一次函数和反比例函数知识点总结

合集下载

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

其中,x 是自变量,y 是因变量,k 叫做比例系数。

需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为在分母中,分母不能为 0。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。

2、 xy = k(k 为常数,k≠0),通过对 y = k/x 两边同时乘以 x 得到。

3、 y = kx^(-1)(k 为常数,k≠0),这是用幂的形式表示。

三、反比例函数的图像反比例函数的图像属于双曲线。

当 k>0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小。

当 k<0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。

反比例函数的图像是以原点为对称中心的中心对称的两条曲线。

四、反比例函数的性质1、单调性当 k>0 时,函数在区间(∞,0)和(0,+∞)上分别单调递减;当 k<0 时,函数在区间(∞,0)和(0,+∞)上分别单调递增。

2、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。

它有两条对称轴,分别是直线 y = x 和 y = x;对称中心是原点(0,0)。

3、渐近线当 x 趋近于正无穷或负无穷时,曲线无限接近坐标轴,但永远不会与坐标轴相交。

4、取值范围当 k>0 时,y>0 或 y<0;当 k<0 时,y<0 或 y>0。

五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图像上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为分母不能为 0。

例如,当 k = 5 时,反比例函数为 y = 5/x。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0),这是最基本的形式。

2、 xy = k (k 为常数,k≠0),通过将 y = k/x 两边同乘 x 得到。

3、 y = kx^(-1) (k 为常数,k≠0),这是反比例函数的幂函数形式。

三、反比例函数的图像反比例函数的图像是双曲线。

当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小。

当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。

例如,对于函数 y = 2/x,因为 k = 2>0,所以图像位于第一、三象限,在每个象限内,当 x 增大时,y 减小。

四、反比例函数图像的性质1、对称性反比例函数的图像关于原点对称,即若点(a,b)在反比例函数图像上,则点(a,b)也在其图像上。

2、渐近线双曲线逐渐接近但永远不会与坐标轴相交,其渐近线为 x 轴和 y 轴。

3、连续性反比例函数在定义域内不是连续的,存在间断点 x = 0。

五、反比例函数中 k 的几何意义在反比例函数 y = k/x 图像上任取一点 P,过点 P 分别作 x 轴、y轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。

例如,在函数 y = 6/x 的图像上有一点 P(2,3),则矩形 PMON 的面积为 6。

六、反比例函数与一次函数的综合在解决反比例函数与一次函数的综合问题时,通常需要联立两个函数的解析式,组成方程组,求解交点坐标。

一次函数与反比例函数

一次函数与反比例函数

一次函数与反比例函数第一部分 知识梳理一、一次函数和反比例函数的解析式1.一次函数的定义:函数y= kx+b (k 、b 为常数,k ≠0,自变量x 的次数是1次)叫做一次函数。

2.一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

二、一次函数和反比例函数的图像1.一次函数y=kx+b 的k 、b 的值对一次函数图象的影响。

y① k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限; ② k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③ k ﹤0,b ﹥0, y =kx +b 的 图象在一、二、四象限; ④ k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。

2.反比例函数的性质3.反比例函数中反比例系数的几何意义 ①过双曲线xky =(k ≠0) 上任意一点作x 轴、y 轴的垂线段,所得矩形(如图)面积为k 。

第二部分 例题与解题思路方法归纳类型一 一次函数的图像与性质【例题1】已知一次函数y=(6+3m )x+n ﹣4. (1)当m 、n 为何值时,函数的图象过原点?(2)当m 、n 满足什么条件时,函数的图象经过第一、二、三象限?〖选题意图〗本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.〖解题思路〗(1)将点(0,0)代入一次函数解析式y=(6+3m)x+n﹣4求得n值,利用一次函数的性质知系数6+3m≠0求得m值;(2)根据一次函数的性质知,当该函数的图象经过第一、二、三象限时,6+3m>0,且n ﹣4>0,据此求m、n的值.〖参考答案〗解:(1)∵一次函数y=(6+3m)x+n﹣4的图象过原点,∴6+3m≠0,且n﹣4=0,解得,m≠﹣2,n=4;(2)∵该函数的图象经过第一、二、三象限,∴6+3m>0,且n﹣4>0,解得m>﹣2,n>4.【课堂训练题】1.如图,直线y=﹣x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x 轴交于点C,则△ABC的面积为.〖参考答案〗解:因为直线y=﹣x+4中,b=4,故A点坐标为(0,4);令﹣x+4=0,则x=3,故D点坐标为(3,0).令x+=0,则,x=﹣1,故C点坐标为(﹣1,0),因为B点为直线y=﹣x+4直线y=x+的交点,故可列出方程组﹣,解得,故B点坐标为(,2),故S△ABC=S△ACD﹣S△BCD=CD•AO﹣CD•BE=×4﹣×4×2=4.2.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.〖参考答案〗解:由题意可知当直线y=﹣2x+b经过A(1,1)时b的值最小,即﹣2×1+b=1,b=3;当直线y=﹣2x+b过C(2,2)时,b最大即2=﹣2×2+b,b=6,故能够使黑色区域变白的b 的取值范围为3≤b≤6.3.已知直线l n:y=﹣+(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1,(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=﹣x+与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2;…依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.则s1+s2+s3+s4+s5=;S n=.〖参考答案〗解出l1、l2、l3、l4…l n的解析式为l1:y=﹣2x+1,l2:y=﹣x+,l3:y=﹣x+,l4:y=﹣x+,l5:y=﹣x+…l n:y=﹣+(n是不为零的自然数).于是S1=1××=;S2=××=;S3=××=;S4=××=;S5=××=….S n=××=()s1+s2+s3+s4+s5=++++=.4.(2011•绍兴)在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(l,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上,求a,b 的值.〖参考答案〗(1)解:∵1×2≠2×(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)解:由题意得:当a>0时,(a+3)×2=3a,∴a=6,点P(a,3)在直线y=﹣x+b上,代入得:b=9当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6,点P(a,3)在直线y=﹣x+b上,代入得:b=﹣3,∴a=6,b=9或a=﹣6,b=﹣3.类型二一次函数图像与几何变换【例题2】(2011•咸宁)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任意一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上…由此我们知道,平移n 次后在函数的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.〖选题意图〗本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.〖解题思路〗(1)根据点的平移特点描出每次平移后P点的位置即可;(2)先根据P点平移一次后的点的坐标求出过此点的函数解析式,再根据函数图象平移的性质解答即可;(3)设点Q 的坐标为(x ,y ),求出Q 点的坐标,得出n 的取值范围,再根据点Q 的坐标为正整数即可进行解答.〖参考答案〗解:(1)如图所示:(2)设过(0,2),(1,0)点的函数解析式为:y=kx+b (k≠0), 则,解得 ﹣ , 故第一次平移后的函数解析式为:y=﹣2x+2; ∴答案依次为:y=﹣2x+2;y=﹣2x+4;y=﹣2x+2n . (3)设点Q 的坐标为(x ,y ),依题意, ﹣.解这个方程组,得到点Q 的坐标为(,).∵平移的路径长为x+y , ∴50≤≤56.∴37.5≤n≤42. ∵点Q 的坐标为正整数,∴点Q 的坐标为(26,26),(28,28). 【课堂训练题】1.(1)点(0,1)向下平移2个单位后的坐标是 ,直线y=2x+1向下平移2个单位后的解析式是 ;(2)直线y=2x+1向右平移2个单位后的解析式是 ;(3)如图,已知点C 为直线y=x 上在第一象限内一点,直线y=2x+1交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC 方向平移 个单位,求平移后的直线的解析式.〖参考答案〗解:(1)(0,﹣1),y=2x+1﹣2=2x﹣1;(2)y=2(x﹣2)+1=2x﹣3;(3)y=2(x﹣3)+1+3,即y=2x﹣2.2.如图,将直线y=2x沿y轴向下平移后,得到的直线与x轴交于点(,),与双曲线在第一象限交于点B,且△OAB的面积.(1)求直线AB的解析式(2)求双曲线的解析式.〖参考答案〗解:(1)直线AB的解析式为y=2x﹣b,把A(,0)代入得,0=2×﹣b,解得b=5,故此直线的解析式为:y=2x﹣5;(2)作BD⊥x轴,∵△OAB的面积,即OA•BD=,∵A(,0),∴BD=3,∵B点在直线y=2x﹣5上,∴3=2x﹣5,解得x=4,∴B (4,3)∵B 点在反比例函数y=上, ∴k=3×4=12,∴此反比例函数的解析式为:y=.3.如图,直线y=x+4与x 轴、y 轴分别交于A 、B 两点,点C 在OB 上,若将△ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是 (0,1.5) .〖参考答案〗解:由题意得:A (﹣3,0),B (0,4); ∴OA=3,OB=4.那么可得AB=5.易得△ABC ≌△ADC ,∴AD=AB=5,∴OD=AD ﹣OA=2.设OC 为x .那么BC=CD=4﹣x .那么x 2+22=(4﹣x )2,解得x=1.5, ∴C (0,1.5).类型三 反比例函数的图像与性质【例题3】(2011•防城港)如图,是反比例函数y=和y=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值是( )A .1B .2C .4D .8〖选题意图〗本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd ﹣ab=4是解此题的关键.〖解题思路〗设A (a ,b ),B (c ,d ),代入双曲线得到k 1=ab ,k 2=cd ,根据三角形的面积公式求出cd ﹣ab=4,即可得出答案.〖参考答案〗解:设A (a ,b ),B (c ,d ),代入得:k 1=ab ,k 2=cd , ∵S △AOB =2,∴cd ﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故选C.【课堂训练题】1.(2011•东营)如图,直线l和双曲线(>)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A、S1<S2<S3B、S1>S2>S3C、S1=S2>S3D、S1=S2<S3〖参考答案〗解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.故选D.2.如图,点A是反比例函数y=的图象上任意一点,延长AO交该图象于点B,AC⊥x 轴,BC⊥y轴,求Rt△ACB的面积.〖参考答案〗解:设点A的坐标为(x,y),则点B坐标为(﹣x,﹣y),所以AC=2y,BC=2x,所以Rt△ACB的面积为AC•BC=×2x•2y=2xy=2|k|=24.类型四反比例函数与一次函数的交点问题【例题4】(2011•雅安)如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(﹣2,3),BC⊥x轴于C,四边形OABC面积为4.(1)求反比例函数和一次函数的解析式;(2)求点D的坐标;(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)〖选题意图〗此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,利用图象判定函数的大小关系是中学的难点同学们应重点掌握.〖解题思路〗(1)先设出反比例函数和一次函数的解析式:y=和y=ax+b,把点B的坐标代入反比例函数的解析式求出k即可;(2)两个解析式联立,求得点D的坐标即可;(3)利用函数图象求出分别得出使一次函数的值大于反比例函数的值的x的取值范围.〖参考答案〗解:(1)设反比例函数的解析式y=和一次函数的解析式y=ax+b,图象经过点B,∴k=﹣6,∴反比例函数解析式为y=﹣,又四边形OABC面积为4.∴(OA+BC)OC=8,∵BC=3,OC=2,∴OA=1,∴A(0,1)将A、B两点代入y=ax+b有﹣,解得﹣∴一次函数的解析式为y=﹣x+1,(2)联立组成方程组得﹣﹣,解得x=﹣2或3,∴点D(3,﹣2)(3)x<﹣2或0<x<3.【课堂训练题】1.(2011•潼南县)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.〖参考答案〗解:(1)由图象可知:点A的坐标为(2,)点B的坐标为(﹣1,﹣1)∵反比例函数(m≠0)的图象经过点(2,),∴m=1∴反比例函数的解析式为:∵一次函数y=kx+b(k≠0)的图象经过点(2,)点B(﹣1,﹣1)∴﹣﹣解得:k=b=﹣∴一次函数的解析式为﹣(2)由图象可知:当x>2或﹣1<x<0时一次函数值大于反比例函数值2.如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交点A(1,3).(1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.〖参考答案〗解:(1)由题意,得3=1+m,解得:m=2.所以一次函数的解析式为y1=x+2.由题意,得3=,解得:k=3.所以反比例函数的解析式为y2=.由题意,得x+2=,解得x1=1,x2=﹣3.当x2=﹣3时,y1=y2=﹣1,所以交点B(﹣3,﹣1).(2)由图象可知,当﹣3≤x<0或x≥1时,函数值y1≥y2.类型五函数的应用【例题5】(2011•岳阳)某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:(1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求y与x之间的函数关系式.(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.〖选题意图〗此题主要考查了一次函数的应用,一次函数的应用是中考中的重点题型,利用图表得出正确的信息是解决问题的关键.〖解题思路〗(1)根据图表得出16x+12y+10(20﹣x﹣y)=240,从而求出y与x的关系式即可;(2)利用(1)中关系式即可得出方案;(3)分别求出(2)中方案的利润即可.〖参考答案〗解:(1)∵厂方计划由20个工人一天内加工完成,设加工甲种配件的人数为x,加工乙种配件的人数为y,∴加工丙种配件的人数为(20﹣x﹣y)人,∴16x+12y+10(20﹣x﹣y)=240,∴y=﹣3x+20;(2)设加工丙种配件的人数为z=(20﹣x﹣y)人,当x=3时,y=11,z=6,当x=4时,y=8,z=8,当x=5时,y=5,z=10,其他都不符合题意,∴加工配件的人数安排方案有三种;(3)由图表得:方案一利润为:3×16×6+11×12×8+10×6×5=1644元,方案二利润为:4×16×6+8×12×8+10×8×5=1552元,方案三利润为:5×16×6+5×12×8+10×10×5=1460元,∴应采用(2)中方案一,最大利润为1644元.【课堂训练题】1.(2011•孝感)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?〖参考答案〗解:(1)设该公司组装A型器材x套,则组装B型器材(40﹣x)套,依据题意得(﹣),(﹣)解得22≤x≤30,由于x 为整数,所以x取22,23,24,25,26,27,28,29,30.故组装A、B两种型号的健身器材共有9套组装方案;(2)总的组装费用y=20x+18(40﹣x)=2x+720,∵k=2>0,∴y随x的增大而增大,∴当x=22时,总的组装费用最少,最少组装费用是2×22+720=764元,总的组装费用最少的组装方案为:组装A型器材22套,组装B型器材18套.2.为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?〖参考答案〗解:(1)门票定价为50元/人,那么10人应花费500元,而从图可知实际只花费300元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费400元,而原价是500元,可以知道是打8折得到的价格,所以b=8,看图可知m=10;(2)设y1=kx,当x=10时,y1=300,代入其中得,k=30y1的函数关系式为:y1=30x同理可得,y2=50x(0≤x≤10),当x>10时,设其解析式为:y2=(x﹣10)×50×0.8+500,化简得:y2=40x+100;(3)设A团有n人,则B团有(50﹣n)人,当0≤n≤10时,50n+30(50﹣n)=1900解得,n=20这与n≤10矛盾,当n>10时,40n+100+30(50﹣n)=1900,解得,n=30,50﹣30=20.答:A团有30人,B团有20人.【例题6】用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?〖选题意图〗现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.〖解题思路〗(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,后根据题意代入求出k1和k2即可;(2)当y=0.5时,求出此时小红和小敏所用的水量,后进行比较即可.〖参考答案〗解:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,将和分别代入两个关系式得:1.5=,2=,解得:k1=1.5,k2=2.∴小红的函数关系式是=,小敏的函数关系式是.(2)把y=0.5分别代入两个函数得:=0.5,=0.5,解得:x1=3,x2=4,10×3=30(升),5×4=20(升).答:小红共用30升水,小敏共用20升水,小敏的方法更值得提倡.【课堂训练题】1.一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.〖参考答案〗解:(1)设ρ=,当V=10m3时,ρ=1.43kg/m3,所以1.43=,即k=14.3,所以ρ与V的函数关系式是ρ=;(2)当V=2m3时,把V=2代入得:ρ=7.15(kg/m3),所以当V=2m3时,氧气的密度为7.15(kg/m3).类型六一次函数与反比例函数的综合题【例题7】(2011•宜宾)如图,一次函数的图象与反比例函数﹣(<)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(>)的图象与﹣(<)的图象关于y轴对称,在y2=(>)的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.〖选题意图〗此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.〖解题思路〗(1)根据x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值得到点A的坐标,利用待定系数法求函数的解析式即可;(2)求得B点的坐标后设出P点的坐标,利用告诉的四边形的面积得到函数关系式求得点P的坐标即可.〖参考答案〗解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则﹣,解之得﹣,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与﹣(<)的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设p(n,)n>2,S四边形BCQP=S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).【课堂训练题】1.(2011•成都)如图,已知反比例函数()的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.〖参考答案〗解:(1)把点(,8)代入反比例函数(),得k=•8=4,∴反比例函数的解析式为y=;又∵点Q(4,m)在该反比例函数图象上,∴4•m=4,解得m=1,即Q点的坐标为(4,1),而直线y=﹣x+b经过点Q(4,1),∴1=﹣4+b,解得b=5,∴直线的函数表达式为y=﹣x+5;(2)联立﹣,解得或,∴P点坐标为(1,4),对于y=﹣x+5,令y=0,得x=5,∴A点坐标为(0,5),∴S△OPQ=S△AOB﹣S△OBP﹣S△OAQ=•5•5﹣•5•1﹣•5•1=.2.(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B、(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.〖参考答案〗解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,∴点B坐标为(2,2),∴k=xy=2×2=4.(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,∴ON=OM=2OA=4,∴点E横坐标为4,点F纵坐标为4.∵点E、F在函数y=的图象上,∴当x=4时,y=1,即E(4,1),当y=4时,x=1,即F(1,4).设直线EF解析式为y=mx+n,将E、F两点坐标代入,得,∴m=﹣1,n=5.∴直线EF的解析式为y=﹣x+5.第三部分课后自我检测试卷A类试题:1.(2011•阜新)反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2 C.3 D.12.如图,直线y=x+2交x轴于A,交y轴于B(1)直线AB关于y轴对称的直线解析式为;(2)直线AB绕原点旋转180度后的直线解析式为;(3)将直线AB绕点P(﹣1,0)顺时针方向旋转90度,求旋转后的直线解析式.3.将一次函数y=kx﹣1的图象向上平移k个单位后恰好经过点A(3,2+k).(1)求k的值;(2)若一条直线与函数y=kx﹣1的图象平行,且与两个坐标轴所围成的三角形的面积为,求该直线的函数关系式.4.(2011•肇庆)如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.5.如图所示,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A (4,m).(1)求m的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B、C,求线段BC的长.B类试题:6.已知直线x﹣2y=﹣k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k的取值范围;(2)若k为非整数,点A的坐标(2,0),点P在直线x﹣2y=﹣k+6上,求使△PAO为等腰三角形的点的坐标.7.在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求证:△AEC≌△DFB.C 类试题:9.如图,双曲线y= (k >0,x >0)的图象上有两点P 1(x 1,y 1)和P 2(x 2,y 2),且x 1<x 2,分别过P 1和P 2向x 轴作垂线,垂足为B 、D .过P 1和P 2向y 轴作垂线,垂足为A 、C .(1)若记四边形AP 1BO 和四边形CP 2DO 的面积分别为S 1和S 2,周长为C 1和C 2,试比较S 1和S 2,C 1和C 2的大小;(2)若P 是双曲线y=(k >0,x >0)的图象上一点,分别过P 向x 轴、y 轴垂线,垂足为M 、N .试问当P 点落在何处时,四边形PMON 的周长最小?10.(2011•曲靖)如图:直线y=kx+3与x 轴、y 轴分别交于A 、B 两点,OA OB =,点C (x ,y )是直线y=kx+3上与A 、B 不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.课后自我检测试卷参考答案A类试题:1.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选A.2.解:由题意得:A(﹣4,0),B(0,2),(1)∵关于y轴对称则:此直线过点(0,2)和(4,0),∴可得函数解析式为i:y=﹣x+2(2)∵关于原点对称的两点的横坐标纵坐标都互为相反数,∴可得函数解析式过点(0,﹣2)和(﹣4,0),∴函数解析式为:y=﹣x﹣2(3)设函数解析式为y=2x+b,又∵过点(﹣1,0),∴函数解析式为:y=2x+2.3.解:(1)根据平移规律可知,平移后解析式为y=kx﹣1+k,将点A(3,2+k)代入,得3k﹣1+k=2+k,解得k=1;(2)设所求直线解析式为y=x+b,则图象与坐标轴两交点坐标为(﹣b,0),(0,b),由三角形面积公式得×|b|×|﹣b|=,解得b=±1,∴y=x+1或y=x﹣1(不合题意,舍去),故所求直线的函数关系式为y=x+1.4.解:(1)把点B(﹣1,0)代入一次函数y=x+b得:0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=,;(2)反比例函数y=,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y=,∴当1≤x≤6时,反比例函数y的值:≤y≤2.5.解:(1)∵点A (4,m)在反比例函数y=的图象上,∴m==1,∴A (4,1),把A (4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3,(2)∵直线x=2与反比例和一次函数的图象分别交于点B、C,∴当x=2时,y B==2,y C=2﹣3=﹣1,∴线段BC的长为|y B﹣y C|=2﹣(﹣1)=3.B类试题:6.解:(1)由题可得:﹣﹣,解得:﹣,∴两直线的交点坐标为(k+4,k﹣1),又∵交点在第四象限,∴>﹣<,解得:﹣4<k<1;(2)由于k为非负整数且﹣4<k<1,∴k=0,此函数的解析式为:x﹣2y=6.直线x﹣2y=6与y轴的交点坐标为:(0,﹣3),与x轴交点坐标为(6,0),∵2<3,∴等腰三角形△PAO只有以OA为底边,∴可得P点坐标为(1,﹣).7.解:(1)当P把△ABC分成如图(一)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AB上,设P运动了t秒,则BP=t,AP=12﹣t,由题意得:BP+BD=(AP+AC+CD),即t+3=(12﹣t+12+3),解得t=7秒;(2)当DP把△ABC分成如图(二)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AC上,设P运动了t秒,则AB+AP=t,PC=AB+AC﹣t,由题意得:BD+t=2(PC+CD),即3+t=2(12+12﹣t+3),即3t=51,t=17秒.∴当t=7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.解:(1)由题意得1=,∴m=6,∴n=,∴n=2;(2)设直线AB的函数解析式为y=kx+b﹣由题意得,解得∴直线AB的函数解析式为y=﹣2x+8;(3)∵y=﹣2x+8,∴A(0,8),B (4,0)∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB∵AE=DF=2,CE=BF=1∴△AEC≌△DFB.C类试题:9.解:(1)根据反比例函数系数k的几何意义可知S1=S2=k;当y1﹣y2=x2﹣x1即AC=BD时C1=C2;当y1﹣y2<x2﹣x1即AC<BD时C1<C2;当y1﹣y2>x2﹣x1即AC>BD时C1>C2.(2)设P(x,y),即(x,),四边形PMON的周长=2(x+y)=2(x+),因为面积相等的四边形中正方形的周长最小,所以x=,解得x=,故四边形PMON的周长最小=2(x+y)=4.10.解:(1)∵直线y=kx+3与y轴分别交于B点,∴B(0,3),∵OA OB= ,∴OA=4,∴A (4,0),∵直线y=kx+3过A (4,0),∴4k+3=0,∴k=﹣ ,∴直线的解析式为:y=﹣ x+3;(2)∵A (4,0),∴AO=4,∵△AOC 的面积是6,∴△AOC 的高为:3,∴C 点的纵坐标为3,∵直线的解析式为:y=﹣ x+3,∴3=﹣ x+3,x=0,∴点C 运动到B 点时,△AOC 的面积是6;(3)当过点C 的另一直线CD 与y 轴相交于D 点,且CD ⊥y 轴于点D 时,BD=BO=3,△BCD 与△AOB 全等, ∴C 点纵坐标为6,∴6=﹣ x+3,解得:x=﹣4,∴C 点坐标为:(﹣4,6).。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

反比例函数和一次函数

反比例函数和一次函数

反比例函数和一次函数
反比例函数和一次函数是两种最基本的函数类型。

反比例函数是指当一个量增大时,另一个量会相应地减小,而且它们的乘积是一个常数;一次函数是指当一个量增加时,另一个量也会以相同的速度增加。

这两种函数在数学中都有很广泛的应用。

反比例函数可以表示为y=k/x,其中k是一个常数。

这个函数可以用来描述许多实际问题,例如两个物体之间的引力和距离的关系,或者电阻和电流之间的关系。

当x增大时,y会相应地减小;当x减小时,y会相应地增加。

这种函数在数学中很常见,因为它可以用来解决很多实际问题。

一次函数可以表示为y=mx+b,其中m和b是常数。

这个函数可以用来表示许多线性关系,例如速度和时间之间的关系,或者距离和时间之间的关系。

当x增加时,y也会相应地增加;当x减少时,y也会相应地减少。

这种函数在数学中也很常见,因为它可以用来解决很多实际问题。

反比例函数和一次函数在数学中都很重要,因为它们可以用来表示许多实际问题。

通过对这些函数的学习和理解,我们可以更好地理解和解决实际问题。

- 1 -。

初三数学知识点全总结

初三数学知识点全总结

初三数学知识点全总结初三数学是初中数学学习的重要阶段,知识点繁多且复杂,需要我们认真梳理和掌握。

以下是对初三数学知识点的全面总结。

一、函数1、一次函数一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。

当 b = 0 时,函数为正比例函数y =kx。

我们需要掌握一次函数的图像和性质,例如斜率 k 决定了函数图像的倾斜程度,k > 0 时函数单调递增,k <0 时函数单调递减。

同时,要能根据给定的条件求出函数的解析式,并解决与一次函数相关的实际问题。

2、反比例函数反比例函数的表达式为 y = k/x(k 为常数,k ≠ 0)。

反比例函数的图像是以原点为对称中心的两条曲线,当 k > 0 时,图像在一、三象限,在每个象限内 y 随 x 的增大而减小;当 k < 0 时,图像在二、四象限,在每个象限内 y 随 x 的增大而增大。

3、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0),顶点式为 y =a(x h)²+ k,交点式为 y = a(x x₁)(x x₂)。

二次函数的图像是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。

我们要学会求二次函数的解析式、顶点坐标、对称轴,掌握二次函数的图像和性质,并能利用二次函数解决最值问题和实际应用题。

二、几何图形1、圆圆的相关概念包括圆心、半径、直径、弧、弦、圆心角、圆周角等。

圆的性质有:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;直径所对的圆周角是直角;圆的切线垂直于过切点的半径等。

我们要掌握圆的周长和面积公式,以及弧长和扇形面积的计算方法,并能解决与圆有关的证明和计算问题。

2、相似三角形相似三角形的判定方法有:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似。

相似三角形的性质有:对应边成比例,对应角相等;相似三角形的周长比等于相似比,面积比等于相似比的平方。

一次函数、反比例函数、二次函数知识点归纳总结复习进程

一次函数、反比例函数、二次函数知识点归纳总结复习进程

二次函数知识点详解(最新原创助记口诀)知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称⇔纵坐标相等,横坐标互为相反数点P与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx+知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一次函数和反比例函数知识点总结

一次函数和反比例函数知识点总结

一次函数知识点总结:函数性质:1. y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0)当x增加m,k(x+m)+b=y+km, km/m=k。

2. 当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3. 当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4. 一次函数的图像:直线5. 在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

(3)连线,可以作出一次函数的图象——一条直线。

因此,作一次函数的图象只需知道2点,并连成直线即可。

(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。

一次函数、反比例函数、二次函数知识点归纳总结(最新整理)

一次函数、反比例函数、二次函数知识点归纳总结(最新整理)

二次函数知识点详解(最新原创助记口诀)知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当时,(a ,b )和(b ,a )是两个不同点的坐标。

b a ≠知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x 点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上,x 为任意实数0=⇔y 点P(x,y)在y 轴上,y 为任意实数0=⇔x 点P(x,y)既在x 轴上,又在y 轴上x ,y 同时为零,即点P 坐标为(0,0)⇔3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x 与y 相等⇔点P(x,y)在第二、四象限夹角平分线上x 与y 互为相反数⇔4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

并能解决实际问题.会求一元二次方程的近似值.分析近年中考,尤其是课改实验区的试题,预计2009年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.十二,初中数学助记口诀(函数部分)特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\))的形式,那么称 y 是 x 的反比例函数。

其中,x 是自变量,y 是函数,k 称为比例系数。

例如,当速度 v 一定时,路程 s 与时间 t 的关系可以表示为\(s =vt\),如果时间 t 与路程 s 成反比例关系,那么可以表示为\(t =\frac{s}{v}\)(其中 v 是常数),此时 t 就是 s 的反比例函数。

需要注意的是,反比例函数中自变量 x 的取值范围是\(x ≠ 0\),因为在分式中分母不能为 0。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\)),这是反比例函数的基本形式。

2、\(y = kx^{-1}\)(k 为常数,\(k ≠ 0\)),将\(\frac{k}{x}\)变形可得。

3、\(xy = k\)(k 为常数,\(k ≠ 0\)),通过\(y =\frac{k}{x}\)两边同时乘以 x 得到。

三、反比例函数的图像反比例函数的图像是双曲线。

当\(k > 0\)时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小;当\(k < 0\)时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。

例如,函数\(y =\frac{2}{x}\),因为\(k = 2 > 0\),所以图像在第一、三象限,且在每个象限内,y 随 x 的增大而减小。

绘制反比例函数图像的一般步骤:1、列表:在自变量取值范围内选取一些值,算出对应的函数值,列成表格。

2、描点:以表中对应值为坐标,在平面直角坐标系中描出相应的点。

3、连线:按照自变量由小到大的顺序,用平滑的曲线将所描的点依次连接起来。

四、反比例函数的性质1、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。

2.函数的三要素:定义域、值域和对应关系。

3.函数的表示方法:函数表达式、函数图象和函数关系式。

4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。

5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。

二、函数的运算法则:1.函数的和、差、积、商运算规则。

2.函数的复合运算规则。

3.函数的反函数及其性质。

4.函数的平移、翻折和伸缩等运算。

三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。

(2)函数的图象:直线。

(3)性质:对称性、单调性、与坐标轴的交点。

2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。

(2)函数的图象:抛物线。

(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。

3.反比例函数:(1)函数的定义:y=k/x,k不等于0。

(2)函数的图象:双曲线的一支。

(3)性质:对称性、单调性、与坐标轴的交点。

4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。

(3)性质:单调性、与坐标轴的交点。

5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。

(3)性质:单调性、与坐标轴的交点。

四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。

2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。

3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。

4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。

五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。

高一数学必修1函数的知识点归纳总结

高一数学必修1函数的知识点归纳总结

高一数学必修1函数的知识点归纳总结【导语】函数是数学学习里的重点内容,高一要学好数学第一要掌控好最基础的知识。

下面是作者为大家收集整理的高一数学必修1函数的知识点篇,期望能对你有帮助!高一数学必修1函数的知识点篇一:反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范畴是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无穷趋向于坐标轴,没法和坐标轴相交。

知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移)高一数学必修1函数的知识点篇二:对数函数对数函数的一样情势为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,由于它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)明显对数函数无界。

高一数学必修1函数的知识点篇三:二次函数I.定义与定义表达式一样地,自变量x和因变量y之间存在以下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)

中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)
⑵分母中含有自变量:分母不为 .
⑶实际问题:符合实际意义.
8.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:
⑴列表.
⑵描点.
⑶连线.
9.函数解析式与函数图象的关系:
⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上.
⑵函数图象上点的坐标满足函数解析式.
考点03一次函数
(3)函数关系式在书写时有顺序性.例如: 是表示 是 的函数,若写成 就表示 是 的函数.
(4)求 与 的函数关系时,必须是只用变量 的代数式表示 ,得到的等式右边只含 的代数式.
自变量的取值范围:
7.自变量取值范围:在初中阶段,自变量的取值范围考虑下面几个方面:
⑴根式:当根指数为偶数时,被开方数为非负数.
10.用坐标表示地理位置:根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向.
3.一次函数的图象及其画法:
(1)一次函数 ( , , 为常数)的图象是一条直线.
(2)由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.如果这个函数是正比例函数,通常取 , 两点.如果这个函数是一般的一次函数( ),通常取 , ,即直线与两坐标轴的交点.
(3)反比例函数与一次函数的联系.
③解方程(组),得到待定系数的值.
④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.
8.一次函数与一元一次方程的关系:

复习一次函数与反比例函数和二元一次函数及应用

复习一次函数与反比例函数和二元一次函数及应用

复习一次函数与反比例函数1、 一次函数:y kx b =+(0)k ≠ , 正比例函数:y kx =(0)k ≠其中xy k =更方便于求解解析式,而且也更容易应该于判断点是否在某个反比例函数图像上。

提醒:关于k y x =中k 等于多少该如何判断得引起大家的重视;如12y x=中的k 是多少呢?2、 一次函数的作图:首先它的图像是一条直线,而确定一点直线只需要两个点,所以通常只要在直角坐标系中,描出两个点并连接即可。

通常的作法是:取与x 轴和y 轴的两个交点。

如:作函数2y x =-的图像 当0x =时,2y =- 即(0,2)-为一次函数与y 轴的交点坐标。

当0y =时,2x =即(2,0)为一次函数与x 轴的交点坐标。

3、 会判断点是否在直线上,正比例函数上和反比例函数上;并且已知横坐标要懂得求纵坐标,反之,已知纵坐标要懂得求横坐标。

4、正比例和反比例函数图像匀关于原点对称。

而且正比例函数一定经过原点(0,0)k越大,直线越陡k越大,双曲线离x轴越远5、一次函数y kx b=+(0)k≠的四种草图,其中k越大,直线越陡;bb>⎧⎨<⎩图像向上平移图像向下平移6、直线的平移(大家自己整理出更一般的结论)如:31y x=-向上平移5个单位____________;向下平移2个单位_____________备注:上下平移(即x值不变,y值的变化),我们可以从函数与y轴交点的变化更容易观察出结论。

向左平移1个单位______________;向右平移2个单位_________________备注:左右平移(即y值不变,x值的变化),我们可以从函数与x轴交点的变化更容易观察出结论。

7、解析式的求解①、解析式的求解步骤:首先要先判断它是一次函数(直线或线段)还是正比较函数(直线或给段,但经过原点),或者反比较函数(双曲线,也可能只有其中一支);其次,设函数解析式,如下:②、一次函数:y kx b=+(0)k≠需要两个条件(或者两个点坐标)来列方程组,求,k b 的值。

一次函数反比例函数知识点总结及典型题

一次函数反比例函数知识点总结及典型题

一次函数、反比例函数知识点总结及经典试题(一)函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为________ ,把y称为________ ,y是x的______ 。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的________ 允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为__________ ;(2)________________________________________ 关系式含有分式时,分式的;(3)关系式含有二次根式时,_____________________ ;(4)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:____ (表中给出一些自变量的值及其对应的函数值);第二步:_____ (在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:_____ (按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

初中数学函数知识点总结6篇

初中数学函数知识点总结6篇

初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。

那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。

初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。

一次函数与反比例函数 知识点

一次函数与反比例函数 知识点

一次函数与反比例函数知识点一、一次函数一次函数,也叫线性函数,是数学中最简单的函数之一。

它的特点是自变量的最高次数为1,即一次方程。

一次函数的一般形式可以表示为y = kx + b,其中k和b为常数,k代表斜率,b代表截距。

一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,当k>0时,直线向右上方倾斜;当k<0时,直线向右下方倾斜。

截距b决定了直线与y轴的交点位置,当b>0时,直线在y轴上方与之交点;当b<0时,直线在y轴下方与之交点。

一次函数在实际生活中有广泛的应用。

例如,我们可以利用一次函数来描述物体的匀速直线运动,其中x表示时间,y表示位置;我们还可以利用一次函数来描述成本和产量之间的关系,从而帮助企业做出经济决策。

二、反比例函数反比例函数,也叫倒数函数,是一种特殊的函数关系,其自变量和因变量之间的关系可以表示为y = k/x,其中k为常数。

反比例函数的特点是自变量和因变量之间的乘积为常数。

反比例函数的图像是一条双曲线,其对称轴为坐标轴。

当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。

因此,反比例函数的图像会有一个渐近线,与x轴和y轴分别交于一点。

反比例函数在实际生活中也有很多应用。

例如,我们可以利用反比例函数来描述人的行驶速度和所需时间之间的关系,从而帮助规划交通路线;我们还可以利用反比例函数来描述电阻和电流之间的关系,从而帮助设计电路。

三、一次函数与反比例函数的比较一次函数和反比例函数在数学上具有不同的特点和应用。

一次函数是一条直线,其斜率决定了直线的倾斜程度,截距决定了直线与y 轴的交点位置;反比例函数是一条双曲线,其渐近线与x轴和y轴分别交于一点。

在实际应用中,一次函数常用于描述线性关系,如物体的运动和经济成本与产量的关系;而反比例函数常用于描述反比关系,如速度与时间的关系和电阻与电流的关系。

一次函数和反比例函数的图像形状也有所不同。

一次函数的图像是一条直线,可以通过两个点确定;而反比例函数的图像是一条双曲线,可以通过渐近线和一个点确定。

正比例函数、一次函数和反比例函数知识点归纳

正比例函数、一次函数和反比例函数知识点归纳

正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k工0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0 )和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;y yK>0k<0/ \0OJx IV x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x//y=xO yx增减性:k>O,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k^ 0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标);正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o, b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;y yk>0,b<0O O /x x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x /F y=xk>0,b>0k<o,b>0,图像过一二四象限k<o ,b>0,图像过二三四象限增减性:k>O,y 随x 的增大而增大;k<0, y 随x 的增大而减小;平移:y=kx+b,向上平移 m 个单位:y=kx+b+m;向下平移 n 个单位:y=kx+b-n;向左平移 m 个单位:y=k (x+m )+b;向右平移 n 个单位:y=k (x-n )+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x 后面,直接与x进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x (k 为常数,k z 0) 图像:双曲线(图像无限靠近坐标轴, 所在象限:k>0图像经过一三象限;增减性:k>0,y 随x 的增大而减小;k<0,y 随x 的增大而增大;反比例函数知识点归纳1、基础知识(一)反比例函数的概念但永不相交。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点总结:一次函数:一次函数图像与性质是中考必考的内容之一.中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。

甚至有存在探究题目出现。

主要考察内容:①会画一次函数的图像,并掌握其性质。

②会根据已知条件,利用待定系数法确定一次函数的解析式。

③能用一次函数解决实际问题。

④考察一ic函数与二元一次方程组,一元一次不等式的关系。

突破方法:①正确理解掌握一次函数的概念,图像和性质。

②运用数学结合的思想解与一次函数图像有关的问题。

③掌握用待定系数法球一次函数解析式。

④做一些综合题的训练,提高分析问题的能力。

函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k。

即:y=kx+b(k,b为常数,k≠0), ∵当x增加m,k (x+m)+b=y+km,km/m=k。

2。

当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线"的道理,也可叫“两点法”. 一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可.正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点.(3)连线,可以作出一次函数的图象——一条直线。

因此,作一次函数的图象只需知道2点,并连成直线即可。

(通常找函数图象与x轴和y轴的交点分别是—k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k〉0时,直线必通过第一、三象限,y随x的增大而增大;当k〈0时,直线必通过第二、四象限,y随x的增大而减小.y=kx+b时:当k>0,b〉0,这时此函数的图象经过第一、二、三象限;当k〉0,b<0, 这时此函数的图象经过第一、三、四象限;当k〈0,b>0, 这时此函数的图象经过第一、二、四象限;当k<0,b<0, 这时此函数的图象经过第二、三、四象限;当b>0时,直线必通过第一、二象限;当b〈0时,直线必通过第三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。

当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

4、特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为—1))③点斜式y—y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)④两点式(y-y1) / (y2—y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y3)两点)⑤截距式(a、b分别为直线在x、y轴上的截距)⑥实用型(由实际问题来做)公式1.求函数图像的k值:(y1-y2)/(x1-x2)2。

求与x轴平行线段的中点:|x1-x2|/23。

求与y轴平行线段的中点:|y1—y2|/24。

求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1—x2)与(y1—y2)的平方和)5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式得到y=y0 则(x0,y0)即为y1=k1x+b1 与y2=k2x+b2 交点坐标6。

求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7。

求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y—y1)/(y1—y2) (其中分母为0,则分子为0) x y +,+(正,正)在第一象限— ,+ (负,正)在第二象限—,— (负,负)在第三象限+ ,— (正,负)在第四象限8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b29。

如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-110. y=k(x-n)+b就是向右平移n个单位复习要点:一次函数的图象和性质正比例函数的图象和性质考点讲析1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0 )的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.①直线经过第一、二、三象限(直线不经过第四象限);②直线经过第一、三、四象限(直线不经过第二象限);③直线经过第一、二、四象限(直线不经过第三象限);④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数.⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。

反比例函数:(1)反比例函数 如果xky =(k 是常数,k ≠0),那么y 叫做x 的反比例函数. (2)反比例函数的图象反比例函数的图象是双曲线. (3)反比例函数的性质①当k >0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y 随x 的增大而减小. ②当k <0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y 随x 的增大而增大. ③反比例函数图象关于直线y =±x 对称,关于原点对称. (4)k 的两种求法①若点(x 0,y 0)在双曲线xky =上,则k =x 0y 0. ②k 的几何意义: 若双曲线x k y =上任一点A (x ,y ),AB ⊥x 轴于B ,则S △AOB ||||2121y x AB OB ⋅=⨯= .||21k =(5)正比例函数和反比例函数的交点问题 若正比例函数y =k 1x (k 1≠0),反比例函数)0(22=/=k x ky ,则当k 1k 2<0时,两函数图象无交点;当k 1k 2>0时,两函数图象有两个交点,坐标分别为).,(),,(21122112k k k kk k k k --由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.(6)对于双曲线上的点A 、B ,有两种三角形的面积(S △AOB )要会求(会表示),如图7-1所示.考点一、平面直角坐标系 (3分)1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面.为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,"分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分)1、各象限内点的坐标的特征点P(x ,y )在第一象限0,0>>⇔y x 点P (x,y )在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P (x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y )在x 轴上0=⇔y ,x 为任意实数点P (x ,y )在y 轴上0=⇔x ,y 为任意实数点P(x ,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离点P(x ,y )到坐标轴及原点的距离: (1)点P(x,y )到x 轴的距离等于y (2)点P(x ,y)到y 轴的距离等于x(3)点P(x,y )到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量.一般地,在某一变化过程中有两个变量x 与y,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

相关文档
最新文档