某直线对称,那么对称轴是对应点所连的线段的垂直平分线. 牛刀小试:下面几种图形,一定是轴对称图形的是( )3、有两条边相等的三角形叫做等腰三角形.巩固训练:(1)已知△ABC 中,AB = AC ,其周长为18cm ,AB = 5cm ,则BC = .(2)已知等腰三角形的腰长为4cm ,底边长为6cm ,则它的周长为 .(3)已知等腰三角形的两边长分别为6cm 、3cm ,则它的周长是 .(4)已知等腰三角形一边长为3,另一边为5,则它的周长是 .4、线段垂直平分线、角平分线、等腰三角形的性质:① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;(三线合一) ③ 等腰三角形是轴对称图形,它的对称轴是顶角平分线(或底边上的高或底边上的中线)所在的直线.巩固训练:(1) 已知△ABC 中,AB = AC ,∠C = 50°,则∠B = .(2) △ABC 中,AB = AC ,若AD ⊥BC 于D ,则∠1 ∠2,BD CD.(3) 已知等腰三角形的一个底角为45°,则它的顶角为 .(4) 已知等腰三角形的一个角是70°,则其余两个角的度数是 .(5) 已知等腰三角形的一个角是120°,则其余两个角的度数是 . 思考:本章的作图有哪几种类型?(1)作线段的垂直平分线;(2)作角的平分线;(3)作等腰三角形;(4)作对称点.【巩固提升】1、已知A (-1,1),在y 轴上找一点P,使△AOP 是等腰三角形.这样的P 点可能有几个?2、已知Rt △ABC 中,∠C=90°,DE 垂直平分AB(1)若∠CAD=20°,则∠B=____°(2)若AC=4,BC=5,则△ACD 的周长为______.(3) 若∠B=30°,则∠CAD=____°图中共有几组相等的线段?为什么?【课堂小结】通过今天的学习,你对本章又增加了哪些新的认识?【达标检测】1、下列图形中一定是轴对称的图形是().A、梯形B、直角三角形C、角D、平行四边形2、等腰三角形的一个内角是50°,则另外两个角的度数分别是().A、65° 65°B、50°80°C、65°65°或50°80°D、50° 50°3、如果等腰三角形的两边长是6和3,那么它的周长是().A、9B、12C、12或 15D、154、到三角形的三个顶点距离相等的点是().A、三条角平分线的交点B、三条中线的交点C、三条高的交点D、三条边的垂直平分线的交点。
七年级数学上册(人教版)1.4.2有理数的除法(第一课时)教学设计
2.学生在运算过程中对符号的处理能力,包括正负号的判断和运算顺序的掌握。
3.学生的合作能力和交流能力,如何在小组讨论中发挥各自的优势,共同解决问题。
针对学生的个体差异,教师应采取以下策略:
1.对于基础较好、理解能力较强的学生,可以适当提高要求,引导他们进行更深入的思考和实践。
(二)讲授新知
在导入新课的基础上,我会向学生讲解有理数除法的定义和法则。首先,通过具体例题,让学生理解除以一个不等于0的数等于乘这个数的倒数。接着,讲解有理数除法的运算步骤,特别是符号的处理方法。在此过程中,注重引导学生从具体实例中发现规律,逐步提炼出有理数除法的运算规则。
(三)学生小组讨论
讲授新知后,我会组织学生进行小组讨论。将学生分成若干小组,每组4-6人,让她们针对以下问题进行讨论:
1.引导学生通过观察、分析、归纳等方法,发现并理解有理数除法的运算规律。
2.培养学生运用数学语言进行表达、交流,提高学生的合作能力。
3.引导学生从不同角度思考问题,培养学生的逻辑思维和发散思维能力。
(三)情感态度与价值观
1.使学生感受到数学学习的乐趣,激发学生学习数学的热情。
2.培养学生勇于探索、积极思考的学习态度,提高学生的自主学习能力。
2.对于基础较弱、理解能力稍差的学生,教师要耐心指导,通过具体例题和实际操作,帮助他们理解和掌握有理数除法的运算规律。
3.创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,提高他们的自信心。
四、教学内容与过程
(一)导入新课
在课程开始时,我将通过一个与学生生活密切相关的实际问题导入新课。例如,提出以下问题:“如果你有一块巧克力,要平均分给4个好朋友,每个人能得到多少巧克力?”通过这个问题,引导学生回顾之前学过的整数除法,并自然过渡到本节课的有理数除法。接着,我会追问:“如果这块巧克力不是完整的,而是3/4块,你们还能平均分给4个好朋友吗?该如何计算?”从而引出有理数除法的概念。
1.4.2 有理数的除法 第1课时 有理数的除法法则
[点拨]进行有理数的除法运算时,先确定商的符号,再计算商的 绝对值,这种方法适用于能整除的情形.
计算:-53÷-35. 解:-53÷-35 =-53×-35① =1.②
(1)找错:以上解法从第___①_____步开始出现错误; (2)改正:(-53)÷(-35)=(-53)×(-53)=295.
【归纳总结】有理数除法运算的“四种技巧”: 技巧一 当两个有理数能够整除时,确定符号后,直接相除 技巧二 当除数是分数时,把除法转化为乘法 当除数是小数时,把小数转化为分数,再把除法转 技巧三 化为乘法 当除数是带分数时,把带分数转化为假分数,再把 技巧四 除法转化为乘法
总结反思
知识点 有理数的除法法则 法则1: 除以一个__不_等_于__0__的数,等于乘这个数的__倒_数_____. 这个法则也可以表示成a÷b=___a_·1b____(b≠0). 法则2:两数相除,同号得____正____,异号得___负_____,并把 绝对值____相_除_____.0除以任何一个不等于0的数,都得 0 ________.
解: (1)16÷(-4)=-(16÷4)=-4. (2)(-0.75)÷0.25=-(0.75÷0.25)=-3. (3)(-84)÷(-7)=84÷7=12. (4)0÷(-2019)=0.
【归纳总结】计算两数相除的“三步法”: 一观察,确定商的符号;二确定商的绝对值;三确定结果.
目标二 能将有理数除法转化成乘教材例 5(2)针对训练 计算:
(1)(-272)÷11;
(2)(-8)÷(-32);
(3)-79÷+312;
(4)338÷(-2.25);
(5)-1÷-352.
解: (1)(-272)÷11=-272×111=-27. (2)(-8)÷(-23)=8÷23=8×32=12. (3)(-79)÷(+312)=-79×27=-29. (4)338÷(-2.25)=-287×49=-112. (5)-1÷(-325)=1×157=157.
《1.4.2 第1课时 有理数的除法法则》教案、同步练习和导学案
1.4.2 有理数的除法《第1课时有理数的除法法则》教案【教学目标】1.理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;(重点)2.通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.(难点)【教学过程】一、情境导入1.计算:(1)25×0.2=________;(2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________.2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________.观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.二、合作探究探究点一:有理数的除法及分数化简【类型一】直接判定商的符号和绝对值进行除法运算计算:(1)(-15)÷(-3);(2)12÷(-14 );(3)(-0.75)÷(0.25).解析:采用有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除解答.解:(1)(-15)÷(-3)=+(15÷3)=5;(2)12÷(-14)=-(12÷14)=-48;(3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.方法总结:注意先确定运算的符号.根据“同号得正,异号得负”的法则进行计算.本题属于基础题,考查对有理数的除法运算法则掌握的程度.【类型二】分数的化简化简下列分数:(1)-21-7=________;(2)-36=________;(3)-6-0.3=________;(4)-28-49=________.解析:(1)-21-7=-7×3-7=3;(2)-36=-3(-3)×(-2)=-12;(3)-6-0.3=(-0.3)×20-0.3=20;(4)-28-49=2849=4×77×7=47.解:(1)3;(2)-12;(3)20;(4)47.方法总结:化简分数时要注意分子、分母的符号,同号结果为正,异号结果为负.【类型三】将除法转化为乘法进行计算计算:(1)(-18)÷(-23 );(2)16÷(-43)÷(-98).解析:本题可采用有理数的除法:除以一个数就等于乘以这个数的倒数解答.解:(1)(-18)÷(-23)=(-18)×(-32)=18×32=27;(2)16÷(-43)÷(-98)=16×(-34)×(-89)=16×34×89=323.方法总结:此题考查了有理数的除法运算,有理数的除法运算通常利用除以一个数等于乘以这个数的倒数化为乘法运算来求.【类型四】根据ab,a+b的符号,判断a和b的符号如果a+b<0,ab>0,那么这两个数( )A.都是正数 B.符号无法确定C.一正一负 D.都是负数解析:∵ab>0,根据“两数相除,同号得正”可知,a、b同号,又∵a+b<0,∴可以判断a、b均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.探究点二:有理数的乘除混合运算计算:(1)-2.5÷58×(-14);(2)(-47)÷(-314)×(-112).解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×(-14)=52×85×14=1;(2)原式=(-47)×(-143)×(-32)=-(47×143×32)=-4.方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.三、板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a÷b=a×1 b(b≠0).2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.(2)0除以任何一个不为0的数,都得0.【教学反思】让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.1.4.2有理数的除法《第1课时有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②÷8=-=-9;③0.75÷=-=-;④|-9|÷=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是( )A.ab>0B.a+b<0C.<0D.a-b<03.下列结论错误的是( )A.若a,b异号,则a·b<0,<0B.若a,b同号,则a·b>0,>0C.=-D.=-4.若m<0,则等于( )A.1B.±1C.-1D.以上答案都不对5.若一个数的相反数是1,则这个数是,这个数的倒数是.6.计算:÷(-2.5)= .7.若有理数a与b(b≠0)互为相反数,则= .8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-1÷24×.下面是小明和小亮两位同学的计算过程:小明:原式=-÷(4+18-10)÷=-.小亮:原式=-. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求的值.创新应用★11.若ab≠0,则的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以>0.3.D4.C 因为m<0,所以|m|=-m,=-1,故选C.5.-1-6.-÷(-2.5)=-=-.7.-18.解:原式=-10××4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:.创新应用11.B a和b都是正数时,的值为2;a和b都是负数时,的值为-2;a和b一正一负时,的值为0.1.4.2 有理数的除法《第1课时有理数的除法法则》导学案【学习目标】:1.认识有理数的除法,经历除法的运算过程.2.理解除法法则,体验除法与乘法的转化关系.3.掌握有理数的除法及乘除混合运算.【重点】:有理数的除法法则及运算.【难点】:准确、熟练地运用除法法则.【自主学习】一、知识链接1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________.3.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.二、新知预习1.根据除法是乘法的逆运算填空:(+2)×(+3)=+6(+6)÷(+2)=_________,对162+⨯=__________.(-2)×(-3)=+6(+6)÷(-2)=_________,比16()2+⨯-=__________.2.对比观察上述式子,你有什么发现?【自主归纳】有理数的除法法则:除以一个数(不等于0)等于乘这个数的____________.3.根据有理数的乘法法则和除法法则,讨论:(1)同号两数相除,商的符号怎样确定,结果等于什么?(2)异号两数相除,商的符号怎样确定,结果等于什么?(3)0除以任何一个不等于0的数,结果等于什么?【自主归纳】两数相除,同号得______,异号得______,并把绝对值______.0除以任何不等于0的数都得______.三、自学自测计算:(1)(-8)÷(-4); (2) (-9)÷3 ;(3) 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭; (4)0÷(-1000).四、我的疑惑______________________________________________________________________________________________________________________________________________________【课堂探究】 一、要点探究探究点1:有理数的除法及分数化简 问题1:根据“除法是乘法的逆运算”填空: (-4)×(-2)=8 8÷(-4)= 6×(-6)=-36 -36÷6=(-3/5)×(4/5)= -12/25 -12/25 ÷(-3/5)= -8÷9=-72 -72÷9= 8÷(-4)= 8×(-1/4)= -36÷ 6= –36 ×(1/6)= -12/25 ÷ (-3/5)= (-12/25)×(-5/3)= -72 ÷9= -72×(1/9)=问题2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗?有理数除法法则(一):除以一个不等于0的数,等于乘这个数的 . 用字母表示为a ÷b=a ×b1(b ≠0) 问题3:利用上面的除法法则计算下列各题: (1)-54 ÷(-9);(2)-27 ÷ 3; (3)0 ÷(-7); (4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 .0除以任何一个不等于0的数,都得 . 思考:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?归纳:两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1 计算(1)(-36)÷ 9; (2)(-2512)÷(-53).例2 化简下列各式: (1)312-;(2)1245--探究点2:有理数的乘除混合运算 例3 计算 (1)(-12575)÷(-5);(2)-2.5÷85×(-41).方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算;(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).1.(1)(-24)÷4; (2) (-18)÷(-9); (3) 10÷(-5).2.计算:(1)(-24)÷[(-32)×49];(2)(-81)÷214×49÷(-16).二、课堂小结一、有理数除法法则:1.a ÷b=a ×b1(b ≠0)。
七年级数学有理数的除法
1、习题1.4 第4题
2、预习教科书第35~37页.
石器时代定义:使用磨制石器为主的时代叫做新石器时代 [1] ,属于石器时代的后期,年代大约从1.8万年前开始,结束时间从距今5000 多年至2000多年不等。在新石器时代的人类已经会使用陷阱捕捉猎物。 这个时期,人类开始从事农业和畜牧,将植物的果实加以播种,并把野生动物驯服以供食用。人类不再只依赖大自然提供食物,因此食物 的来源变得稳定。同时农业与畜牧的经营也使人类由逐水草而居变为定居下来,节省下更多的时间和精力。在这样的基础上,人类生活得 到了更进一步的改善,开始关注文化事业的发展,使人类开始出现文明。 石器时代手游 / 石器时代手游 在中国,这个时代出现了龙虬文化、仰韶文化、河姆渡文化和细石器文化等文明。在新石器时代,人类已经能够制作陶器、纺织,发明了 农业和畜牧业,开始了定居生活。在新石器时代完结后,人类开始进入铜器时代。 挑了喜帕,喝下合衾酒、结发同……”不等喜嬷嬷说完,他就摆了摆手,目光冷冷地盯着端坐在喜床边的新娘,壹把接过喜嬷嬷手中的喜 称,上前壹步,挑了喜帕。他本是打算尽快地应付完这些程序,尽快地打发走这些人,好让他的心清静下来,因此漫不经心地挑完喜帕, 面含怨怒地望向这个毁掉了他全部幸福的诸人。随着喜帕的落下,呈现在他眼前的这个诸人,令他不得不承认,即使是阅人无数的他,也 不得不承认,这是他有生以来,见过的最漂亮的诸人!虽然她正垂着长长的睫毛,看不到她的眼睛,而且脸色苍白,映衬得胭脂如火壹般 红,但她仍不失壹个美得令人窒息的美人!第壹卷 第五十九章 仙女那美若天仙的面庞,是他爱新觉罗•胤禛此生见过的最美的容颜,如 果人间真有仙子,那冰凝,他的侧福晋真的就是这人间最美丽的,不食人间烟火的仙女。不但美得令人窒息,更是美得清丽脱俗,即使被 大红喜服、俗脂艳粉所包围着,仍是遮挡不住她夺目的美丽光芒。但是,如果不是他心中所爱,再美的容貌又有什么用?如果没有此前种 种,慢慢地,他也许会如从前娶妻那样,努力地培养双方的感情,毕竟是自己的诸人,又有着如此的美貌,培养感情,应该不是壹件难事。 但是此刻,他的脑海中不断浮现的,却全都是玉盈的样子!虽然比不及冰凝的壹半,但在他的眼中,却是壹种真实、自然之美,既温柔娇 美,又侠肝义胆。往事壹幕壹幕,历历浮在现眼前,衬得玉盈整个人都散发出迷人的光彩。眼前,是美得不可方物的冰凝,脑海中,是散 发着迷人光彩的玉盈,两个都是如花似玉、豆蔻年华、人比花娇,却是壹个由爱更生爱,壹个由恨更生恨!强烈的对比,更加激发了壹个 月以来,压抑在他心中难以发泄的愤怒。下意识地,他伸出手,捏住了她小巧的下巴,强迫她抬起了头。冰凝本来对王爷没有任何感觉, 万般无奈地嫁入这王府,先是独自壹人走进了新房,又独自壹人枯坐到了四更天,早已经心力交瘁,此时此刻,她唯壹的愿望就是早早地 结束这壹切繁缛的程序,快快地让她疲惫不堪的身心得到彻底的休息和放松。可是,大大出乎她的意料,她的下巴突然被王爷捏得生疼, 并被强迫地抬起了头,这是她平生以来从来没有经历过的奇耻大辱!她是爹娘倍加宠爱的掌上明珠,她是兄姐悉心呵护的心肝宝贝,从小 到大,还从来还没有任何壹个人,敢对她如此这般粗暴无礼。这就是姐姐口中那个重情重义的王爷?她被迫抬起了头,那是壹双大大的眼 睛,还有那长长的睫毛,本是壹双有着摄人魂魄般的美目,折射出来的却是冰冷冷的目光,似是惊异,似是不解,又似是探究,但更是愤 怒。这怨恨愤怒的目光与他那冰寒彻骨的目光相遇,直将他的眼睛灼伤!这是壹个什么
人教版初中数学七年级上册精品教学课件 第1章 有理数 1.4.2 第1课时 有理数的除法
4.下列各式的值等于 9 的是( D )
A.
|+63|
-7
-63
5.计算:
(1)(-36)÷(-12)=
3
|-63|
B. |-7|
3
(2)64 ÷ -3 8 =
C. -|-7|
;
3
-2
.
D.
-63
-7
快乐预习感知
6.化简:
-32
=
题可以利用除法法则直接除;第(2)小题不能整除,可以先确定符号,
利用小学学过的约分进行化简.
-18
=-18÷3=-6.
3
-24
24÷8
3
(2)-16 = 16÷8 = 2.
解:(1)
快乐预习感知
1
1.若=-4,则 x 的值是( C )
1
பைடு நூலகம்
A.4
B.4
1
C.-4
D.-4
2.下列运算错误的是( A )
-8
B. 4
-8
C.-4
8
D.-4
相除.0
互动课堂理解
1.有理数的除法法则的运用
【例 1】 计算:
(1)(-15)÷(-3);
1
(2)(-12)÷ - 4 ;
(3)(-0.75)÷0.25;
1
(4)(-12)÷ - ÷(-100).
12
分析第(1)(3)小题直接运用除法法则进行有理数的除法运算,首
4
-6
(2)-0.2=
9
(3)--72=
(1)
-8
;
30
人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1
人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1一. 教材分析《有理数的除法(1)》是人教版数学七年级上册的教学内容,本节课主要让学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律,培养学生解决实际问题的能力。
教材通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义,进而引导学生探究有理数除法的运算方法。
二. 学情分析学生在七年级上册已经学习了有理数的加法、减法、乘法,对有理数的基本运算有了初步了解。
但学生在解决实际问题时,往往不能灵活运用有理数运算规律。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将实际问题转化为有理数除法运算问题,并通过实例让学生感受有理数除法的运算规律。
三. 教学目标1.知识与技能:使学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律。
2.过程与方法:培养学生解决实际问题的能力,提高学生运用有理数除法解决生活中的问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探究的精神。
四. 教学重难点1.教学重点:有理数除法的基本运算方法。
2.教学难点:理解有理数除法的运算规律,解决实际问题。
五. 教学方法1.情境教学法:通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义。
2.引导发现法:教师引导学生观察、分析实例,发现有理数除法的运算规律。
3.合作学习法:学生分组讨论,共同解决问题,提高学生合作能力。
六. 教学准备1.教学课件:制作课件,展示实例和教学内容。
2.教学素材:准备一些实际问题,用于引导学生解决。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示日常生活中的一些实例,如购物时找零、制作食品时配料等,引导学生感受有理数除法的实际意义。
2.呈现(10分钟)教师通过讲解,向学生介绍有理数除法的基本运算方法,如“同号两数相除,异号两数相除”等。
同时,引导学生观察实例,发现有理数除法的运算规律。
1.4.2 有理数的除法(第一课时) 课件(25张PPT)
1.4.2 有理数的除法(第一课时)课件(25张PPT)(共25张PPT)第1章有理数1.4.2 有理数的除法第一单元1.认识有理数的除法,经历除法的运算过程.(运算能力)2.理解除法法则,体验除法与乘法的转化关系.(转化思想)3.掌握有理数的除法及乘除混合运算. (运算能力)1.倒数的定义你还记得吗?乘积是1的两个数互为倒数.2.你能很快地说出下列各数的倒数吗?---1情境一:小明从家里到学校,每分钟走70米,共走了20分钟,问小明家离学校有多远?放学后,小明仍然以每分钟70米的速度回家,应该走多少分钟才会到家?70×20=1400(米)1400÷70=20(分)情境二:经统计,某商场一年共亏损3.6万元,那么该商场平均每月亏损多少万元?规定盈利为正,亏损为负. 则列式为:(-3.6)÷12=这个式子应该怎样计算呢?怎样计算8÷(-4)呢?因为___×(-4)=8所以8÷(-4)=___…………①另一方面,我们有8×( )=-2 …………②于是有8÷(-4)=8×( ) ……③-2-2③式表明,一个数除以-4可以转化为乘来进行,即一个数除以-4,等于乘-4的倒数.换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘?快速完成下边的问题:-6÷2=____,-6× =____;-12÷(-3)=____,-12×(-)=____;10÷(-5)=____,10×(-)=____;-72÷9=_____,-72× =_____.-3-344-2-2-8-8上面各组数计算结果你能得到有理数的除法法则吗?6×(-)有理数除法法则(一)用字母表示为除以一个不等于0的数,等于乘这个数的倒数.6÷(-2)== -3“÷”变“×”“除数”变“倒数”★利用法则解题示范利用上面的除法法则计算下列各题:(1)-54÷(-9);(2)-27÷3;(3)0÷(-7);(4)-24÷(-6).解:(1)-54÷(-9)=-54×(-)=6;(2)-27÷3=-27×=-9;(3)0÷(-7)=0×(-)=0;(4)-24÷(-6)=-24×(-)=4.从上面我们能发现商的符号有什么规律?两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.有理数除法法则(二)例1.计算:(1)(-144)÷(-6); (2)(-0.75)÷0.75; (3)(-12)÷; (4)0÷(-2).解:(1)原式=144÷6=24; (2)原式=-(0.75÷0.75)=-1;(3)原式=(-12)×=-20; (4)原式=0.有理数除法法则重点分析:在进行有理数除法运算时,能够整除的就选择法则二,不能够整除的就选择用法则一.互为相反数的两个数(0除外)相除得-1________________1.若“>0,则一定有( )A.a>0且b>0B.a<0且b<0C.a,b同正或同负D.a,b-正一负2.两个数的积是-其中一个是-,则,一个是_______.C3.计算:(1)(-1.2)÷0.4; (2)6÷(-); (3)1÷(-5);(4)(-)÷(-); (5)(-2)÷(-1).解:(1)原式=-(1.2÷0.4)=-3; (2)原式=6×(-3)=-18;(3)原式=1×(-)=-; (4)原式==;(5)原式==2.解:(1) =(-16)÷(-4)=4; (2) =39÷(-15)=39×(-)=-; (3) =0÷(-25)=0; (4) =(-12)÷0.8=(-12)×=-15;(5) - =-[(-9)÷(-51)]=-(9÷51)=-.化简分数重点例2.化简下列分数:(1);(2) ;(3) ;(4) ;(5) - .另解(直接约分)- =- =-15____________________________________________________________另解(直接约分)- =-1.下列分数化简结果为的是( )A. B. C. D.2.化简下列分数:(1);(2) ;(3) ;(4)- .C解:(1) =(-21)÷7=-3; (2) =-;(3) =-6÷(-)=-6×(-4)=24; (4)- ===有理数的乘除混合运算重点例3.计算:(1)(-2)÷5×; (2)1÷(-10)×3÷(-3); (3)(-)×(-1)÷0.25; (4)(-7)÷[(-)÷7].这里可不能先算乘法哟!__________解:(1)原式=-2××=-; (2)原式=×××=;(3)原式=×÷=××4=5;(4)原式=(-7)÷[(-)×]=(-7)÷(-)=(-7)×(-3)=21.计算:(1)(-)×(-)÷(-12); (2)27÷(-1)×÷(-36);(3)(-6)÷[(-0.25)÷]; (4)(-81)×÷(-2)÷(-8).解:(1)原式=-××=-; (2)原式=27×××=;(3)原式=(-6)÷(-×)=(-6)÷(-)=6×=20;(4)原式=-81×××=-2.利用转化思想进行简便运算难点例4.计算:(-2)÷( + -- )利用转化思想进行简便运算难点例4.计算:(-)÷( + -- )解:原式的倒数=(+--)÷(-)=(+--)×(-30)=×(-30)+×(-30)-×(-30)-×(-30)=-15-40+5+18=-32. 则(-)÷( + -- )=-1.用简便方法计算:-999÷(-1).解: -999÷(-1)=(1000-)×=900-=899.2.计算:(-)÷( -+ - ).解:原式的倒数=(-+-)÷(-)=(-+-)×(-42)=×(-42)-×(-42)+×(-42)-×(-42)=-7+9-28+12=-14. 则(-)÷( -+ - )=-含绝对值的分数的化简难点例5.【分类讨论思想】已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++的值.含绝对值的分数的化简难点例5.【分类讨论思想】已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++的值.解:因为abc>0,所以a,b,c中负因数的个数为偶数,即为0或2.又a+b+c<0,所以a,b,c中必有负数.所以a,b,c中有两个负数,一个正数.假设a为正数,b,c为负数,则|a|=a,|b|=-b,|c|=-c.所以++=++=1+(-1)+(-1)=-1.不管设三个数中哪两个数为负数,结果都一样.________________________1.若=1,则x____0;若=-1,则x____0.2.若有理数a,b满足ab<0,则+的值为_____.3.已知有理数a,b,c满足++=1,则=_____.<>-14.已知有理数a,b满足ab≠0,则+的值为( )A.±2B.±1C.±2或0D.±1或0【解析】因为ab≠0,所以分四种情况:①a>0,b<0,此时原式=1-1=0;②a>0,b>0,此时原式=1+1=2;③a<0,b<0,此时原式=-1-1=-2;④a<0,b>0,此时原式=-1+1=0.故选C.二、有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.三、乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.法则一:除以一个不等于0的数,等于乘这个数的倒数.一、有理数除法法则:。
人教版七年级上册1.4.2 有理数的除法课件(共20张PPT)
谢谢观看
Thank you for watching
解:原式=(-3)-5=-8;
(2)22×(-5)-(-3)÷ -
原式=-110-15=-125;
;
(3) +
÷ - × .
4.计算-28-53 的按键顺序是 (
A.(-) 2 8 (-) 5 3 =
B.- 2 8 (-) 5 3 =
C.2 8 (-) – 5 3 =
D.(-) 2 8 – 5 3 =
600 m.
7.某次数学竞赛共 15 道选择题,规定答对 1 题得 4 分,
答错 1 题扣 1 分,不答得 0 分.某学生答对 12 道题,答错 2
道题,1 道题未答,则该生此次竞赛共得多少分?
解:12×4+2×(-1)+1×0=46(分).
答:该生此次竞赛共得46分.
8.【教材 P38 习题 T8·变式】计算:
)
5.用带符号键(-)的计算器计算-5.13+4.62 的按键顺序
是
(-)
5 ·1 3
+ 4 ·6 2 =
,结果是 -0.51
.
6.【教材 P39 习题 T11·改编】一架直升机从高度为
600 m 的位置开始,先以 20 m/s 的速度垂直上升 60 s,后以
12 m/s 的速度垂直下降 100 s,这时直升机所在的高度是
解:原式=(-15)÷ -
×6.
×6(第一步)
1、4、2 有理数的除法(第1课时 有理数的除法法则) 21-22学年人教版数学 七年级上册
方法归纳 (1)有理数除法化为有理数乘法以后,可
以利用有理数乘法的运算律简化运算 (2)乘除混合运算往往先将除法化为乘法,
然后确定积的符号,最后求出结果(乘除混 合运算按从左到右的顺序进行计算)
练一练
(1) ( 3) (1 1 ) (2 1 )
4
2
4
解:原式=
334 1 429 2
(2) (3) [( 2 ) ( 1 )]
b _____1___;
a
(2)当
a0
时,
a
=_____1__;
(3)若 a b, a 0, 则 a, b 的符号分别是
b
__a___0__, b___0___.
(4)若﹣3x=12,则x=____4___.
归纳新知 一、有理数除法法则: 1. a b a 1 (b 0)
b
2.两数相除,同号得正,异号得负,并把绝对 值相除.
解:8 000-[(-20)-(-47)]÷0.6×100=3 500(米)
18.(10 分)如果对于任何有理数 a,b 定义运算“Δ”如下: aΔb=1a ÷(-b2 ),如:2Δ3=12 ÷(-32 )=-13 .求(-2Δ7)Δ4 的值.
解:(-2Δ7)Δ4=[(-12 )÷(-72 )]Δ4=17 Δ4= 7÷(-42 )=7÷(-2)=-3.5
(45)
(12)
45
12
15 4
新知二 有理数的乘除混合运算
例3 计算
(1)
1
2
55 7
5
(2) 2.5 5 ( 1 ) 84
解:(1)原式 125 5 5
7
(2)原式 5 8 1
254
(125 5 ) 1
1.4.2 有理数的除法 第1课时 课件(新人教版七年级上)
7 8
有理数除法法则
两数相除,同号得正,异号得负,并把 绝对值相除; 零除以任何一个不等于零的数都得零.
例4
高度每增加1km,气温大约降低
6℃,今测得高空气球的温度为-3 ℃ ,地
24 (2) 16 24 = 16
=
3 2
练一练
(1) (2) (-6)÷(-4 )÷(-0.6)
3 3 (-3)÷(- )÷ 10 10
(3)
(4)
(-18)÷
1 2 4
×(
1 6
4 9
)÷ 8
- 1+ 5÷ (-
)×(-6)
例3 计算:
1 1 3 2 5 - ( - + - ) ÷ ( - ) (1) 3 14 7 42 21
面温度为6 ℃ ,求气球的高度.
小结
有理数除法转化为乘法后,可利用运算 律简化计算; 在乘除混合运算中,注意运算顺序,从 左到右依次运算; 注意区分相反数和倒数.
思考
对于不等于0的有理数a,b,c,
a b c abc 的值有多少种情况? a b c abc
当a、b、c的积是负数时,式子的 值是多少?
有理数的除法
问题1
3 ( - ? ) × 2 = -6 ( - 6 ) ÷ 2 = -? 3
1 ( -6 ) × = - ? 3 2
1 (-6 )÷2 = (- 6 )× 2 有理数的除法可以转化为乘法.
有理数的除法法则
除以一个不等于0的数等于乘以这个数的倒数.
1 a× b
a ÷b =
(b≠0)
1.4.2 有理数的除法(课时1) 教案
(分子除以分母。学生独立完成。
师:有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算。
例3:计算:
(1) ;(2)
师:除法运算中遇到小数、分数问题,我们应如何处理?遇到乘除混合运算,应如何处理?
生:像小学一样,小数化成分数,可以进行约分;遇到乘除混合运算,先把除法转化为乘法。
1.4.2有理数的除法(1)
课型
新授
单位
主备人
教学目标:
1.知识与技能:理解有理数除法法则,会进行有理数的除法运算。
2.过程与方法:让学生经历有理数除法法则的探究过程,培养学生的观察、归纳、概括、运算及逆向思维能力。
3.情感、价值观:通过学生自己思索、判断,培养学生学习数学的自信心。
重点、难点:
教学重点:探究有理数除法法则的形成过程,熟记两则有理数除法法则法则,能有根据地有步骤地进行有理数除法运算。
教学难点:有理数除法法则的发现及法则的完整表述,商的符号的正确处理。
教学准备:
PPT课件和微课等。
教学过程
一、创设情景、引入新课
课件出示:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?
放学后,小明仍然以每分钟50米的速度回家,应该走多少分钟?
师:1.从上面的例子你可以发现,有理数除法与乘法之间满足怎样的关系?
生:除法与乘法之间有互逆关系
2.学生回答完问题后,教师提出课题——有理数的除法。
3.你能很快地说出下列各数的倒数吗?
原数
-5
7
0
-1
倒数
【让学生回顾之前学过的倒数知识,为学习有理数除法作好准备。】
二、自主学习、合作探究
1.如何解决
新人教部编版初中七年级数学上册1.4.2 第1课时 有理数的除法法则
11.下列计算:①(-1)×(-2)×(-3)=6;②(-36)
÷(-9)=-4;③ 2 ×(- 9 )÷(-1)= 3 ;④(-4)÷1 ×
34
2
2
(-2)=16.其中正确的有( C )
A.4 个 B.3 个 C.2 个 D.1 个
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
12.当 a=-3,b=-2,c=5 时,a÷|b|÷c 的值为
15.计算:
(1)(-31 )×(- 2 )÷(+1 3 ); (2)(- 9 )÷3÷(- 3 );
5
7
5
16 8 2
解:原式= 4 . 7
解:原式=1.
(3)2÷(- 3 )× 4 ÷(-5 1 ).
77
7
解:原式=14 . 27
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
16.气象资料表明,山的高度每增加 1 km,则气温 大约升高-6 ℃. (1)我国著名风景区黄山的天都峰相对于地面的高 度约为 1800 m,当山下的地面温度为 18 ℃时,求 天都峰顶的气温; 解:(1)1800 m=1.8 km,1.8×(-6)+18=7.2( ℃). 答:天都峰顶的气温为 7.2 ℃.
b>0,那么( D ) A.a>0,b>0 B.a<0,b>0 C.a、b 同号 D.a、b 异号,且正数的绝对值较大
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
14.在如图所示的运算流程中,若输出的数 y=-3, 则输入的数 x= -6或-7 .
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
长冲中学-“四学一测”活力课堂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 周 星期 第 课时 年 月 日
一【引入新课(复习引入)】
1.小学里,除法的意义是什么?它与乘法有什么关系?
已知两数的积与一个因数,求另一个因数。
用除法,乘法与除法互为逆运算除以一个数等于乘以这个数的倒数.
2.求下列各数的倒数:
(1)-; (2)-0.125; (3)-1.(4)-1.
二【揭示目标】
今天我们来学习1.4.2 有理数的除法(1)(板书).
本节课的学习目标是:
(1)理解有理数除法则,并会应用除法则进行运算以及分数的化简;
(2)将乘除混合运算统一为乘法运算,并能正确计算.
三【出示自学提示】
怎样才能当堂达到学习目标呢?请同学们按照自学指导认真自学: 自学指导(一)
请同学们认真阅读课本P34页的内容。
(小组合作讨论完成)(5分钟)
1、有理数的除法和乘法之间有什么关系?请同学们举一个实例说明;你能用字母表示出它们之间的关系吗?
2、在计算时符号如何确定?和乘法的一样吗?
2
53
7
3、在除法计算时首先应该做什么?
4、0能做除数吗?能做被除数吗?
五【展示交流讲解】
请同学们自学课本P35例6完成下列习题
(看完后小组讨论完成,并又小组长进行意见的统一。
)
1、分数线应该怎样理解?
2、化简后分子与分母的符号的变化, 分数化简完还是分数,怎么进行化简的?
六【提升达标检测】
1. 课本P35例7第一题学生独立完成.(5分钟)
(1)(−12557)÷(−5)
2.
七、小结
本节课学习了有理数的除法法则,有理数的除法有两种方法.一是根据“除以一个数,等于乘以这个数的倒数”,转化为乘法,按乘法法则进行.二是根据“两数相除,同号得正,异号得负,并把绝对值相除.一般能整除时用第二种方法.乘除混合运算,先统一为乘法,再按几个不等于0的数相乘的法则计算.
【板书设计】
51( 2.5)()84
-÷⨯-要求:小组内做完的同学互相订正,并且检查其他同学的作业,
并相互给予指导。