同济大学线代(第六版)新PPT演示课件

合集下载

线性代数(第六版)课件:矩阵

线性代数(第六版)课件:矩阵

30
a b c d
于是得
B
0 0 0
a 0 0
b a 0
c b a
,其中a ,
b,
c,
d
为任意数。
31
从前例
2 3
46
2 1
42
0 0
00 ,
还可看出,矩阵乘法不满足消去律:
AB O A O 或 B O ;
A(B C) O
AB AC , A O B C . 左消去律不成立;
9 3
84 ,
显然, AB BA 。
23
矩阵乘法的运算规律:
(1) ( AB)C A(BC) ; 矩阵乘法满足结合律! (2) A(B C) AB AC , (B C)A BA CA ; 分配律
(3) k( AB) (kA)B A(kB) (其中k为数);
(4) AO O, OA O ; (5) AE EA A . 注意:交换律不成立。
4
例如 1 0 3 5 是一个 2 4 矩阵, 9 6 4 3
2 3 5 9 是一个 1 4 矩阵,
1 2
是一个 3 1 矩阵。
4
3 4
6 2
2 2
是一个 3 3 矩阵。
5
0
2
5
如果矩阵A=(aij)的行数与列数都等于n,则称A为 n 阶 矩阵 (或称 n 阶方阵 ) 。
.
kam1 kam2 kamn
14
数乘矩阵的运算规律: (设A、B 为 m n矩阵,k, l 为数)
(1) k( A B) kA kB ; (2) (k l)A kA lA ; (3) k(lA) (kl)A ; (4) 1A A,0A O . 加法和数乘合称为矩阵的线性运算。

同济大学线性代数第四章PPT课件

同济大学线性代数第四章PPT课件
讨论它们的线性相关性.
解: Ee1,e2, ,en
结论: 线性无关
问题: n=3时, e1,e2,e3 分别是什么?
上述向量组又称基本向量组或单位坐标向量组.
一些结论:
(1) 一个零向量线性相关, 一个非零向量线性无关;
(2) 两个向量线性相关当且仅当 它们的对应分量成比例;
(3) 一个向量组线性无关,则增加其中每个向 量的分量所得新向量组仍线性无关。
例如: 2 1 1 0 a11 1,a212,a312,b33
则 b 能由 a1, a2, a3线性表示.
解方程组 x 1 a 1 x 2 a 2 x 3 a 3 b
既解方程组
2x1x12xx22
x3 x3
0 3
x1 x2 2x3 3

x1 1 1
x2 x3
c
1 1
线性表示
AXB有解,其中 A (1 ,2, ,m )
B (1,2, ,l)
R (A )R (A ,B )
定理3: 向量组 B :1,2, ,l能由 A :1,2, ,m
线性表示,则 R(B) ≤ R(A) 。
其中 A ( 1 ,2 ,,m ) , B ( 1 ,2 ,,l )
证:根据定理 2 有 R(A) = R(A, B) 而 R(B) ≤ R(A, B),因此 R(B) ≤ R(A)。
定义4:设向量组 A : 1 , 2 , , m , 若存在不全为零实数 1 , 2 , , m , 使得 11 2 2 m m 0
则称向量组 A线性相关. 否则称向量组A线性无关.
定理4: n 维向Ax 量 组0 1有 ,非 2, 零 ,解 m,线其 性相A 关 中 1 ,2 , ,m R(A)m

同济大学线代(第六版)新PPT课件

同济大学线代(第六版)新PPT课件

我们先讨论未知量的个数与方程 的个数相等的特殊情形.
在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
第一章 行列式(De•数t行e的r列一m式种是in工线a具性n!代t)
•学习行列式主要
内容提要
就是要能计算行列 式的值.
§1 二阶与三阶行列式
§2 全排列与对换
行列式的概念.
§3 n 阶行列式的定义
什么是线性关系?
线性(linear)指量与量之间按比例、成直 线的关系,在数学上可以理解为一阶导数为常数 的函数。
非线性(non-linear)则指不按比例、不成 直线的关系,一阶导数不为常数。
线性代数
研究对象: 线性空间、线性变换和有限维的线性方程组。
研究工具: 行列式、矩阵与向量。
线性代数(第六版)
三、有重要贡献的数学家
• 17世纪,德国数学家-莱布尼兹 ——历史上最早使用行列式概念。
• 1750年,瑞士数学家-克莱姆(克莱姆法则) ——用行列式解线性方程组的重要方法。
• 1772年,法国数学家-范德蒙 ——对行列式做出连贯的逻辑阐述,行列
式的理论脱离开线性方程组。
• 1841年,法国数学家-柯西 ——首先创立了现代的行列式概念和符号。
学术地位及应用
线性代数在数学、物理学和技术学科中有各种 重要应用,因而它在各种代数分支中占居首要地位。 在计算机广泛应用的今天,计算机图形学、计算机 辅助设计、密码学、虚拟现实等技术无不以线性代 数为其理论和算法基础的一部分。线性代数所体现 的几何观念与代数方法之间的联系,从具体概念抽 象出来的公理化方法以及严谨的逻辑推证、巧妙的 归纳综合等,对于强化人们的数学训练,增益科学 智能是非常有用的。
随着科学的发展,我们不仅要研究单个 变量之间的关系,还要进一步研究多个变量 之间的关系,各种实际问题在大多数情况下 可以线性化,而由于计算机的发展,线性化 了的问题又可以计算出来,线性代数正是解 决这些问题的有力工具。

同济大学线代(第六版)新

同济大学线代(第六版)新

请观察,此公式有何特点? ➢分母相同,由方程组的四个系数确定. ➢分子、分母都是四个数分成两对相乘再
相减而得.
二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 b2
我们引进新的符号来表示“四个 数分成两对相乘再相减”.
a11 a12 数表 a21 a22
a11 a12 记号 a21 a22
在十九世纪下半叶,因若当的工作而达 到了它的顶点。1888年,意大利数学家皮亚 诺(1858-1932)以公理的方式定义了有限 维或无限维线性空间。托普利茨将线性代数 的主要定理推广到任意体(domain)上的最 一般的向量空间中。
“代数”这个词在中文中出现较晚,在清代 时才传入中国,当时被人们译成“阿尔热巴 拉”,直到1859年,清代著名的数学家、翻译 家李善兰( 1811-1882 )才将它翻译成为(linear)指量与量之间按比例、成直 线的关系,在数学上可以理解为一阶导数为常数 的函数。
非线性(non-linear)则指不按比例、不成 直线的关系,一阶导数不为常数。
线性代数
研究对象: 线性空间、线性变换和有限维的线性方程组。
研究工具: 行列式、矩阵与向量。
线性代数(第六版)
原则:横行竖列
2. 二阶行列式的计算 ——对角线法则
主对角线 副对角线
a11 a21
a12 a22
a11a22
a12a21
即:主对角线上两元素之积-副对角线上两元素之积
根据定义 x1,x2 的分子也可以写成行列式形式如下:
b1 b2
a12 a22
b1a22 a12b2,
a11 a21
b1 b2
线性代数 Linear Algebra

同济大学线性代数课件__第三章[1]

同济大学线性代数课件__第三章[1]
矩阵的等价关系满足:
(i) 反身性 A ~ A ; (ii) 对称性 若A ~ B ,则B ~ A ; (iii) 传递性 若A ~ B , B ~ C ,则A ~ C 。
2021/10/10
9
线性方程组 2x1 x2 x3 x4 2, ①
x1
4 x1
x2 6x2
2 x3 2 x3
0
00
0
0
00 4
∴ R(B) = 3
2021/10/10
36
定理 3 若A ~ B, 则 R(A) = R(B) .
事实上,若 A 经过一次初等变换变为 B,A的 k 阶子式全等于零, 则 B的 k 阶子式也全等于零。
(1) A ri rj B
(2) A r i k B (3) A ri krj B
2 3 4
5 1 3
1
r2 2r1 r3 3r1
0 0
2 2 2
3 5 6
2 1 2
5 9 12
1
r1 r2 r3 r2
0 0
0 2 0
2 5 1
1 1 1
4 9 3
r12r3 r2 5r3
1 0 0
0 2 0
0 0 1
3 4 1
2 6 3
2021/10/10
第i行
1
E(i, j)
1 10

j

1
1
2021/10/10
17
1
1
E(i(k))
k
第i 行
1
1
2021/10/10
18
1
E(i, j(k))
1 k
第i行
1

线性代数同济六版共五章全课件-PPT

线性代数同济六版共五章全课件-PPT

b11 b12 b1n
D1
b21
b22
b2 n
,
bn1 bn2 bnn
其中,当 k≠ i , j 时, bkp = akp ;当 k = i , j 时,bip = ajp,, bjp = aip ,
于是
D (1) 1
t(
pppp )
1
i
j
n
b1
p1
bipi
bjpj
bnpn
(1)
t(
经对换1与4 得排列 53412
求这两个排列的逆序数. 解 t(5314 2) = 0+1+2+1+3=7
t(53412) = 0+1+1+3+3=8
练习
1. 选择 i 与 k 使 (1)2 5 i 1 k 成偶排列; (2)2 5 i 1 k 成奇排列.
2. a14a21a33a44和a12a43a31a24是否为四阶行列式中项 的,
易知,向量组与它的最4大无关组是等价的.
m×s s×n m×n
例 7 向量组
例5 n 阶行列式 我们也可以证明,如果把矩阵 A 的第 j 行的 k 倍加到第 i 行
为矩阵 A 的秩,矩阵 A 的秩记成 R(A).
假设 r > s, 看齐次线性方程组
一般来说,向量组的最大无关组不是唯一的.
若 x1 = c1 , x2 = c2 , ……, xn = cn 是 ⑴ 的解,记1
一元一次方程 ax = b
一元二次方程 二元 、三元线性方程组
行列式 矩阵及其运算 矩阵的初等变换与线性方程组 向量组的线性相关性 矩阵的特征值和特征向量
第一章 行列式

《线性代数》(同济第六版)演示精品PPT课件

《线性代数》(同济第六版)演示精品PPT课件

11 2
1
b
21
a
xba
=
2 a11a22 a12a21
原则:横行竖列
我们引进新的符号来表示“四个 数分成两对相乘再相减”.
a11 a12 数表 a21 a22
a11 a12 记号 a21 a22
表达式 a11a22 a12a21 称为由该
数表所确定的二阶行列式,即
a11 a12 D=
a21 a22
=
a11b 2
ba 1
21
2 a11a22 a12a21
�分母相同,由方程组的四个系数确定. �分子、分母都是四个数分成两对相乘再
相减而得.
7
二元线性方程组
a11x1 +a12x2 = b1 21 1 x +a22 x2 = b2 a
其求解公式为
b1a22 a12b2
x1 = a11a22 a12a21
= a11a22a33 +a12a23a31 +a13a21a32 a13a22a31 a12a21a33 a11a23a32
注意:对角线法则只适用于二阶与三阶行列式.
13
1 2 -4
例2 计算行列式 D = -2 2 1
-3 4 -2
解 按对角线法则,有
D = 1×2×( 2)+ 2×1×( 3)+ ( 4)×( 2)×4 1×1×4 2×( 2)×( 2) ( 4)×2×( 3)
副对角线 a31 a32 a33
a13a22a31 a12a21a33 a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
12
三阶行列式的计算 ——对角线法则

线性代数(第六版)课件:线性方程组

线性代数(第六版)课件:线性方程组
《线性代数》
(第六版)
1
线性方程组
2
本章讨论关于线性方程组的两个问题: 一、探讨 n 个未知数 m 个方程的线性方程组的解法 (即下面介绍的高斯消元法)。 二、从理论上探讨线性方程组解的情况:何时有解, 何时无解。若有解,则有多少组解;若有无穷多解, 如何表示。
运用 n 维向量的理论可全面地解决第二个方面的 问题。
3
第一节 线性方程组的消元解法
例 用高斯消元法解线性方程组
2 x1 x2 x3 x4 2
1
4x1x1x62
2x3 x2 2
x3
x4
4 2 x4
4
2 3
(1)
3x1 6 x2 9 x3 7 x4 9 4

x1 x2 2 x3 x4 4
1
(1)
12 3 2
2 2
x1 x1
a11 x1 a12 x2 a1n xn 0 ,
a21
x1
a22 x2
a2n xn
0,
am1 x1 am2 x2 amn xn 0 .
显然零向量必为它的解,称为零解。
定理 若 r( A) n ,则齐次线性方程组只有零解;
若 r(A) n ,则齐次线性方程组有非零解. 推论 若 m n ,则齐次线性方程组必有非零解。
0
b
1 0
1
,
ba2 x1 a 1 ,
x2
a
2b a1
3
,
b1 x3 a 1 ,
x4 0 ;
当 a 1 , b 1 时, r( A) 2 r( A) 3 ,方程组无解;
当 a 1 , b 1 时, r( A) r( A) 2 4 ,方程组有无穷多组解,

同济大学线性代数课件__第四章y

同济大学线性代数课件__第四章y
第四章 向量组的 线性相关性
1
§4.1 向量组
一.n维向量
定义1:n 个数
a 1 , a 2 , , a n
所组成的有序数组
称为一个 n 维向量. 第 i 个数 a i 称为第 i 个分量. 这里定义的 n 维向量就是指行(或列)矩阵.
a1 a 2 (a1 , a2 an )T an 列向量
25
例4: 已知向量 1 , 2 , 3 线性无关,证明:向量
1 1 2 , 2 2 3 , 3 1 3 线性无关.
x1 x 1 , 2 , , n 2 0 x1 1 x2 2 xn n 0 x n
【注】零向量可写成任意同维数向量的线性组合,即 齐次线性方程组 x11 x22 xmm 0总有解。
其中 A 1 , 2 , , m
21
特别 (1) n个n维向量 (1 , 2 , , n ) A 线性相关
R( A) n A 0
(2) n个n维向量 ( 1 , 2 , , n ) A 线性无关
R( A) n A 0
22
例2: 已知 1 (1, 1, 1) , 2 (0, 2, 5) , 3 (2,4,7) , 试讨论向量组 1 , 2 , 3及向量组 1 , 2 的 线性相关性.



23
解: 设 x1 1 x2 2 x3 3 0
1 0 2 0 1 x 2 x 4 0 x 即 1 2 3 1 5 7 0 1 0 2
16

同济大学出版社 线性代数课件完整版)

同济大学出版社 线性代数课件完整版)

a1n D a n1 a2,n 1
其中 a为行列式 D的(i, j)元 ij
1. n 阶行列式共有 n! 项. 2. 每一项都是位于不同行不同列的 n 个元素的乘积. 3. 每一项可以写成 a1 p1 a2 p2 (正负号除外),其中 anpn 是1, 2, …, n 的某个排列. 4. 当 p1 p2 是偶排列时,对应的项取正号; pn
定义 设有9个数排成3行3列的数表
引进记号 主对角线 副对角线
a11 a12 a13 a21 a22 a23 原则:横行竖列 二、三阶行列式 a a32 a33 31
a11 a21 a31 a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13a21a32 a33 a13a22a31 a12a21a33 a11a23a32
线性代数
主 讲: 韩 信 专 业:运筹学与控制论
1.用消元法解二元线性方程组 (1) a11 x1 a12 x2 b1 , (2) a21 x1 a22 x2 b2 .
1 a22 : 2 a12 :
a11a22 x1 a12a22 x2 b1a22 , a12a21 x1 a12a22 x2 b2a12 ,
0 D2 0 0 a41
0 0 a32 0
0 a23 0 0
a14 0 0 0
(1)t (4321) a14a23a33a41 a14a23a33a41
3 4 6. 其中 t (4321) 0 1 2 3 2
a11 D3 0 0 0
a12 a22 0 0
规律:
一、概念的引入
1. 三阶行列式共有6项,即3!项. 2. 每一项都是位于不同行不同列的三个元素的乘积.

同济大学线性代数课件__第二章

同济大学线性代数课件__第二章

2 4 4 9
线性方程组与矩阵的对应关系
2
定义1 由 m n 个数 a ij (i 1,2, , m; j 1,2, , n)
排成的m行n列的数表,
a11 a21 am 1 a12 a22 a1n a2 n
am 2 amn
称为m行n列矩阵. 简称m n矩阵.
13
y1 1 x1 y x 2 2 2 yn n x n
§2 矩阵的基本运算
一、 矩阵的加法
定义2 设有两个 m n 矩阵 A (aij ), B (bij ), 那末矩阵 A与B 的和记作A+B,规定为
a11 b11 a12 b12 a21 b21 a22 b22 A B a b m 1 m 1 am 2 bm 2
12
线性变换与矩阵之间的对应关系. 恒 等 变 换
y1 x1 , y x , 2 2 yn x n
1 0 0 0 1 0 单 位 阵 0 0 1
1 2 n
23
1 1 1 1 1 1 1 2 1 1 1 2 2 2 3 1 1 1 3 3 3 1 2 3 1 1 1 1 1 1 1 2 1 2 3 1 2 3 1 1 1 3
16
矩阵加法满足的运算规律:
1 交换律:A B B A. 2 结合律: A B C A B C . 3 A O A 4 A A O .
17
二、数与矩阵相乘
定义3 数与矩阵A的乘积记作A或A , 规定为

线性代数-同济大学(更新版)课件

线性代数-同济大学(更新版)课件
思考题:符合标准次序的排列是奇排列还是偶排列? 答:符合标准次序的排列(例如:123)的逆序数 等于零,因而是偶排列.
计算排列的逆序数的方法
设 p1 p2 pn是 1, 2, …, n 这n 个自然数的任一排列,并
规定由小到大为标准次序.
先看有多少个比 p1大的数排在 p1 前面,记为 t1; 再看有多少个比 p2大的数排在 p2前面,记为 t2;
解:
a11 0 0 0
0 D1 0
a22 0 0 a33
0 0 a11a22a33a44
0 0 0 a44
0 0 0 a14
0 D2 0
0 a23 a32 0
0 0 (1)t(4321) a14a23a33a41 a14a23a33a41
a41 0 0 0
其中 t(4321) 0 1 2 3 3 4 6. 2
线性代数 (Linear Algebra)
为什么要学习线性代数?
1.学分 2.考研
3.线性代数在各学科中的应用: 计算机学科中:电子工程中电路分析、线性信号系统分析、数字滤波
器分析设计、IC集成电路设计、光电及射频工程中光调制器分析研制 需要张量矩阵,手机信号处理、图像处理等时等需要线代;
二、n 阶行列式的定义a1来自 a12a1nD a21 a22
a2n
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
anpn
an1 an2
ann
简记作 det(a,ij )
1. n 阶行列式共有 n! 项.
其中a为ij 行列式D的(i, j)元
2. 每一项都是位于不同行不同列的 n 个元素的乘积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
学术地位及应用
线性代数在数学、物理学和技术学科中有各种 重要应用,因而它在各种代数分支中占居首要地位。 在计算机广泛应用的今天,计算机图形学、计算机 辅助设计、密码学、虚拟现实等技术无不以线性代 数为其理论和算法基础的一部分。线性代数所体现 的几何观念与代数方法之间的联系,从具体概念抽 象出来的公理化方法以及严谨的逻辑推证、巧妙的 归纳综合等,对于强化人们的数学训练,增益科学 智能是非常有用的。
线性代数(第六版)
14
第一章 行列式 第二章 矩阵及其运算 第三章 矩阵的初等变换与线性方程组 第四章 向量组的线性相关性 第五章 相似矩阵及二次型 第六章 线性空间与线性变换(选学)
15
在以往的学习中,我们接触过二 元、三元等简单的线性方程组. 但是,从许多实践或理论问题里 导出的线性方程组常常含有相当 多的未知量,并且未知量的个数 与方程的个数也不一定相等.
3
由于法国数学家费马(1601-1665)和笛 卡儿(1596-1650)的工作,现代意义的线性 代数基本上出现于十七世纪。直到十八世纪末, 线性代数的领域还只限于平面与空间。十九世 纪上半叶才完成了到n维线性空间的过渡。
随着研究线性方程组和变量的线性变换问 题的深入,在18~19世纪期间先后产生行列式 和矩阵的概念,为处理线性问题提供了有力的 工具,从而推动了线性代数的发展。
2
二、历史与发展
线性代数作为一个独立的分支在20世纪才 形成,而它的历史却非常久远。“鸡兔同笼” 问题就是一个简单的线性方程组求解的问题。 最古老的线性问题是线性方程组的解法,在中 国古代东汉年初成书的数学著作《九章算术· 方程》章中,已经作了比较完整的叙述,其中 所述方法实质上相当于现代的对方程组的增广 矩阵的行施行初等变换,消去未知量的方法。
10
“以直代曲”是人们处理很多数学问题 时一个很自然的思想。很多实际问题的处理, 通常把非线性模型近似为线性模型,最后往 往归结为线性问题,它比较容易处理。因此, 线性代数在工程技术、科学研究以及经济、 管理等许多领域都有着广泛的应用,是一门 基本的和重要的学科。线性代数的计算方法 是计算数学里一个很重要的内容。
9
随着科学的发展,我们不仅要研究单个 变量之间的关系,还要进一步研究多个变量 之间的关系,各种实际问题在大多数情况下 可以线性化,而由于计算机的发展,线性化 了的问题又可以计算出来,线性代数正是解 决这些问题的有力工具。
线性代数的含义随数学的发展而不断扩 大。线性代数的理论和方法已经渗透到数学 的许多分支,同时也是理论物理和理论化学 所不可缺少的代数基础知识。
二元线性方程组
aa1211
x1 x1

a12 x2 a22 x2

b1 b2
由消元法,得
(a a a a )x b a a b
11 22
12 21 1
1 22
12 2
(a a a a )x a b b a
德国数学家--高斯(1777-1855) ——提出行列式的某些思想和方法
英国数学家--西勒维斯特(1814-1897) ——首次提出矩阵的概念(矩型阵式)
英国数学家--凯莱(1821-1895) ——矩阵论的创立
6
向量概念的引入,形成了向量空间的概念。 凡是线性问题都可以用向量空间的观点加以讨 论。因此,向量空间及其线性变换,以及与此 相联的矩阵理论,构成了线性代数的中心内容。
线性代数 Linear Algebra
1
基础介绍
一、研究对象 线性代数是代数学的一个分支,主要处理
线性关系问题,即线性空间、线性变换和有限 维的线性方程组。线性关系意即数学对象之间 的关系是以一次形式来表达的。例如,在解析 几何里,平面上直线的方程是二元一次方程; 空间平面的方程是三元一次方程,而空间直线 视为两个平面相交,由两个三元一次方程所组 成的方程组来表示。含有 n个未知量的一次方 程称为线性方程。关于变量是一次的函数称为 线性函数。线性关系问题简称线性问题。解线 性方程组的问题是最简单的线性问题。
16
我们先讨论未知量的个数与方程 的个数相等的特殊情形. 在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
17
第一章 行列式(De数t行的e列一rm式种是工in线具a性!n代t)
学习行列式主要
内容提要
就是要能计算行列 式的值.
பைடு நூலகம்
§1 二阶与三阶行列式
§2 全排列与对换
行列式的概念.
§3 n 阶行列式的定义
§4 行列式的性质
行列式的性质及计算.
§5 行列式按行(列)展开
18
§1 二阶与三阶行列式 ( Determinent of order two or three)
我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.
19
一、二元线性方程组与二阶行列式
1. 二阶行列式的定义
11
什么是线性关系?
线性(linear)指量与量之间按比例、成直 线的关系,在数学上可以理解为一阶导数为常数 的函数。
非线性(non-linear)则指不按比例、不成 直线的关系,一阶导数不为常数。
12
线性代数
研究对象: 线性空间、线性变换和有限维的线性方程组。
研究工具: 行列式、矩阵与向量。
13
在十九世纪下半叶,因若当的工作而达 到了它的顶点。1888年,意大利数学家皮亚 诺(1858-1932)以公理的方式定义了有限 维或无限维线性空间。托普利茨将线性代数 的主要定理推广到任意体(domain)上的最 一般的向量空间中。
7
“代数”这个词在中文中出现较晚,在清代 时才传入中国,当时被人们译成“阿尔热巴 拉”,直到1859年,清代著名的数学家、翻译 家李善兰( 1811-1882 )才将它翻译成为“代 数学”,之后一直沿用。
4
三、有重要贡献的数学家
• 17世纪,德国数学家-莱布尼兹 ——历史上最早使用行列式概念。
• 1750年,瑞士数学家-克莱姆(克莱姆法则) ——用行列式解线性方程组的重要方法。
• 1772年,法国数学家-范德蒙 ——对行列式做出连贯的逻辑阐述,行列
式的理论脱离开线性方程组。
5
• 1841年,法国数学家-柯西 ——首先创立了现代的行列式概念和符号。
相关文档
最新文档