Gauss_Seidel迭代法的Matlab程序
matlab高斯赛德尔迭代法
标题:深入探讨MATLAB中的高斯-赛德尔迭代法一、概述MATLAB是一种强大的数学计算软件,被广泛应用于科学、工程和金融等领域。
在数值分析中,迭代法是解决非线性方程组和矩阵方程组的重要方法之一。
高斯-赛德尔迭代法是其中的一种,其在求解线性方程组时具有较好的收敛性和效率。
本文将深入探讨MATLAB中高斯-赛德尔迭代法的原理和实现方法。
二、高斯-赛德尔迭代法原理高斯-赛德尔迭代法是一种求解线性方程组的迭代法。
给定线性方程组Ax=b,其中A为系数矩阵,b为常数向量,迭代法的基本思想是通过不断逼近方程组的解x。
高斯-赛德尔迭代法的迭代公式如下:\[ x^{(k+1)} = D^{-1} (b - (L+U)x^{(k)}) \]其中,D、L和U分别为系数矩阵A的对角线、严格下三角部分和严格上三角部分。
迭代法的初始值可以任意选择,通常选取一个与解接近的初值,然后通过迭代逼近真实解。
三、MATLAB中高斯-赛德尔迭代法的实现MATLAB提供了丰富的数值计算函数和工具箱,使得高斯-赛德尔迭代法的实现变得非常简单。
下面我们将介绍如何在MATLAB中使用高斯-赛德尔迭代法求解线性方程组。
1. 设置参数在使用高斯-赛德尔迭代法之前,我们首先需要设置一些参数,如系数矩阵A、常数向量b、迭代步数等。
在MATLAB中可以通过定义变量来实现这些参数的设置。
2. 编写迭代函数接下来,我们需要编写高斯-赛德尔迭代法的迭代函数。
通过编写一个MATLAB函数来实现迭代公式的计算和迭代过程的控制。
3. 调用函数求解完成迭代函数的编写后,我们就可以通过调用该函数来求解线性方程组。
在MATLAB中,可以使用循环语句控制迭代步数,并在每一步更新迭代值,直到满足收敛条件为止。
四、案例分析为了更好地理解高斯-赛德尔迭代法在MATLAB中的应用,我们以一个具体的案例来进行分析和实践。
假设我们需要求解以下线性方程组:\[ \begin{cases} 4x_1 - x_2 + x_3 = 8 \\ -x_1 + 4x_2 - x_3 = 9 \\2x_1 - x_2 + 5x_3 = 7 \end{cases} \]我们可以通过MATLAB编写高斯-赛德尔迭代法的函数,并调用该函数来求解以上线性方程组。
二维gauss-seidel迭代法matlab代码
二维Gauss-Seidel迭代法是解线性方程组的一种常用方法,通过迭代求解,能够快速且精确地得到方程组的解。
在MATLAB中,可以使用简洁的代码实现二维Gauss-Seidel迭代法,下面我们将介绍该方法的原理以及在MATLAB中的具体实现。
一、Gauss-Seidel迭代法原理1. Gauss-Seidel迭代法是一种逐次逼近的方法,通过不断迭代更新方程组中的未知数,最终得到方程组的解。
其基本思想是利用已知的未知数值不断逼近更精确的解。
2. 对于线性方程组Ax=b,可以将其表示为x(k+1)=Tx(k)+c的形式,其中T为迭代矩阵,c为常量向量,x为未知数向量。
Gauss-Seidel 迭代法通过不断更新x(k)的值,逐步逼近方程组的解。
3. 迭代矩阵T和常量向量c的具体计算方式为:首先将系数矩阵A分解为下三角矩阵L、对角矩阵D和上三角矩阵U,然后得到T=-L*(D^-1)*U,c=L*(D^-1)*b。
4. 通过不断迭代更新x(k)的值,直到满足一定的精度要求或者迭代次数达到设定值,即可得到方程组的解。
二、MATLAB实现二维Gauss-Seidel迭代法在MATLAB中,可以很方便地实现二维Gauss-Seidel迭代法,以下是具体的实现代码:```matlabfunction [x, k] = gauss_seidel(A, b, x0, tol, max_iter)A为系数矩阵,b为常量向量,x0为初始解向量,tol为精度要求,max_iter为最大迭代次数返回x为方程组的解,k为实际迭代次数n = length(b);x = x0;k = 0;err = tol + 1;L = tril(A, -1); 下三角矩阵U = triu(A, 1); 上三角矩阵D = diag(diag(A)); 对角矩阵T = -L*(D\U);c = L*(D\b);while err > tol k < max_iterx_old = x;x = T*x + c;err = norm(x - x_old, inf);k = k + 1;endend```三、代码说明1. 函数gauss_seidel接受系数矩阵A、常量向量b、初始解向量x0、精度要求tol和最大迭代次数max_iter作为输入参数,返回方程组的解x和实际迭代次数k。
gauss-seidel迭代法例题matlab代码
【题目】:Gauss-Seidel迭代法及Matlab代码实例【内容】:1. Gauss-Seidel迭代法介绍Gauss-Seidel迭代法是一种用于解线性方程组的数值方法,基于逐次逼近的思想,通过不断迭代逼近线性方程组的解。
该方法通常用于求解大型稀疏线性方程组,其收敛速度相对较快。
2. 迭代公式推导假设有如下线性方程组:$$Ax=b$$其中A为系数矩阵,b为常数向量,x为未知向量。
Gauss-Seidel迭代法的迭代公式为:$$x^{(k+1)}=(D+L)^{-1}(b- Ux^{(k)})$$其中,D为A的对角矩阵,L为A的严格下三角矩阵,U为A的严格上三角矩阵,k为迭代次数。
3. Matlab代码实现下面给出Gauss-Seidel迭代法的Matlab代码实例:```matlabfunction [x, k] = gaussSeidel(A, b, x0, tol, maxIter)A: 系数矩阵b: 常数向量x0: 初始解向量tol: 容差maxIter: 最大迭代次数x: 解向量k: 迭代次数n = length(b);x = x0;k = 0;while k < maxIterx_old = x;for i = 1:nx(i) = (b(i) - A(i,1:i-1)*x(1:i-1) - A(i,i+1:n)*x_old(i+1:n)) / A(i,i); endif norm(x - x_old, inf) < tolreturnendk = k + 1;enddisp('迭代次数达到最大值,未达到容差要求'); end```4. 应用实例假设有如下线性方程组:$$\begin{cases}2x_1 - x_2 + x_3 = 5\\-x_1 + 2x_2 - x_3 = -2\\x_1 - x_2 + 2x_3 = 6\end{cases}$$系数矩阵A为:$$\begin{bmatrix}2 -1 1\\-1 2 -1\\1 -1 2\end{bmatrix}$$常数向量b为:$$\begin{bmatrix}5\\-2\\6\end{bmatrix}$$取初始解向量x0为:$$\begin{bmatrix}0\\0\\\end{bmatrix}$$容差tol为1e-6,最大迭代次数maxIter为100。
gauss-seidel迭代法收敛判断matlab
Gauss-Seidel迭代法是解线性方程组的一种常用方法,它通过不断迭代更新解向量,逐步逼近方程组的精确解。
在实际应用中,我们往往需要判断迭代法是否收敛,以保证计算结果的准确性和可靠性。
本文将以matlab为例,介绍如何利用数值计算软件对Gauss-Seidel迭代法的收敛性进行判断,并对其进行详细分析和讨论。
一、Gauss-Seidel迭代法简介Gauss-Seidel迭代法是一种逐次迭代的线性代数方法,用于求解线性方程组Ax=b的解向量x。
它的迭代更新公式为:xn+1i=1/aii(bi-∑(j=1,j≠i)n aijxj)其中,i=1,2,...,n;n为方程组的阶数;aii为系数矩阵A的第i行第i 列元素;bi是方程组右端的常数;xj为解向量x的第j个分量;∑(j=1,j≠i)n aijxj为除去第i个分量的求和。
通过不断迭代更新解向量的各个分量,最终可以逼近线性方程组的解。
二、Gauss-Seidel迭代法的收敛性判断针对Gauss-Seidel迭代法的收敛性判断,我们可以利用数值计算软件matlab进行分析。
在matlab中,可以使用以下命令进行Gauss-Seidel迭代法的计算:function[x,k]=GaussSeidel(A,b,x0,tol,maxk)n=length(b);x=x0;for k=1:maxkx0=x;for i=1:nx(i)=1/A(i,i)*(b(i)-A(i,:)*x+x(i));endif norm(x-x0,inf)<tolreturn;endenderror('达到最大迭代次数,方法未收敛');end在上述matlab代码中,A为系数矩阵,b为右端常数向量,x0为初始解向量,tol为迭代精度,maxk为最大迭代次数。
在函数中,我们设定了最大迭代次数以及迭代精度的条件,当满足这些条件时,算法将停止迭代。
三、Gauss-Seidel迭代法的收敛性分析Gauss-Seidel迭代法的收敛性与系数矩阵A的性质有关。
逐次超松弛迭代法 matlab -回复
逐次超松弛迭代法matlab -回复什么是逐次超松弛迭代法(Gauss-Seidel)?为什么需要这种迭代方法?如何在MATLAB中实现逐次超松弛迭代法?有哪些注意事项和应用场景?我们将逐一解答这些问题。
逐次超松弛迭代法,也被称为Gauss-Seidel迭代法,是一种数值计算方法,用于解决线性方程组。
它采用逐步逼近的方式求解,相较于直接求解的方法,计算上更加简化。
为什么需要逐次超松弛迭代法呢?当涉及到解决大型线性方程组时,直接解法可能会面临计算量大、迭代时间长的问题。
而逐次超松弛迭代法通过逼近的方式,可以将线性方程组划分为多个小规模问题,分步进行迭代,有效降低了计算时间。
在MATLAB中,我们可以使用以下步骤实现逐次超松弛迭代法:1. 构建线性方程组表达式:首先,将线性方程组转换为矩阵形式Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。
2. 初始化参数:设定初始值x0,并指定迭代的最大次数N和误差控制值epsilon。
3. 迭代计算:循环进行迭代计算直到满足结束条件,具体步骤如下:a. 根据逐次超松弛迭代法公式,更新x的值:x(i+1) = (1 - w) * x(i) + (w / A(i,i)) * (b(i) - A(i,:)*x(i) + A(i,i)*x(i))其中,w(w > 0)是松弛因子,可以理解成迭代的步长。
通常情况下,根据实际问题的特点和经验选择合适的w值。
b. 判断迭代是否终止:计算当前迭代的相对误差,如果小于设定的误差控制值epsilon,则停止迭代。
c. 更新迭代次数,并检查是否达到最大迭代次数N,如果达到则停止迭代。
4. 输出结果:返回迭代最终结果x,作为线性方程组的解。
在使用逐次超松弛迭代法时,需要注意以下几点:1. 松弛因子w的选择:选择合适的松弛因子w对收敛速度和精度有较大影响。
如果选择不当,可能会导致迭代结果不收敛或者收敛速度很慢。
通常情况下,可以通过试验和调整,选择使得迭代过程尽快收敛的合适值。
matlab求解代数方程组解析
第三讲 Matlab 求解代数方程组理论介绍:直接法+迭代法,简单介绍相关知识和应用条件及注意事项 软件求解:各种求解程序讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)一、直接法 1.高斯消元法:高斯消元法的基本原理: 在(1)中设110,a ≠将第一行乘以111,k a a -加到第(2,3,,),k k n = 得: (1)(1)(1)(1)11112211(2)(1)(2)22112(2)(2)(2)22n n n n n nn n n a x a x a x b a x a x b a x a x b ⎧+++=⎪++=⎪⎨⎪⎪++=⎩(2)其中(1)(1)1111,.k k aa b b ==再设(2)220,a ≠将(2)式的第二行乘以(2)2(2)22,(3,,)k a k n a -= 加到第k 行,如此进行下去最终得到:(1)(1)(1)(1)11112211(2)(1)(2)22112(1)(1)(1)1,111,1()()n n n n n n n n n n n n n n n n nn n n a x a x a x b a x a x b a x a x b a x b --------⎧+++=⎪++=⎪⎪⎨⎪+=⎪⎪=⎩(3) 从(3)式最后一个方程解出n x ,代入它上面的一个方程解出1n x -,并如此进行下去,即可依次将121,,,,n n x x x x - 全部解出,这样在()0(1,2,,)k kk a k n ≠= 的假设下,由上而下的消元由下而上的回代,构成了方程组的高斯消元法. 高斯消元法的矩阵表示:若记11(),(,,),(,,)T T ij n n n n A a x x x b b b ⨯=== ,则(1)式可表为.Ax b =于是高斯消元法的过程可用矩阵表示为:121121.n n M M M Ax M M M b --=其中:(1)21(1)111(1)1(1)11111n a a M a a ⎛⎫ ⎪ ⎪- ⎪=⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ (2)32(2)222(2)2(2)221111n a a M a a ⎛⎫⎪⎪ ⎪-⎪=⎪ ⎪ ⎪⎪- ⎪⎝⎭高斯消元法的Matlab 程序: %顺序gauss 消去法,gauss 函数 function[A,u]=gauss(a,n) for k=1:n-1%消去过程 for i=k+1:n for j=k+1:n+1%如果a(k,k)=0,则不能削去 if abs(a(k,k))>1e-6 %计算第k 步的增广矩阵 a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j); else%a(k,k)=0,顺序gauss 消去失败 disp (‘顺序gauss 消去失败‘); pause; exit; end end end end%回代过程 x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1 s=0; for j=i+1:n s=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回gauss 消去后的增广矩阵 A=triu(a); %返回方程组的解 u=x ;练习和分析与思考: 用高斯消元法解方程组:12345124512345124512452471523814476192536x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++=⎪⎪++++=⎨⎪+++=⎪+++=⎪⎩2.列主元素消元法在高斯消元法中进行到第k 步时,不论()k ik a 是否为0,都按列选择()||(,,)k ik a i k n = 中最大的一个,称为列主元,将列主元所在行与第k 行交换再按高斯消元法进行下去称为列主元素消元法。
MATLAB数值分析实验四(雅各比、高斯赛德尔迭代,以及二分法和牛顿迭代解非线性方程)
佛山科学技术学院实 验 报 告课程名称 数值分析实验项目 迭代法专业班级 机械工程 姓 名 余红杰 学 号 2111505010指导教师 陈剑 成 绩 日 期 月 日一. 实验目的1、 在计算机上用Jacobi 迭代法和Gauss-Seidel 迭代法求线性方程组 。
2、 在计算机上用二分法和Newton 迭代法求非线性方程 的根。
二. 实验要求1、按照题目要求完成实验内容;2、写出相应的Matlab 程序;3、给出实验结果(可以用表格展示实验结果);4、分析和讨论实验结果并提出可能的优化实验。
5、写出实验报告。
三. 实验步骤1、用Matlab 编写Jacobi 迭代法和Gauss-Seidel 迭代法求线性方程组Ax b =的程序。
2、用Matlab 编写二分法和Newton 法求非线性方程()0f x =的根程序。
3、设⎪⎪⎪⎭⎫ ⎝⎛--=212120203A ,T b )1,3,1(=,对于线性方程组b Ax =,考虑如下问题: (1)分别写出Jacobi 迭代矩阵和Gauss-Seidel 迭代矩阵(2)用Jacobi 迭代法和Gauss-Seidel 迭代法解该方程时,是否收敛?谁收敛的更快?(3)用实验步骤1编好的两种迭代法程序进行实验,通过数值结果验证(2)的结论。
4、用调试好的二分法和Newton 迭代法程序解决如下问题求020sin 35=-+-x x e x 的根,其中控制精度810-=eps ,最大迭代次数50=M 。
四. 实验结果1.%Jacob.mfunction [x,B] = Jacob(A,b,n)%Jacobi迭代求解方程组Ax=b,系数矩阵A,迭代次数n%求解的准备工作,构建各迭代系数阵等:m = length(A);D = diag(diag(A));L = -tril(A,-1);U = -triu(A, 1);J = D^(-1)*(L+U);B = J;f = D^(-1)*b;%初始化x即启动值:x = zeros(m,1);%根据x(k+1)=Jx(k)+f进行矩阵运算:for i=1:nx = J*x + f;end%GauSeid.mfunction [x,G] = GauSeid(A,b,n)%Gauss-Seidel迭代求解方程组Ax=b,系数矩阵A,迭代次数n %求解的准备工作,构建各迭代系数阵等:m = length(A);D = diag(diag(A));L = -tril(A,-1);U = -triu(A, 1);G = inv(D-L)*U;f = inv(D-L)*b;%初始化矩阵:%根据x(k+1)=Gx(k)+f进行矩阵运算:x = zeros(m,1);for i = 1:nx = G*x + f;end2.%Dichotomy.mfunction x=Dichotomy(x1,x2,p,n)%利用二分法求根,区间[x1,x2]%p为精度a = x1;b = x2;%进行n次二分:%第一个条件判断根在a,b区间内%第二个条件判断是否中间点就是根,是则迭代终止;%第三个条件判断二分后根在中点左侧还是右侧;%第四个条件判断精度是否达标,用区间长度代替for i=1:nif f(a)*f(b)<0x0 = (a+b)/2;p0 = (b-a)/(2^i);if f(x0)==0x = x0;elseif f(a)*f(x0)<0b = x0;else a= x0;endendendif p0>pcontinue;elsex = x0;break;endend%NewIterat.mfunction x=NewIterat(x0,p,n)%利用牛顿迭代法求根;%x0为启动点,估计的靠近根的值,p为精度,n为迭代次数;syms x1;%设置一个自变量x1,方便后面的求导:f1 = diff(f(x1));%进行n次迭代,精度达标会提前终止;%第一个判断是根据控制条件来确定真实误差是选绝对还是相对误差;%第二个判断是确定精度是否满足要求for i=1:nx1 = x0;x = x0-f(x0)/eval(f1);if x<1RealDiv = abs(x-x0);else RealDiv = abs(x-x0)/abs(x); endif RealDiv>px0 = x;else break;endend3.run43.mclc,clear;A = [3 0 -2;0 2 1;-2 1 2];b = [1;3;1];n1 = 50;n2 =100;%输入A,b矩阵,设置迭代次数为50次;%调用迭代函数,返回迭代矩阵;[x,B] = Jacob(A,b,n1);xj50 = x;f1 = max(abs(eig(B)))%显示谱半径,确定收敛性;[x,B] = GauSeid(A,b,n1);xg50 = x;f2 = max(abs(eig(B)))%谱半径;xj100 = Jacob(A,b,n2);xg100 = GauSeid(A,b,n2); Jacobi= [xj50,xj100]%对比迭代50次和100次的结果GauSei= [xg50,xg100]%很容易看出准确解为[1;1;1]4.f.mfunction y = f(x)%所有f(x)=0中f(x)函数;y = exp(5*x)-sin(x)+x^3-20; 下页是具体解时的程序:%run44.mclc,clear;%很容易看出在[0,1]间有解;x = Dichotomy(0,1,10^(-8),50)x = NewIterat(0,10^(-8),50)五. 讨论分析4.3实验中的迭代矩阵在上个部分,分别为J 和G ;对于收敛性,看下图中的f1,f2,也就是迭代矩阵的谱半径,都是小于1的,但是可以看出后者的谱半径更小,就是说它的收敛速度更快;最终求x 的值,每种迭代方法分别迭代50次(第一列)和100次(第二列); 实际值为[1;1;1]可以看出用高斯赛德尔迭代更精确,速度更快。
Gauss-Seidel迭代算法专题
Gauss-Seidel 迭代法算法实现解线性代数方程组是科学研究和工程计算中一个非常重要的问题。
无论是在数学问题方面的插值公式(包括样条插值)、求积公式、微分方程差分格式的构造,还是在工程科学中的诸如电路分析、分子构造、大地测量等方面,以及在一些经济学科和其他社会科学学科中的数量研究中,经常会遇到求解线性方程组。
线性方程组的解法大致分为直接法与迭代法两大类。
每一类方法中都有很多经典的方法,各有特色。
这里我们将介绍Gauss-Seidel 迭代法的基本理论及算法实现(以Matlab 为平台)。
1、问题描述设n nA R×∈,n b R ∈,A 非奇异,nx R ∈满足方程组Ax b = (2.1)如果能找到距阵n nB R ×∈,向量nf R ∈,使I B −可逆,而且方程组x Bx f =+ (2.2)的唯一解就是方程组(2.1)的解,则可从式(2.2)构造一个定常的线性迭代公式(1)()k k x Bx f +=+ (2.3)给定初始向量(0)n xR ∈,由(2.3)可以产生序列{}()k x ,若它有极限*x ,显然*x 就是(2.1)和(2.2)的解。
现在问题转化为如何找一个合适的B 和f ,使式(2.3)具有较好的迭代效果。
2、Gauss-Seidel 迭代公式在式(2.3)中,若在每个分量计算出来之后,下一个分量的计算就利用最新的计算结果。
这样,在整个迭代过程中只要一组单元存放迭代向量,其分量形式的计算公式为1(1)(1)()11()/,1,2,,.i nk k k ii ii jijjii j j i xb a xa xa i n −++==+=−−=∑∑L (2.4)这就是Gauss-Seidel 迭代法,简称GS 法。
在式(2.1)中,记A D L U =−− (2.5)其中1122(,,,)nn D diag a a a =L ,即A 的对角部分,而21313212,100,00n n n n a a a L a a a −⎡⎤⎢⎥⎢⎥⎢⎥=−⎢⎥⎢⎥⎢⎥⎣⎦O M M O L 121312321,00.00n n n n a a a a a U a −⎡⎤⎢⎥⎢⎥⎢⎥=−⎢⎥⎢⎥⎢⎥⎣⎦L L O M M O (2.6)即L −和U −分别是A 的严格下、上三角部分(不包括对角线)。
915225-MATLAB程序设计与应用-第8章 MATLAB方程数值求解__源程序
第8章MATLAB方程数值求解例8-1用直接解法求解下列线性方程组。
程序如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';x=A\b例8-2用LU分解求解例8-1中的线性方程组。
程序如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';[L,U]=lu(A);x=U\(L\b)例8-3 用QR分解求解例8-1中的线性方程组。
程序如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';[Q,R]=qr(A);x=R\(Q\b)例8-4 用Cholesky分解求解例8-1中的线性方程组。
命令如下:>> A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; >> b=[13,-9,6,0]';>> R=chol(A)Jacobi迭代法的MA TLAB函数文件jacobi.m如下:function [y,n]=jacobi(A,b,x0,ep)if nargin==3ep=1.0e-6;elseif nargin<3errorreturnendD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵B=D\(L+U);f=D\b;y=B*x0+f;n=1; %迭代次数while norm(y-x0)>=epx0=y;y=B*x0+f;n=n+1;end例8-5 用Jacobi迭代法求解下列线性方程组。
设迭代初值为0,迭代精度为10-6。
在程序中调用函数文件jacobi.m,程序如下:A=[10,-1,0;-1,10,-2;0,-2,10];b=[9,7,6]';[x,n]=jacobi(A,b,[0,0,0]',1.0e-6)Gauss-Serdel迭代法的MA TLAB函数文件gauseidel.m如下:function [y,n]=gauseidel(A,b,x0,ep)if nargin==3ep=1.0e-6;elseif nargin<3errorreturnendD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1; %迭代次数while norm(y-x0)>=epx0=y;y=G*x0+f;n=n+1;end例8-6 用Gauss-Serdel迭代法求解例8-5中的线性方程组。
Jacobi迭代法_Gauss-Seidel迭代法
Matlab线性方程组的迭代解法(Jacobi迭代法Gauss-Seidel迭代法)实验报告2008年11月09日星期日12:49Jacobi迭代法,并编写Matlab程序matlab程序按照算法(Jacobi迭代法)编写Matlab程序(Jacobi.m)function [x, k, index]=Jacobi(A, b, ep, it_max)%求解线性方程组的Jacobi迭代法,其中% A ---方程组的系数矩阵% b ---方程组的右端项% ep ---精度要求。
省缺为1e-5% it_max ---最大迭代次数,省缺为100% x ---方程组的解% k ---迭代次数% index --- index=1表示迭代收敛到指定要求;% index=0表示迭代失败if nargin <4 it_max=100; endif nargin <3 ep=1e-5; endn=length(A); k=0;x=zeros(n,1); y=zeros(n,1); index=1;while 1for i=1:ny(i)=b(i);for j=1:nif j~=iy(i)=y(i)-A(i,j)*x(j);endendif abs(A(i,i))<1e-10 | k==it_maxindex=0; return;endy(i)=y(i)/A(i,i);endif norm(y-x,inf)<epbreak;endx=y; k=k+1;end用Jacobi迭代法求方程组的解。
输入:A=[4 3 0;3 3 -1;0 -1 4];b=[24;30;-24];[x, k, index]=Jacobi(A, b, 1e-5, 100)输出:x =k =100index =Gauss-Seidel迭代法,并编写Matlab程序function [v,sN,vChain]=gaussSeidel(A,b,x0,errorBound,maxSp)%Gauss-Seidel迭代法求解线性方程组%A-系数矩阵b-右端向量x0-初始迭代点errorBound-近似精度maxSp-最大迭代次数%v-近似解sN-迭代次数vChain-迭代过程的所有值step=0;error=inf;s=size(A);D=zeros(s(1));vChain=zeros(15,3);%最多能记录15次迭代次数k=1;fx0=x0;for i=1:s(1)D(i,i)=A(i,i);end;L=-tril(A,-1);U=-triu(A,1);while error>=errorBound & step<maxSpx0=inv(D)*(L+U)*x0+inv(D)*b;vChain(k,:)=x0';k=k+1;error=norm(x0-fx0);fx0=x0;step=step+1;endv=x0;sN=step;用Gauss-Seidel迭代法求解上题的线性方程组,取。
guss迭代法的matlab程序
解线性方程组的迭代法② Gauss-Seidel 迭代法对一般方程组化成x =Bx +g 后Gauss-Seidel 迭代法如下述.任取初始近似x (0),对k =1,2,…计算⎪⎪⎩⎪⎪⎨⎧++++=++++=++++=+-++++++)1(1,)1(22)1(11)1(2)(2)(323)1(121)1(21)(1)(313)(212)1(1n k n n n k n k n k nk n n k k k k n n k k k g x b x b x b x g x b x b x b x g x b x b x b x直至║x (k +1)-x (k )║≤ε,预定的精度。
用矩阵表示,任取初始近似x (k)x (k +1)=Lx (k +1)+Ux (k )+g , k=1,2,3,…..直至║x (k +1)-x (k )║≤ε Gauss-Seidel 迭代法中x (k +1)与x (k )有如下线性关系x (k +1)=(I -L )-1Ux (k )+(I -L )-1gGauss-Seidel 迭代法的流程图为:以上的流程图中,先读入数据,即先输入系数矩阵A,常数向量b, 初始值,停止条件和最大循环次数 N 。
流程图中的jy 是高斯-塞德尔迭代公式中的()k i x ,iy 是高斯-塞德尔迭代公式中的(1)k i x +,k是迭代次数,N 是最大循环次数。
例3.方程组及转换与例2相同,迭代计算如下:任取初始近似x (0),对k =1,2,…,n 计算⎪⎩⎪⎨⎧++=++=++=++++++84.02.02.083.02.01.072.02.01.0)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x直至║x(k+1)-x(k)║≤ε,预定的精度。
计算结果如下表.二实验部分本章实验内容:实验题目:Jacobi迭代法,Gauss-Saidel 迭代法,SOR迭代法。
线性方程的数值解法例题及程序
例1 解线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=+-+-=+-15831110225311621043243214321321x x x x x x x x x x x x x x 为了验证其这些方法的有效性和比较三种方法的迭代速度,分别根据这些方法的迭代步骤,利用MATLAB 软件进行编程求解,具体程序参见附件,初始变量()T x )0,0,0,0(0=,迭代误差限制001.0e =,精确解T x )1,1,2,1(-=*,根据各迭代原理,利用MATLAB 软件编制成M 文件.Jacobi 迭代法为J.m (程序1),Gauss-Seidel 迭代法为GS.m (程序2),SOR 迭代法为SOR.m (程序3).运行程序,得结果如表1所示.表1 线性方程组的数值结果迭代法 初值 迭代解 迭代次数 误差Jacobi 法 T )0,0,0,0( T )9998.0,9998.0,9998.1,0001.1(- 10 -4108.3321⨯ Gauss-Seidel 法 T )0,0,0,0( T )0000.1,0000.1,0000.2,0001.1(- 5 -4108.7436⨯ SOR 法051.=ω T )0,0,0,0( T )0000.1,0000.1,0000.2,0000.1(- 5 -4100465.3⨯ SOR 法1.1=ω T )0,0,0,0( T )0000.1,0000.1,0000.2,0000.1(- 6 -41057771.⨯ SOR 法5.1=ωT )0,0,0,0(T )9998.0,9999.0,0001.2,9998.0(-14-4105628.5⨯程序1function [x,k]=J(A,b,x0,N,emg) % A:线性方程组左端矩阵 % b: 线性方程组右端向量 % x0:迭代初值% N:迭代次数上界,若迭代次数大于n ,则迭代失败 % emg:精度指标 % n:迭代次数% x:用迭代法求得的线性方程组的近似解A=[10 -1 2 0;-1 11 -1 3;2 -1 10 -1;0 3 -1 8]; b=[6;25;-11;15]; x0=[0;0;0;0]; N=100; emg=1e-3;k=length(A);x1=zeros(k,1);x2=zeros(k,1);x1=x0; n=0;r=max(abs(b-A*x1));while r>emgfor i=1:ksum=0;for j=1:kif i~=jsum=sum+A(i,j)*x1(j);endendx2(i)=(b(i)-sum)/A(i,i);endr=max(abs(x2-x1));x1=x2;n=n+1;if n>Ndisp('迭代失败,返回');return;endendx=x1n程序2function X=GS(A,b,X0) %定义迭代函数名A=[10 -1 2 0;-1 11 -1 3;2 -1 10 -1;0 3 -1 8]; b=[6;25;-11;15];X0=[0;0;0;0];D=diag(diag(A)); %对角矩阵L=-tril(A,-1); %下三角矩阵U=-triu(A,1); %上三角矩阵B=(D-L)\U; %迭代的系数矩阵F=(D-L)\b; %常量FX=B*X0+F; %Gauss-Seidel迭代公式n=1; %迭代起始次数while norm(X-X0)>=1e-3;%精度X0=X; %初始赋值X=B*X0+F;n=n+1;if n>100 %迭代次数限制breakendendn程序3clear;clc;A=[10 -1 2 0;-1 11 -1 3;2 -1 10 -1;0 3 -1 8]; b=[6;25;-11;15];N=length(b); %解向量的维数X0=zeros(N,1);% 迭代初始值%-----(A=D-E-F)------D=diag(diag(A));E=-tril(A,-1);%下三角矩阵F=-triu(A,1);%上三角矩阵w=1.1; %松弛因子,一般0<w<2B=inv(D-w*E)*[(1-w)*D+w*F];g=w*inv(D-w*E)*b;eps=1e-3;%精度x=B*x0+g;%--------开始迭代-------while max(abs(x0-x))>1e-3x0=xx=B*x0+g;n=n+1if n>100 %迭代次数限制breakendendxnr=max(abs(x0-x))。
lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序
一、实验目的及题目1.1 实验目的:(1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。
(2)学会用Matlab 编写各种方法求解线性方程组的程序。
1.2 实验题目:1. 用列主元消去法解方程组:1241234123412343421233234x x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨--+=-⎪⎪-++-=⎩2. 用LU 分解法解方程组,Ax b =其中4824012242412120620266216A --⎛⎫⎪-⎪= ⎪ ⎪-⎝⎭,4422b ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭ 3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组:1232341231234102118311210631125x x x x x x x x x x x x x -+=-⎧⎪-+=-⎪⎨-+=⎪⎪-+-+=⎩二、实验原理、程序框图、程序代码等2.1实验原理2.1.1高斯列主元消去法的原理Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式:1111221122222n n n n nn n nb x b x b x g b x b x g b x g +++=⎧⎪++=⎪⎨⎪⎪=⎩这个过程就是消元,然后再回代就好了。
具体过程如下: 对于1,2,,1k n =-,若()0,k kk a ≠依次计算()()(1)()()(1)()()/,,1,,k k ik ik kk k k k ij ij ik kjk k k i i ik k m a a a a m a b b m b i j k n++==-=-=+然后将其回代得到:()()()()()1/()/,1,2,,1n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+⎧=⎪⎨=-=--⎪⎩∑以上是高斯消去。