统计学第三章
统计学原理第三章综合指标
![统计学原理第三章综合指标](https://img.taocdn.com/s3/m/02550b2ee2bd960590c677b9.png)
即几何平均数是各个变量值对数的算术平均数 的反对数。
Байду номын сангаас
某工业产品产量平均发展速度计算表 逐年发展速度(X) 年份 产品产量 逐年发展速度 逐年发展速度的 (亿吨 亿吨) (各年产量为前一年的 各年产量为前一年的%) 对数 对数(lgX) 亿吨 各年产量为前一年的 1997 9.80 1998 10.54 107.6 2.0319 1999 10.80 102.5 2.0107 2000 10.87 100.6 2.0025 2001 11.16 102.7 2.0115 2002 11.41 102.2 2.0094 10.0660 合计
总体单位总量表示总体单位总数,反映规模大 小;总体标志总量则说明总体特征的总数量。
( ) (二)总量指标按其反映的时间状况不同, 分为时期指标和时点指标
时期指标反映现象在某一时期发展过程的总数 量;时点指标则反映现象在某一时刻上的状况 总量。
时期指标和时点指标的不同特点: 1、时期指标的数值是连续计数的;时点指标 的数值则是间断计数的。 2、时期指标具有累加性;时点指标则不具有。 3、时期指标数值的大小受时期长短的制约; 时点指标数值的大小与时点的间隔长短无直 接关系。
某条件下的某类指标数值 比较相对数 = × 100% 另一条件下的同类指标数值
作为比较基数的分母可取不同的对象,一般 有两种情况: 1、比较标准是一般对象。 2、比较标准(基数)典型化。
(五)强度相对指标 1、强度相对数的概念 某一总量指标数值 强度相对数 = 另一有联系而性质不同的总量指标数值 强度相对数的两种表示方法: (1)一般用复名数表示。 (2)少数用百分数或千分数表示。 注:强度相对数不是平均数,不是同质总体的 标值总量与总体单位数之比。
统计学 第三章抽样与抽样分布
![统计学 第三章抽样与抽样分布](https://img.taocdn.com/s3/m/6bfb3146551810a6f42486a4.png)
=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
统计学 第3章 统计数据的整理
![统计学 第3章 统计数据的整理](https://img.taocdn.com/s3/m/fb7e50b9bb68a98270fefa33.png)
统计分组的标志
第三章 统计数据的整理
统计分组的标志:分组标志就是将总体分为各个性质不同的标准或根据。
根
据分组标志的特征不同,总体可按属性标志分组,也可按数量标志分组。
1.按属性标志分组
以属性标志作为分组标志,并在属性标志的变异范围内划分各组界限,将总体 分为若干组。属性标志划分,概念明确,容易确定分组组数,如性别。
2.按数量标志分组
以数量标志作为分组标志,并在数量标志的变异范围内划分各组界限,将总体 分为若干组。如工资。
第三章 统计数据的整理
(五)简单分组和复合分组
在统计分组时,根据统计研究目的不同,分组标志的选择可以是一个标志,也可以是 两个或两个以上的标志,这样就有简单分组和复合分组之分:
1.简单分组 对总体只按一个标志分组称为简单分组。
第三章 统计数据的整理
数量次数分布的编制方法
在组距次数分布中,各组组距相同的次数分布称为等距次数分 布(表3-8)。各组组距不同的次数分布称为异距次数分布。
等距次数分布一般在现象性质差异变动比较均衡的条件下使用。
优点:
• 易于掌握次数分布的特性。
• 各组次数可以直接比较。
组数= 全距/组距
组距=全距/组数
100.00
提问:这是单 项次数分布还 是组距次数分 布?
第三章 统计数据的整理
数量次数分布的编制方法
例:对某工厂某月50名工人装配零件(件)情况进行调查, 得到下列初级资料:
106 81 98 111 91 107 86 105 93 106 82 108 114 122 109 104 125 103 113 102 106 84 128 104 91 112 85 96 115 89 97 105 92 111 107 97 105 124 106 86 96 110 112 103 108 110 109 125 101 119
统计学第三章名词解释
![统计学第三章名词解释](https://img.taocdn.com/s3/m/5aa8a287763231126edb11f0.png)
3.1、什么是统计整理?统计整理的程序有哪些?统计整理是根据统计研究任务的要求,对统计调查阶段所取得的各项原始资料进行分类、汇总,使之系统化、条理化、科学化,得出能反映现象总体特征的综合资料的各种过程。
统计资料整理既是统计调查阶段的继续和深入,又是统计分析阶段的基础和前提,在统计工作中起着承前启后的作用。
(1)根据研究目的设计整理汇总方案。
(2)对统计调查资料进行审核、订正。
(3)进行统计分组和汇总。
(4)将汇总整理的资料编制成统计表(5)统计资料的积累、保管和公布。
3.2 统计资料审核哪些内容?统计调查资料的审查检查资料的完整性和及时性应以统计制度和调查方案为准,核实所有被调查单位的资料是否齐全,是否按规定的份数、项目和时间上报。
检查资料的准确性主要是核实调查材料的口径、计算方法、包括的范围、计量单位等是否符合要求。
检查的方法有逻辑检查和计算检查。
逻辑检查是从合理性方面去检查资料的正确性。
计算检查是通过计算,检查在计算方法、计量单位、计算结果、小计、合计、总计间的各项是否正确等等3.3、什么是统计分组?它有什么作用?统计分组根据统计研究的目的和客观现象的内在特点,按某个标志或几个标志把被研究的总体划分为若干个不同性质的组的一种统计方法。
统计分组的对象是总体。
统计分组标志可以是品质标志,也以是数量标志。
(1)划分社会经济现象的类型统计的研究对象是错综复杂的,具有各种不同的类型。
通过统计分组,可以从数量方面说明不同类型现象的数量特征,表明不同类型现象的本质和发展规律。
(2)反映现象的内部结构及其比例关系将所研究现象按某一标志进行分组,计算出各组在总体中的比重,用以说明总体内部的构成。
同时将总体各组之间进行对比,就可以反映各组之间的比例关系。
(3)分析现象之间的依存关系现象不是孤立的,而是相互依存和相互联系的.利用统计分组分析现象之间的依存关系,首先用影响标志对总体进行分组,然后计算出结果标志的数值,从而分析两个标志的联系程度和方向。
统计学--第三章平均数与标准差
![统计学--第三章平均数与标准差](https://img.taocdn.com/s3/m/638f2a353968011ca30091c3.png)
(xn xn
2 2
1
)
(二)分组资料:按频数表计算M 公式:
M L
W f
(
n 2
C)
L中位数所在组的下限 W中位数所在组的宽度 f中位数所在组的频数(例数) n总频数 C中位数所在组的前一组的累计频数cumulative frequency
用累计频数〔百分数〕法寻找中位数所在 的组段:累计频数刚大于n/2的组段 用内插法linear interpolation求中位数
第三章
平均数与标准差
第一节 算术均数和几何均数
数值变量资料的统计描述:集中趋势central tendency 和离散趋势tendency of dispersion 平均数average:说明一组观察值(变量值)的集中 趋势、中心位置或平均水平。(a measure of location, a measure of central tendency, a mean or an average) 平均数种类:算术均数arithmetic mean、几何均 数geometric mean、中位数median、众数mode、 调和均数harmonic mean, H
2
离均差积和:
( y y )( y y ) ( y ( x x )( y y )
离均差平方和或离均差积和sum of products计算 时,当原始数据比较大时,计算可以减一个数可 除一个数,进行简化。
三条规则: 1、原始数据减一个数或加一个数时,离均 差平方和或积和数值不变 2、原始数据除以一个数a,则简化值算出 的离均差平方和要乘上一个a2才是原有的离 均差平方和 3、离均差积和在计算时如将两变量之一(如 x),除以一个数a时,则求得之离均差积和 要乘以一个a,才是原始数据的离均差积和; 如y也同时除以一个数字b,则求得的离均 差积和要同时乘以ab
统计学(第三章)
![统计学(第三章)](https://img.taocdn.com/s3/m/1f187df7f705cc17552709d4.png)
四、统计分组方法 统计分组的关键在于选择分组标志和 划分各组界限。划分各组界限,就是要在 分组标志的变异范围内,划定各相邻组之 间的性质界限和数量界限。 (一)按品质标志分组的方法 选择反映事物属性差异的标志作为分 组标志,界限比较明确,类型比较稳定。 如,企业按所有制分组、人口按性别分组 等。
(二)按数量标志分组的方法 数量标志有离散型和连续型之分,其分 组的方法和形式也不同。 1、按离散型变量标志分组其形式有2个 (单项式分组和组距式分组); 2、按连续型变量标志分组其形式只有一 个(组距式分组)。
某班级学生按性别分组 学生按性别分组 男 女 合 计 人数(人) 60 40 100
2、按数量标志分组。按数量标志分组 就是选择反映事物数量差异的数量标志作 为分组标志,并在数量标志的变异范围内 划定各组界限,将总体划分为性质不同的 若干组成部分。 3、根据分组选择标志的多少不同,统 计分组又可分为简单分组和复合分组。 简单分组。简单分组是指对统计总体 仅按一个标志进行分组。
二、统计整理的步骤 1.设计统计整理方案 2.对原始资料进行审核 3.对原始资料进行分组和汇总 4.编制统计表或绘制统计图 综上所述,设计整理方案、对原始资 料进行审核是整理的前提,统计分组是统 计整理的基础,统计汇总是统计整理的中 心环节,编制统计表或绘制统计图是统计 整理的结果。
1.2、统计分组 一、统计分组的意义 统计分组既是统计认识问题的一种基 本方法,又是统计整理工作的具体内容之 一,因此它在整个统计工作过程中具有十 分重要的作用。
4、次数分配的类型
对称分布
右偏分布
左偏分布
正J型分布
反J型分布
几种常见的频数分布
U型分布
1、钟形分布 钟形分布的特征是“中间多,两边少”,这类 分布是以平均值为中心的,越接近中心,分配的次 数越多,离中心越远,分配的次数越少,其曲线就 像一口古钟。
统计学第3章数值性的主要统计指标
![统计学第3章数值性的主要统计指标](https://img.taocdn.com/s3/m/bd9d05a918e8b8f67c1cfad6195f312b3169eb0f.png)
统计学第3章数值性的主要统计指标统计学中,数值性的主要统计指标是描述和总结数据集中数值变量的中心趋势和离散程度。
这些指标包括平均数、中位数、众数、四分位数、极差、方差和标准差等。
1. 平均数(Mean)是数据集中所有数值的总和除以观测次数。
它是一种常见的统计指标,用于表示数据的“典型”数值。
平均数对异常值敏感,受数据的分布和范围影响较大。
2. 中位数(Median)是将数据按大小排序后,处于中间位置的数值。
它不受异常值的影响,适用于数据存在明显偏态或异常值的情况。
3. 众数(Mode)是数据集中出现频率最高的数值。
对于离散变量,可能存在多个众数;对于连续变量,众数可能不存在或不唯一4. 四分位数(Quartiles)将数据按大小排序后,将数据集分为四个部分。
第一个四分位数(Q1)是排序后数据集中25%位置处的数值,第二个四分位数(Q2)就是中位数,第三个四分位数(Q3)是75%位置处的数值。
四分位数用于描述数据的分布和离群值。
5. 极差(Range)是数据集中最大值与最小值之间的差值。
它衡量了数据的全局离散度,但忽略了数据集的内部变化。
6. 方差(Variance)是数据值与其平均数之间的差的平方和的平均值。
方差表示了数据的离散程度,反映了数据点离平均值的距离。
7. 标准差(Standard Deviation)是方差的平方根。
标准差是用于衡量数据的离散度的常用指标。
一般来说,标准差越大,数据的离散程度越高。
这些统计指标能够揭示数据的集中趋势和离散程度,帮助我们理解数据的分布情况。
根据数据的类型和分布情况,选择适当的统计指标进行描述和总结,能够更好地理解数据,进行进一步的分析和推断。
《统计学》第三章--统计指标
![《统计学》第三章--统计指标](https://img.taocdn.com/s3/m/be846f7e83c4bb4cf7ecd17d.png)
常住单位是在一国经济领土上具有经济利益中
心的机构单位。
机构单位是国民经济统计的基本经济单位,它 是能以自己的名义拥有资产、发生负债、从事经济 活动并与其它实体进行交易的经济实体。
“非常住单位”——也称为“国外” 。
经济领土是由一国政府控制的地理领土组成。 我国的经济领土—— 包括我国大陆的领地、领海、领空和位于国际水 域而我国具有捕捞和海底开采管辖权的大陆架、我 国住外使馆、领馆用地, 不包括位于我国领土范围内的外国使馆、领馆用 地及国际组织用地。
保险密度=保费/人口数 金融相关度(率)=金融资产总量/GNP
每万人口医院病床数
年份
每万人口医院病床数(张/万人)
2001 2002 2003 2004 2007
23.9 23.2 23.4 24.0 26.3
强度相对数的特点
相对数是惟一有单位(且为复名数)的相对数 (有的也用无名数形式);
分子分母一般可以互换,故有正指标与逆指标之 分。
4.40 31.20 27.90 63.10
66.40
10.60
7.90 28.10 26.80 61.20
65.10
33.80 29.50 65.50
69.60
2.60 14.50
1.60 10.20
23.20 28.40
20.60 29.80
74.30 57.10
77.80 60.00
2.比例相对数——比例(结构性的比例)
•货币化程度=用货币支付的商品和劳务总量 / 全部商品和劳务总量
国家和地区
中国 日本 韩国
新加坡
美国 俄罗斯联邦
按三次产业分就业人员构成
第一产业
第二产业
统计学 第3章集中量数
![统计学 第3章集中量数](https://img.taocdn.com/s3/m/f967faedc8d376eeaeaa3167.png)
MW
W1 X1 W2 X 2 W1 W2
72 4 86 6 46
80.4
3、计算方法
3)加权算数平均数(weighted mean)的计算:
用M W 表示
如高考的标准分换算法。 研究生入学考试总分不一样。 P69例3-7
3、计算方法
4)使用次数分布表计算平均数:
与无重复数据时求中数的方法相同; 当中间的数值为重复数时:可将重复数看
作一个连续区间,然后根据中间数在区间 内的位置来确定中位数。
3、计算方法
2)一组数据中有重复数据 当重复数值没有位于数列中间时,求中数
与无重复数据时求中数的方法相同; 当中间的数值为重复数时:可将重复数看
作一个连续区间,然后根据中间数在区间 内的位置来确定中位数。
例如:P70 例3-8
2、几何平均数的应用
2)应用几何平均数的变式计算: 一组数据彼此间变异较大,几乎按一定的比 例关系变化,所要求的不是平均数,而是平 均增长率。平均增长率=平均发展速度-1
学习方面的进步率 学生或人口增加率 教育经费增加率
本章主要内容
一.算术平均数 二.中数 三.众数 四.平均数、中数、众数三者之间的关系 五.加权平均数 六.几何平均数 七.调和平均数
平均数
中数
众数
① 感应灵敏② 严密确 ③④
定③ 意义简明,易理
于
优 点
解④ 容易计算⑤ 适合
代数法的处理⑥ 少受
抽
③④
样变动的影响
1.加权平均数 2.离差、相关计算 应 3、统计推断 用
1.有极端数值时 2.模糊数据时 3.快速估计集中
量数时
1.有极端数值时 2、数据不同质时 3、粗略估计数据的
统计学 第三章
![统计学 第三章](https://img.taocdn.com/s3/m/a7db3aa1b0717fd5360cdc23.png)
分组
25% 33%
42%
分组前 分组后
种类: 1 区分事物的性质:类型分组
例:按所有制性质划分,我国现有8种经济类型: 国有经济;集体经济;私营经济;个体经济联 营经济;股份制经济;外商投资经济;港澳台 投资经济
◦ 表3-1 1997年社会固定资产投资分布情况
按投资主体性质分组 国有经济 集体经济 城乡居民个人 其他 合计 投资额(亿元) 比重(%) 13 419 3 873 3 427 4 581 25 300 53.0 15.3 13.6 18.1 100.0
1
本章是统计研究活动的第三阶段—统计资料整理 阶段,阐述了统计整理的理论与方法,包括分组、 汇总和统计表的设计。重点要求为:
明确统计资料整理的概念,了解统计整理的步骤。 通过学习统计分组理论,能够对不同的社会经济现象进行 统计分组。 运用分配数列对原始数据进行系统整理。 掌握统计表的具体编配方法。 能够结合excel进行统计图表制作。
例:高等学校学生分组:
29
练习题1: 产值: 30万元以下 30万-50万元 50万-100万元 100万-500万元 500万元以上
请问是哪一种分组方式,组数,组距,组中值
练习题2 管理局对其所属企业对生产计划完成百分比采用如下分组, 请指出哪项是正确的? 1)80-89% 90-99% 100-109% 110%以上 3)90%以下 90-100% 100-110% 110%以上 2)80%以下 80.1-90% 90.1-100% 100.1-110% 4)85%以下 85-95% 95-105% 105-115%
3· 研究现象之间的依存关系:分析分组
例:中国农民家庭按收入分组的恩格尔系数(1984年)
统计学(第3章)
![统计学(第3章)](https://img.taocdn.com/s3/m/3ea4d325453610661ed9f497.png)
4、定比尺度(比率尺度 ratio scale)
是对事物之间比值的一种测度,可用
于参数与非参数统计推断。 特征:
除区分事物的类别、进行排序、比较大 小,而且还可以进行加减乘除运算。 具有绝对零点,即“0”表示“没有” 或“不存在”。 所有统计量都可以对其进行分析。与定 距尺度的唯一区别是有绝对固定的零点。
第三章 统计数据的整理 10
3、观察数据和实验数据
观察数据:通过调查或观测而得 到的数据。 实验数据:通过控制实验对象而 收集的数据。
第三章 统计数据的整理
11
4、直接数据和间接数据
直接数据:即原始数据。
间接数据:已加工整理过的数据。
第三章 统计数据的整理
12
第二节 统计整理的含义和步骤
当异距分组时,各组的次数还受 到组距不同的影响。为消除异距 分组的这种影响,须计算频率密 度(或次数密度),计算公式: 频数密度 = 频数/组距 频率密度 = 频率/组距
第三章 统计数据的整理
36
二、分布数列的编制
将原始资料按其数值大小重新排列 2. 确定全距 3. 确定组距和组数 4. 确定组限 5. 编制变量数列 示例3-5
第三章 统计数据的整理
某地人口
21
(三)按分组标志的不同性质分
品质分组(属性分组):是将总体按
品质(或属性)标志进行分组。如企 业按经济成份、企业规模,职工按性 别、文化程度分组等。 数量分组(变量分组):是将总体按 数量标志进行分组,如企业按职工人 数、劳动生产率分组,职工按工龄、 工资分组等。
第三章 统计数据的整理 31
4、开口组的组距与组中值
统计学基础(第三章)
![统计学基础(第三章)](https://img.taocdn.com/s3/m/94fb7717a6c30c2259019efa.png)
7.0 40.0 66.0 87.3 100.0 —
300 279 180 102 38 —
100.0 93.0 60.0 34.0 12.7 —
statistics
统计学——第三章数据整理与显示 数值数据(定距数据)的分组
单项分组:每一个组中只有一个变量值,适用于离散型变量 的数据、并且数据的范围不太大情况下的分组。 组距分组:每个分组是一个数值区间。它适用于连续型变量 或变动范围较大的离散型变量的数据分组。
statistics
统计学——第三章数据整理与显示
具体步骤:
(1)打开Excel工作表中“工具”下拉菜单中的“数据分析”选项。
(2)在“数据分析”对话框中选择“直方图”命令,并点击“确定”按钮。 (3)在该对话框中“输入区域”一栏填入数据区域B2:B41;在“接收区域” 一栏填入代码区域C2:C5;在“输出区域”一栏填入结果输出的区域;其他 选项根据需要选择。点击“确定”按钮,得结果。 (4)对输出结果进行还原并适当改造,即可得频数分布。
统计学——第三章数据整理与显示
第四节 统 计 图
statistics
统计学——第三章数据整理与显示
统计图的结构
标题 一般包括图表标题、数值轴(X,Y)标题 坐标轴和网格线 坐标轴和网格线构造了绘图区的骨架, 借助坐标轴和网格线,可以更容易读懂统计图。 图表区和绘图区 统计表的所有内容都在图表区内,包括 绘图区。统计图绘制在绘图区内。 图例 用来标明图表中的数据系列。
答:调查整理的结果为
甲城市 回答类别 非常不满意 不满意 一般 满意 非常满意 合计 户数/户 24 108 93 45 30 300 百分比/% 8 36 31 15 10 100 向上累积 24 132 225 270 300 — 8.0 44.0 75.0 90.0 100.0 — 向下累积 百分比/% 100 92 56 25 10 — 300 276 168 75 30 — 户数/户 百分比/% 户数/户
统计学课件 第三章 统计整理
![统计学课件 第三章 统计整理](https://img.taocdn.com/s3/m/dff5cc3683c4bb4cf7ecd165.png)
2013-7-26
人数(人) 男 1 4 9 7 2 23 女 1 6 9 5 1 22 合计 2 10 18 12 3 45
9
(四)编表(或绘图)
编表是把汇总的资料按一定的规则在表格 上表现出来。
成绩 50~60 60~70 70~80 80~90 90以上 合计 人数 (人) 2 7 11 8 2 30
(一)数据的预处理
包括数据的审核 、筛选、 排序等. 数据的审核:
1. 数据的审核
检查数据中的错误
2. 数据的筛选
找出符合条件的数据
3. 数据排序
升序和降序 寻找数据的基本特征
2013-7-26 7
(二)统计分组
• 分组是根据研究任务的要 求,对调查所得的原始资 料,确定要进行哪些分组 或分类。 • 如右表是对统计学考试成 绩进行分组。
2013-7-26 4
二、统计整理的意义
统计工作
统计调查
统计整理
统计分析
作用:是统计调查的继续,是统计分 析的前提和基础,在整个统计工作中 发挥着承上启下的作用。
2013-7-26 5
三、统计整理的步骤
1.数据的预处理
2.统计分组
3.编制分配数列
4.汇总统计资料
5.制作统计表或统计图
2013-7-26 6
组别
2013-7-26
øÔýËý ½¶ÊÈÊ 30 10 40
次数
È × (%) ±Ö 75 25 100
频率
28
变量数列
±3-6 Ä ³ Ú ¶ » ¶ ¸ Ë Æ ½ È ² Á í ³ §µ þ ½ È ¤È ¼ ù Õ ú ¾ ¤È ¼ ù Õ ú Á þ ¸ Ë Æ ½ È ² ¾ (» ) ¸ Ë Ê ¤È ý ø Ô ý ½ ¶ Ê È × ±Ö (%) 2 10 8.7 3 15 13.0 4 30 26.1 5 40 34.8 6 20 17.4 Ï Æ ¹ » 115 100.0
统计学--第三章总体均数的估计与假设检验
![统计学--第三章总体均数的估计与假设检验](https://img.taocdn.com/s3/m/0ff4c42355270722182ef723.png)
总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。
《统计学》_第三章_统计整理
![《统计学》_第三章_统计整理](https://img.taocdn.com/s3/m/88990bad960590c69ec376c0.png)
第三章统计整理(一)填空题1、统计整理是统计工作的第三阶段。
在这一阶段,通过对原始资料进行科学的加工,可以得出反映事物总体特征的资料。
2、统计整理在统计分析中起着承前启后的作用,它既是统计调查的必然继续,又是统计分析的基础和前提条件。
3、统计分组实质上是在统计总体内部进行的一种定性分类。
4、对原始资料审核的重点是真实性。
5、区分现象质的差别是统计分组的根本作用。
6、标志是统计分组的依据,是划分组别的标准。
7、根据分组标志的特征不同,统计总体可以按品质分组,也可以按数量分组。
8、对所研究的总体按两个或两个以上的标志结合进行的分组,称为复合分组。
9、次数分布数列根据分组标志特征的不同,可以分为品质分布数列和数量分布数列两种。
10、变量数列是单项变量分组、组距式分组所形成的次数分布数列。
11、按品质标志分组的结果,形成品质分布数列。
12、组限是组距变量数列中表示各组数量界限的变量值,其中下限是指最小值的变量值,上限是指最大值的变量值。
13、组距变量数列的组距大小与组数的多少成反比。
与全距的大小成正比。
14、组距变量数列的分布可以用次数分布曲线图表示。
15、划分连续变量的组限时,相邻组的组限必须重叠;划分离散型变量的组限时,相邻组的组限可以重叠,也可以不重叠。
16、统计资料的整理方法主要有统计分组和统计汇总两种。
17、钟形分布、U形分布和J形分布是次数分布的三种主要类型。
18、统计分组体系有品质标志分组和数量标志分组两种。
19、统计表按主词是否分组和分组的程度可分为简单表、简单分组表和复合分组表三种。
20、统计表从内容结构上看,是由主词和宾词两部分构成。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、统计分组的结果表现为( A )A. 组内同质性,组间差异性B. 组内差异性,组间同质性C. 组内同质性,组间同质性D. 组内差异性,组间差异性2、统计分组的依据是( A )A、标志B、指标C、标志值D、变量值3、下面属于按品质标志分组的有( C )A. 企业按职工人数分组B. 企业按工业总产值分组C. 企业按经济类型分组D. 企业按资金占用额分组4、统计分组的关键在于( A )A、正确选择分组标志B、正确划分各组界限C、正确确定组数和组限D、正确选择分布数列种类5、下面属于按数量标志分组的有( B )A. 工人按政治面貌分组B. 工人按年龄分组C. 工人按工种分组D. 工人按民族分组6、在全距一定的情况下,组距的大小与组数的多少成(B)A、正比B、反比C、无比例关系D、有时成正比有时成反比7、某地区商业企业按所有制形式分组,然后在各种所有制形式中再按销售额多少分组,这样的分组属于( C )A. 按数量标志分组B. 简单分组C. 复合分组D. 平行分组体系8、次数分配中,靠近中间的变量值分布的次数少,靠近两端的变量值分布的次数多,这种次数分布的类型是( B )A. 钟形分布B. U形分布C. J形分布D. 洛伦茨分布9、变量数列中的各组频率(以百分比表示)的总和应该( D )A. 大于100%B. 小于100%C. 不等于100%D.等于100%10、等距分组适合于( B )A、一切变量B、变量变动比较均匀的情况C、呈急剧升降变动的变量D、按一定比率变动的变量11、单项数列中,某组的向上累计次数是80,这表示总体中( C )A. 低于该组标志值的单位有80个B. 等于该组标志值的单位有80个C. 等于和低于该组标志值的单位有80个D. 高于该组标志值的单位有80个12、确定连续型变量的组限时,相邻的组限要求( B)A、不重叠B、重叠C、不等D、重叠或不重叠13、在编制等距数列时,如果全距等于56,组数为6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
Weighted Mean
The weighted mean of a set of numbers X1, X2, ..., Xn, with corresponding weights w1, w2, ...,wn, is computed from the following formula:
The Mode
The mode is the value of the observation that appears most frequently.
14
Example - Mode
15
Mean, Median, Mode Using Excel
Table 2–4 in Chapter 2 shows the prices of the 80 vehicles sold last month at Whitner Autoplex in Raytown, Missouri. Determine the mean and the median selling price. The mean and the median selling prices are reported in the following Excel output. There are 80 vehicles in the study. So the calculations with a calculator would be tedious and prone to error.
Every set of interval-level and ratio-level data has a mean. All the values are included in computing the mean. A set of data has a unique mean. The mean is affected by unusually large or small data values. The arithmetic mean is the only measure of central tendency where the sum of the deviations of each value from the mean is zero.
3
Population Mean
For ungrouped data, the population mean is the sum of all the population values divided by the total number of population values:
4
EXAMPLE – Population Mean
10
The Median
The Median is the midpoint of the values after they have been ordered from the smallest to the largest.
– There are as many values above the median as below it in the data array. – For an even set of values, the median will be the arithmetic average of the two middle numbers.
11
Properties of the Median
There is a unique median for each data set. It is not affected by extremely large or small values and is therefore a valuable measure of central tendency when such values occur. It can be computed for ratio-level, intervallevel, and ordinal-level data. It can be computed for an open-ended frequency distribution if the median does not lie in an open-ended class.
EXAMPLES - Median
The ages for a sample of five college students are: 21, 25, 19, 20, 22 Arranging the data in ascending order gives: 19, 20, 21, 22, 25. Thus the median is 21.
Describing Data: Numerical Measures
Chapter 3
McGraw-Hill/Irwin
©The McGraw-Hill Companies, Inc. 2008
GOALS
• Calculate the arithmetic mean, weighted mean, median, mode, and geometric mean. • Explain the characteristics, uses, advantages, and disadvantages of each measure of location. • Identify the position of the mean, median, and mode for both symmetric and skewed distributions. • Compute and interpret the range, mean deviation, variance, and standard deviation. • Understand the characteristics, uses, advantages, and disadvantages of each measure of dispersion. • Understand Chebyshev’s theorem and the Empirical Rule as they relate to a set of observations.
2
Characteristics of the Mean
The arithmetic mean is the most widely used measure of location. It requires the interval scale. Its major characteristics are:
16
Mean, Median, Mode Using Excel
17
The Relative Positions of the Mean, Median and the Mode
18
The Geometric Mean
Useful in finding the average change of percentages, ratios, indexes, or growth rates over time. It has a wide application in business and economics because we are often interested in finding the percentage changes in sales, salaries, or economic figures, such as the GDP, which compound or build on each other. The geometric mean will always be less than or equal to the arithmetic mean. The geometric mean of a set of n positive numbers is defined as the nth root of the product of n values. The formula for the geometric mean is written:
– – – –
All values are used. It is unique. The sum of the deviations from the mean is 0. It is calculated by summing the values and dividing by the number of values.
GM = 4 ( 1.3 )( 1.2 )( 0.6 )( 3.0 ) = 4 2.808 = 1.294
21
Dispersion
Why Study Dispersion?
–
–
–
A measure of location, such as the mean or the median, only describes the center of the data. It is valuable from that standpoint, but it does not tell us anything about the spread of the data. For example, if your nature guide told you that the river ahead averaged 3 feet in depth, would you want to wade across on foot without additional information? Probably not. You would want to know something about the variation in the depth. A second reason for studying the dispersion in a set of data is to compare the spread in two or more distributions.