MATLAB数据分析与多项式计算_习题答案
第5章 MATLAB数据分析与多项式计算
x =-8.0194 1.0344 -0.5075 + 0.9736i -0.5075 - 0.9736i
6.1.4 特征多项式 若已知多项式的全部根,则可以用poly函数建立起该 若已知多项式的全部根,则可以用 函数建立起该 多项式,其调用格式为: 多项式,其调用格式为: P=poly(x) 所建立的多项式系数赋给向量P。 所建立的多项式系数赋给向量 。 例6-2 已知 f(x) (1) 计算 计算f(x)=0 的全部根。 的全部根。 (2) 由方程 由方程f(x)=0的根构造一个多项式 的根构造一个多项式g(x),并与 的根构造一个多项式 ,并与f(x)进 进 行对比。 行对比。 程序为: 程序为: P=[3, 0, 4, -5, -7.2 , 5]; X=roots(P) %求方程 求方程f(x)=0的根 求方程 的根 G=poly(X) %求多项式 求多项式g(x) 求多项式 得到: 得到:X=[-0.3046 -1.6217i , -0.3046 + 1.6217i , -1.0066 , 1.0190 , 0.5967 ] G=[1.0000 0.0000 1.3333 -1.6667 -2.4000 1.6667]
求数据序列平均值的函数是: 求数据序列平均值的函数是:mean, , 求数据序列中值的函数是: 求数据序列中值的函数是:median。 。 两个函数的调用格式为: 两个函数的调用格式为: mean(X):返回向量 的算术平均值。 的算术平均值。 :返回向量X的算术平均值 median(X):返回向量 的中值。 的中值。 :返回向量X的中值 mean(A):返回一个行向量,其第 个元素是 的第 个元素是A的第 :返回一个行向量,其第i个元素是 的第i 列的算术平均值。 列的算术平均值。 median(A):返回一个行向量,其第 个元素是 的 个元素是A的 :返回一个行向量,其第i个元素是 列的中值。 第i列的中值。 列的中值
MATLAB习题及参考答案经典.doc
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
第三章MATLAB数据分析与多项式计算.
函数[Q,r]=deconv(P1,P2)用于对多项式P1和P2作除法 运算(退卷积)。其中Q返回多项式P1除以P2的商式,r返回P1 除以P2的余式.这里,Q和r仍是多项式系数向量.
例3-1 分别计对多项式x4+8x3-10与多项式2x2-x+3的进行乘法 和除法运算 p1=[1 8 0 0 -10]; p2=[2 -1 3]; p=conv(p1,p2) , %乘法运算 y=poly2sym(p) [q,r]=deconv([p1,p2]) %除法运算 p= 2 15 -5 24 -20 10 -30 y= 2*x^6+15*x^5-5*x^4+24*x^3-20*x^2+10*x-30
yi_cubic =
75.0000 106.2979 140.7981 179.3200 224.7603 yi_nearest = 75.0000 123.2000 123.2000 179.3200 250.0000
例3-16 某观测站测得某日6:00时至18:00时之间每隔2小时的室 内外温度t(℃),用3次样条插值分别求得该日室内外6:30至 17:30时之间每隔2小时各点的近似温度(℃)。 设时间变量h为一行向量,温度变量t为一个1*2矩阵,其中 第一列存放室内温度,第二列储存室外温度。命令如下: h=6:2:18; t=[18,20,22,25,30,28,24;15,19,24,28,34,32,30];
说明: 1.求多项式P的导函数,参数P为多项式系数向量,返回值p为P的导函数系数向量. 2. 求P*Q积的导函数,参数P,Q均为多项式系数向量,返回值p为P*Q的导函数系数向量 3.求P/Q商的导函数, [p,q] (向量表示)为返回值分别存放导函数的分子与分母
(完整word版)含答案《MATLAB实用教程》
第二章 MATLAB 语言及应用实验项目实验一 MATLAB 数值计算三、实验内容与步骤1.创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a(1(2)用(3)用(42.矩阵的运算(1)利用矩阵除法解线性方程组。
⎪⎪⎩⎪⎪⎨⎧=+++=-+-=+++=+-12224732258232432143214321421x x x x x x x x x x x x x x x 将方程表示为AX=B ,计算X=A\B 。
(2)利用矩阵的基本运算求解矩阵方程。
已知矩阵A 和B 满足关系式A -1BA=6A+BA ,计算矩阵B 。
其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7/10004/10003/1A ,Ps: format rata=[1/3 0 0;0 1/4 0;0 0 1/7];b=inv(a)*inv(inv(a)-eye(3))*6*a(3)计算矩阵的特征值和特征向量。
已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1104152021X ,计算其特征值和特征向量。
(4)Page:322利用数学函数进行矩阵运算。
已知传递函数G(s)=1/(2s+1),计算幅频特性Lw=-20lg(1)2(2w )和相频特性Fw=-arctan(2w),w 的范围为[0.01,10],按对数均匀分布。
3.多项式的运算(1)多项式的运算。
已知表达式G(x)=(x-4)(x+5)(x 2-6x+9),展开多项式形式,并计算当x 在[0,20]内变化时G(x)的值,计算出G(x)=0的根。
Page 324(2)多项式的拟合与插值。
将多项式G(x)=x 4-5x 3-17x 2+129x-180,当x 在[0,20]多项式的值上下加上随机数的偏差构成y1,对y1进行拟合。
对G(x)和y1分别进行插值,计算在5.5处的值。
Page 325 四、思考练习题1.使用logspace 函数创建0~4π的行向量,有20个元素,查看其元素分布情况。
Ps: logspace(log10(0),log10(4*pi),20) (2) sort(c,2) %顺序排列 3.1多项式1)f(x)=2x 2+3x+5x+8用向量表示该多项式,并计算f(10)值. 2)根据多项式的根[-0.5 -3+4i -3-4i]创建多项式。
最新第6章 MATLAB数据分析与多项式计算_习题答案
精品好文档,推荐学习交流第6章 MATLAB数据分析与多项式计算习题6一、选择题1.设A=[1,2,3,4,5;3,4,5,6,7],则min(max(A))的值是()。
BA.1 B.3 C.5 D.72.已知a为3×3矩阵,则运行mean(a)命令是()。
BA.计算a每行的平均值B.计算a每列的平均值C.a增加一行平均值D.a增加一列平均值3.在MA TLAB命令行窗口输入下列命令:>> x=[1,2,3,4];>> y=polyval(x,1);则y的值为()。
DA.5 B.8 C.24 D.104.设P是多项式系数向量,A为方阵,则函数polyval(P,A)与函数polyvalm(P,A)的值()。
DA.一个是标量,一个是方阵B.都是标量C.值相等D.值不相等5.在MA TLAB命令行窗口输入下列命令:>> A=[1,0,-2];>> x=roots(A);则x(1)的值为()。
CA.1 B.-2 C.1.4142 D.-1.41426.关于数据插值与曲线拟合,下列说法不正确的是()。
AA.3次样条方法的插值结果肯定比线性插值方法精度高。
B.插值函数是必须满足原始数据点坐标,而拟合函数则是整体最接近原始数据点,而不一定要必须经过原始数据点。
C.曲线拟合常常采用最小二乘原理,即要求拟合函数与原始数据的均方误差达到极小。
D.插值和拟合都是通过已知数据集来求取未知点的函数值。
二、填空题1.设A=[1,2,3;10 20 30;4 5 6],则sum(A)= ,median(A)= 。
[15 27 39],[4 5 6[2.向量[2,0,-1]所代表的多项式是。
2x2-1仅供学习与交流,如有侵权请联系网站删除谢谢1精品好文档,推荐学习交流3.为了求ax2+bx+c=0的根,相应的命令是(假定a、b、c已经赋值)。
为了将求得的根代回方程进行验证,相应的命令是。
第5讲 matlab数据分析与多项式计算
第5讲 matlab数据分析与多项式计算第5讲 MATLAB数据分析与多项式计算讲数据分析与多项式计算 5.1 数据统计处理5.2 数据插值 5.3 曲线拟合 5.4 离散傅立叶变换 5.5 多项式计算5.1 数据统计处理5.1.1 最大值和最小值MATLAB提供的求数据序列的最大值和最小值的提供的求数据序列的最大值和最小值的函数分别为max和min,两个函数的调用格式和函数分别为和,操作过程类似。
操作过程类似。
1.求向量的最大值和最小值 .求一个向量X的最大值的函数有两种调用格式,分求一个向量的最大值的函数有两种调用格式,的最大值的函数有两种调用格式别是:别是: (1) y=max(X):返回向量的最大值存入,如果的最大值存入y,如果X :返回向量X 的最大值存入中包含复数元素,则按模取最大值。
中包含复数元素,则按模取最大值。
(2) [y,I]=max(X):返回向量的最大值存入,最大的最大值存入y, :返回向量X的最大值存入值的序号存入I,如果X中包含复数元素中包含复数元素,值的序号存入,如果中包含复数元素,则按模取最大值。
取最大值。
求向量X的最小值的函数是的最小值的函数是min(X),用法和求向量的最小值的函数是,用法和max(X) 完全相同。
完全相同。
求向量x的最大值的最大值。
例5-1 求向量的最大值。
命令如下:命令如下: x=[-43,72,9,16,23,47]; y=max(x) %求向量中的最大值求向量x中的最大值求向量 [y,l]=max(x) %求向量中的最大值及其该元素求向量x中的最大值及其该元素求向量的位置2.求矩阵的最大值和最小值 . 求矩阵A的最大值的函数有种调用格式,的最大值的函数有3种调用格式求矩阵的最大值的函数有种调用格式,分别是:别是: (1) max(A):返回一个行向量,向量的第个:返回一个行向量,向量的第i个元素是矩阵A的第列上的最大值。
的第i列上的最大值元素是矩阵的第列上的最大值。
MATLAB数学实验第二版课后练习题含答案
MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。
matlab教材习题答案
matlab教材习题答案Matlab是一种广泛应用于科学与工程领域的计算机编程语言和环境。
它具备强大的数值计算和数据可视化功能,被广泛用于数据分析、信号处理、图像处理、机器学习等领域。
对于初学者而言,掌握Matlab的基本语法和常用函数是非常重要的,而教材习题则是帮助学生巩固所学知识的重要资源。
本文将为大家提供一些Matlab教材习题的参考答案,以帮助读者更好地学习和应用Matlab。
1. 基本语法练习题1.1 计算并输出1到10的平方for i = 1:10fprintf('%d的平方是:%d\n', i, i^2);end1.2 计算并输出1到10的阶乘for i = 1:10fact = 1;for j = 1:ifact = fact * j;endfprintf('%d的阶乘是:%d\n', i, fact);end2. 数值计算练习题2.1 求解一元二次方程的根a = 1;b = -3;c = 2;delta = b^2 - 4*a*c;x1 = (-b + sqrt(delta))/(2*a);x2 = (-b - sqrt(delta))/(2*a);fprintf('一元二次方程的根为:%f, %f\n', x1, x2);2.2 求解线性方程组的解A = [1 2; 3 4];B = [5; 6];X = inv(A) * B;fprintf('线性方程组的解为:%f, %f\n', X(1), X(2));3. 数据处理练习题3.1 统计一个数组中的最大值、最小值和平均值data = [1, 2, 3, 4, 5];max_value = max(data);min_value = min(data);average_value = mean(data);fprintf('最大值:%f\n最小值:%f\n平均值:%f\n', max_value, min_value, average_value);3.2 对一个矩阵进行排序matrix = [4 2 3; 1 5 6; 9 8 7];sorted_matrix = sort(matrix);fprintf('排序后的矩阵为:\n');disp(sorted_matrix);4. 图像处理练习题4.1 读取并显示一张图片image = imread('image.jpg');imshow(image);4.2 对一张图片进行灰度化处理gray_image = rgb2gray(image);imshow(gray_image);5. 信号处理练习题5.1 生成并绘制正弦信号t = 0:0.01:2*pi;x = sin(t);plot(t, x);5.2 对一段音频信号进行傅里叶变换[y, fs] = audioread('audio.wav');Y = fft(y);plot(abs(Y));通过以上几个例子,我们可以看到Matlab的强大功能和灵活性。
第6章MATLAB数据分析与多项式计算
第6章MATLAB数据分析与多项式计算MATLAB是一种面向科学和工程计算的计算机语言和环境。
它具有强大的数据分析和多项式计算功能,可以用于数据处理、统计分析、曲线拟合、插值计算、解方程等多种应用。
数据分析是从数据中提取有用信息的过程,其中使用MATLAB可以轻松地进行各种数据操作和分析。
MATLAB提供了各种统计分析函数,可以计算数据的统计特征,如均值、方差、标准差、相关系数等。
同时,它还提供了数据绘图功能,可以将数据以直方图、散点图、折线图等形式展示出来,帮助用户更好地理解数据。
多项式计算是利用多项式进行数值计算的过程。
在MATLAB中,可以使用多种方法进行多项式计算,如多项式加减乘除、多项式求值、多项式插值等。
MATLAB提供了丰富的多项式操作函数,可以方便地进行多项式运算和计算。
在数据分析中,多项式计算经常用于曲线拟合和插值计算。
曲线拟合是根据给定的数据点,找出一个与之最接近的曲线。
MATLAB提供了polyfit函数,可以根据给定的数据点和多项式阶数,自动拟合出最优的多项式曲线。
此外,MATLAB还提供了curvefit函数,可以进行更加复杂的曲线拟合,如指数曲线拟合、对数曲线拟合等。
插值计算是根据已知的数据点,通过插值方法找出在这些数据点之间的未知点的近似值。
MATLAB提供了interp1函数,可以根据给定的数据点和插值方法,自动进行插值计算。
此外,MATLAB还提供了interp2函数,可以进行二维插值计算。
除了数据分析和多项式计算功能,MATLAB还具有其他强大的数值计算功能,如数值积分、数值微分、解线性方程组等。
这些功能使得MATLAB成为科学与工程领域中常用的计算工具。
在使用MATLAB进行数据分析和多项式计算时,需要注意数据的有效性和合理性。
数据分析的结果只能作为参考,不能作为绝对的判断依据。
多项式计算的结果也可能存在误差,需要进行适当的精度控制。
总之,MATLAB是一款功能强大的数据分析和多项式计算工具,可以帮助科学家和工程师快速、准确地进行各种数值计算和分析任务。
第6章 MATLAB数据分析与多项式计算_习题答案教学提纲
第6章M A T L A B数据分析与多项式计算_习题答案精品资料第6章 MATLAB数据分析与多项式计算习题6一、选择题1.设A=[1,2,3,4,5;3,4,5,6,7],则min(max(A))的值是()。
BA.1 B.3 C.5 D.72.已知a为3×3矩阵,则运行mean(a)命令是()。
BA.计算a每行的平均值 B.计算a每列的平均值C.a增加一行平均值 D.a增加一列平均值3.在MATLAB命令行窗口输入下列命令:>> x=[1,2,3,4];>> y=polyval(x,1);则y的值为()。
DA.5 B.8 C.24 D.104.设P是多项式系数向量,A为方阵,则函数polyval(P,A)与函数polyvalm(P,A)的值()。
DA.一个是标量,一个是方阵 B.都是标量C.值相等 D.值不相等5.在MATLAB命令行窗口输入下列命令:>> A=[1,0,-2];>> x=roots(A);则x(1)的值为()。
CA.1 B.-2 C.1.4142 D.-1.41426.关于数据插值与曲线拟合,下列说法不正确的是()。
AA.3次样条方法的插值结果肯定比线性插值方法精度高。
B.插值函数是必须满足原始数据点坐标,而拟合函数则是整体最接近原始数据点,而不一定要必须经过原始数据点。
C.曲线拟合常常采用最小二乘原理,即要求拟合函数与原始数据的均方误差达到极小。
D.插值和拟合都是通过已知数据集来求取未知点的函数值。
二、填空题1.设A=[1,2,3;10 20 30;4 5 6],则sum(A)= ,median(A)= 。
[15 27 39],[4 5 6[2.向量[2,0,-1]所代表的多项式是。
2x2-1仅供学习与交流,如有侵权请联系网站删除谢谢2精品资料3.为了求ax2+bx+c=0的根,相应的命令是(假定a、b、c已经赋值)。
MATLAB语言:数据分析与多项式计算习题与答案
一、单选题1、若A为矩阵,则语句max(A(:))的功能是()。
A.函数调用错误B.求矩阵每行的最大元素C.求矩阵每列的最大元素D.求整个矩阵的最大元素正确答案:D2、设P是多项式系数向量,A为方阵,则函数polyval(P,A)与函数polyvalm(P,A)的值()。
A. 一个是标量,一个是方阵B.都是标量C.值不相等D.值相等正确答案:C3、在MATLAB命令行窗口输入下列命令:>> p=[1,-2];>> x=roots(p)则x的值为()。
A.2B. -2C.1D.-1正确答案:A4、在以下四种数据插值方法中,具有保形性的方法是()。
A.linearB.nearestC.pchipD.spline正确答案:C5、最小二乘法中的误差最小指的是()。
A.误差的平均值最小B.误差之和最小C.误差的平方和最小D.误差的积最小正确答案:C6、当实验或测试所获得的样本数据有误差时,适合用来估算数据的方法是()。
A.数据插值B.曲线拟合C.方程求解D.求平均值正确答案:B7、曲线拟合通常所采用的函数是()。
A.随机函数B.多项式函数C.指数函数D.三角函数正确答案:B二、多选题1、下列四种插值计算方法中,经过每一个样本点的方法是()。
A.linearB.nearestC.pchipD.spline正确答案:A、B、C、D2、以下属于曲线拟合方法功能的是()。
A.估算数据B.预测趋势C.总结规律D.证明定理正确答案:A、B、C3、若a、b为多项式系数向量,a=[1,2],b=[3,4,5],要将两个多项式相加,以下不正确的是()。
A.a+bB.[0,a]+bC.[a,0]+bD.a+b(1:2)正确答案:A、C、D4、设有三个多项式,其系数向量分别为q、r、s,现在求它们的乘积,可以使用的命令有()。
A.conv(q,r,s)B.conv(conv(q,r),s)C.conv(q,conv(r,s))D.conv(conv(s,r),q)正确答案:B、C、D三、判断题1、数据插值可以通过已知数据估算采样区间内的未知数据。
MATLAB数据分析与多项式计算实验
>> Yi=polyval(p,Ni)
Yi =
Columns 1 through 12
1.0790 1.3671 1.6386 1.8946 2.1360 2.3636 2.5784 2.7812 2.9728 3.1539 3.3252 3.4876
Columns 13 through 24
表8-2lg(x)在11个采样点的函数值
x
1
11
21
31
41
51
61
71
81
91
101
lg(x)
0
1.0414
1.3222
1.4914
1.6128
1.7076
1.7853
1.8513
1.9085
1.9590
2.0043
试求lg(x)的5次拟合多项式p(x),并绘制出lg(x)和p(x)在[1,101]区间的函数曲线。
5、有三个多项式 , , ,试进行以下操作:
(1)求
(2)求 的根
>> A=[1,2,4,0,5];
>> B=[1,2];
>> C=[1,2,3];
>> D=conv(B,C)
D =
1 4 7 6
>> D1=[0,1,4,7,6];
>> P=A+D1
P =
1 3 8 7 11
>> X=roots(p)
3.6415 3.7877 3.9267 4.0592 4.1856 4.3064 4.4222 4.5334 4.6405 4.7437 4.8435 4.9403
MATLAB习题及参考答案
2 9 0 1310,解方程组3 4 11 x 6。
(应用x=a\b)2 2 6 611,求欠定方程组294 73 54x68的最小范数解。
(应用pinv)5习题:6 9 3 2 4 1与b 的数组乘积。
2 7 5 4 6 81,计算a2, 对于AX B,如果A 3726,求解X。
283,已知:a 1 2 34 5 6,分别计算a的数组平方和矩阵平方,并观察其结果。
7 8 94,角度x 30 45 60,求x的正弦、余弦、正切和余切。
(应用sin,cos,4 2 7 15 95,将矩阵a 、b 和c 组合成两个新矩阵:5 7 8 36 2(1)组合成一个4 3的矩阵,第一列为按列顺序排列的a矩阵元素,第二列为按列顺序排列的元素,第三列为按列顺序排列的c矩阵元素,即b矩阵4 7 55 8 62 1 97 3 2(2)按照a、b、c的列顺序组合成一个行矢量,即4527781356926,将(x-6)(x-3)(x-8)展开为系数多项式的形式。
(应用poly,polyvalm)7,求解多项式X3-7X2+2X+40的根。
(应用roots)8,求解在x=8 时多项式(x-1)( x-2) ( x-3)( x-4)的值。
(应用poly,polyvalm)9, 计算多项式4x412x314x25x 9的微分和积分。
(应用polyder,polyint ,poly2sym)2 2计算表达式z 10 x 3 y 5 e x y 的梯度并绘图。
(应用meshgrid, gradient, con tour, holdon, quiver)15,用符号函数法求解方程a t 2+b*t +c=0。
(应用solve )16,用符号计算验证三角等式:(应用syms,simple )用 syms,ezplot)用 plot,title,text,legend)24, x= [66 49 71 56 38] ,绘制饼图,并将第五个切块分离出来。
第6章 MATLAB数据分析与多项式计算_习题答案
第6章 MATLAB数据分析与多项式计算习题6一、选择题1.设A=[1,2,3,4,5;3,4,5,6,7],则min(max(A))的值是()。
BA.1 B.3 C.5 D.72.已知a为3×3矩阵,则运行mean(a)命令是()。
BA.计算a每行的平均值B.计算a每列的平均值C.a增加一行平均值D.a增加一列平均值3.在MA TLAB命令行窗口输入下列命令:>> x=[1,2,3,4];>> y=polyval(x,1);则y的值为()。
DA.5 B.8 C.24 D.104.设P是多项式系数向量,A为方阵,则函数polyval(P,A)与函数polyvalm(P,A)的值()。
DA.一个是标量,一个是方阵B.都是标量C.值相等D.值不相等5.在MA TLAB命令行窗口输入下列命令:>> A=[1,0,-2];>> x=roots(A);则x(1)的值为()。
CA.1 B.-2 C.1.4142 D.-1.41426.关于数据插值与曲线拟合,下列说法不正确的是()。
AA.3次样条方法的插值结果肯定比线性插值方法精度高。
B.插值函数是必须满足原始数据点坐标,而拟合函数则是整体最接近原始数据点,而不一定要必须经过原始数据点。
C.曲线拟合常常采用最小二乘原理,即要求拟合函数与原始数据的均方误差达到极小。
D.插值和拟合都是通过已知数据集来求取未知点的函数值。
二、填空题1.设A=[1,2,3;10 20 30;4 5 6],则sum(A)= ,median(A)= 。
[15 27 39],[4 5 6[2.向量[2,0,-1]所代表的多项式是。
2x2-13.为了求ax2+bx+c=0的根,相应的命令是(假定a、b、c已经赋值)。
为了将求得的根代回方程进行验证,相应的命令是。
x=roots([a,b,c]),polyval([a,b,c],x)4.如果被插值函数是一个单变量函数,则称为插值,相应的MA TLAB函数是。
MATLAB课后习题集附标准答案
第2章MATLAB概论1、与其他计算机语言相比较,MA TLAB 语言突出的特点是什么?答:起点高、人机界面适合科技人员、强大而简易的作图功能、智能化程度高、功能丰富,可扩展性强.2、MA TLAB 系统由那些部分组成?答:开发环境、MATLAB数学函数库、MATLAB语言、图形功能、应用程序接口3、安装MATLAB 时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?答:在安装MATLAB时,安装内容由选择组件窗口中各复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即MATLAB选项)必须安装. 第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可. 矚慫润厲钐瘗睞枥庑赖。
4、MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?聞創沟燴鐺險爱氇谴净。
答:在MATLAB 操作桌面上有五个窗口,在每个窗口的右下角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口称为独立的Undock 按钮,点击Undock 按钮就可以使该窗口脱离桌面称为独立窗口,在独立窗口的view 菜单中选择Dock,菜单项就可以将独立的窗口重新防止的桌面上.残骛楼諍锩瀨濟溆塹籟。
5、如何启动M 文件编辑/调试器?答:在操作桌面上选择“建立新文件”或“打开文件”操作时,M 文件编辑/调试器将被启动.在命令窗口中键入edit 命令时也可以启动M 文件编辑/调试器.酽锕极額閉镇桧猪訣锥。
6、存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可.彈贸摄尔霁毙攬砖卤庑。
7、命令历史窗口除了可以观察前面键入的命令外,还有什么用途?答:命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中. 謀荞抟箧飆鐸怼类蒋薔。
第4章MATLAB数据分析与多项式计算
第4章MATLAB数据分析与多项式计算MATLAB是一种强大的数值计算和数据分析工具,能够帮助用户高效地进行各种数据处理和分析操作。
本章将介绍MATLAB在数据分析和多项式计算方面的应用。
1.数据分析数据分析是指通过对大量数据进行整理、分析和挖掘,从中获取有价值的信息和知识。
MATLAB提供了丰富的数据分析函数和工具箱,可以帮助用户进行各种统计分析、数据可视化和模型拟合等操作。
1.1统计分析MATLAB中的统计工具箱提供了丰富的统计分析函数,可以进行各种统计指标的计算,如均值、方差、标准差等。
同时,还可以进行假设检验、置信区间估计等统计推断分析。
1.2数据可视化MATLAB提供了强大的数据可视化工具,可以通过绘制统计图表来展示数据的分布和趋势。
用户可以利用MATLAB绘制条形图、散点图、线图等各种图表,帮助理解数据的特点和关系。
1.3模型拟合MATLAB中的曲线拟合工具可以帮助用户根据已知数据拟合出合适的数学模型。
通过拟合曲线,可以对数据进行预测和推断,从而为后续的决策和分析提供依据。
多项式计算是指对多项式进行各种运算,如多项式乘法、求导、积分等。
在MATLAB中,多项式计算可以利用多项式系数和多项式对象来实现。
2.1多项式乘法MATLAB中提供了polyval函数,可以根据给定的多项式系数和x值计算多项式的值。
此外,还提供了conv函数,可以实现多项式的乘法运算。
2.2多项式求导MATLAB中提供了polyder函数,可以根据给定的多项式系数计算多项式的导数。
用户可以利用该函数计算多项式导函数的值,从而研究多项式的变化规律。
2.3多项式积分MATLAB中提供了polyint函数,可以根据给定的多项式系数计算多项式的积分。
用户可以利用该函数计算多项式在给定区间上的积分值,求解多项式面积和曲线长度等问题。
总结:MATLAB是一种功能强大的数据分析和多项式计算工具,能够帮助用户进行各种数据分析和多项式运算操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 MATLAB数据分析与多项式计算
习题6
一、选择题
1.设A=[1,2,3,4,5;3,4,5,6,7],则min(max(A))的值是()。
B
A.1 B.3 C.5 D.7
2.已知a为3×3矩阵,则运行mean(a)命令是()。
B
A.计算a每行的平均值B.计算a每列的平均值
C.a增加一行平均值D.a增加一列平均值
3.在MATLAB命令行窗口输入下列命令:
>> x=[1,2,3,4];
>> y=polyval(x,1);
则y的值为()。
D
A.5 B.8 C.24 D.10
4.设P是多项式系数向量,A为方阵,则函数polyval(P,A)与函数polyvalm(P,A)的值()。
D
A.一个是标量,一个是方阵B.都是标量
C.值相等D.值不相等
5.在MATLAB命令行窗口输入下列命令:
>> A=[1,0,-2];
>> x=roots(A);
则x(1)的值为()。
C
A.1 B.-2 C.D.
6.关于数据插值与曲线拟合,下列说法不正确的是()。
A
A.3次样条方法的插值结果肯定比线性插值方法精度高。
B.插值函数是必须满足原始数据点坐标,而拟合函数则是整体最接近原始数据点,而不一定要必须经过原始数据点。
C.曲线拟合常常采用最小二乘原理,即要求拟合函数与原始数据的均方误差达到极小。
D.插值和拟合都是通过已知数据集来求取未知点的函数值。
二、填空题
1.设A=[1,2,3;10 20 30;4 5 6],则sum(A)= ,median(A)= 。
[15 27 39],[4 5 6[
2.向量[2,0,-1]所代表的多项式是。
2x2-1
3.为了求ax2+bx+c=0的根,相应的命令是(假定a、b、c已经赋值)。
为了将求得的根代回方程进行验证,相应的命令是。
x=roots([a,b,c]),polyval([a,b,c],x)
4.如果被插值函数是一个单变量函数,则称为插值,相应的MATLAB函数是。
一维,interp1
5.求曲线拟合多项式系数的函数是,计算多项式在给定点上函数值的函数是。
polyfit,polyval
三、应用题
1.利用MATLAB提供的randn函数生成符合正态分布的10×5随机矩阵A,进行如下操作:
(1)A各列元素的均值和标准方差。
(2)A的最大元素和最小元素。
(3)求A每行元素的和以及全部元素之和。
(4)分别对A的每列元素按升序、每行元素按降序排序。
第一题:
(1):
A=randn(10,5)
B=mean(A)
C=std(A)
(2):
mx=max(max(A))
mn=min(min(A))
(3):
sm=sum(A,2)
sz=sum(sum(A))
(4):
[Y,I]=sort(A,1)
[Z,J]=sort(A,2);
rot90(Z,1)'%旋转90度后,再转置便可得到每行按降序排列
2.已知多项式P1(x)=3x+2,P2(x)=5x2-x+2,P3(x)=,求:
(1)P(x)=P1(x) P2(x)P3(x)。
(2)P(x)=0的全部根。
(3)计算x i=(i=0,1,2,…,10)各点上的P(x i)。
第二题:
(1):
p1=[0,3,2];
p2=[5,-1,2];
p3=[1,0,];
p=conv(conv(p1,p2),p3)%先将p1与p2乘,再与p3乘,conv函数只能有两个
(2):
x=roots(p)
(3):
a=0:10;
b=*a;
y=polyval(p,b)
3.按表6-4用3次样条方法插值计算0~90o内整数点的正弦值和0~75o内整数点的正切值,然后用5次多项式拟合方法计算相同的函数值,并将两种计算结果进行比较。
表6-4 特殊角的正弦与正切值表
第三题:
(1):
sin(x)函数:
三次样条方法:
x=0:90;
a=[0,15,30,45,60,75,90];
f=[0,,,,,,1];
interp1(a,f,x,'spline')%spline要加单引号,否则错误;还可以用spline(a,f,x)函数
5次多项式拟合方法:
x=0:90;
a=[0,15,30,45,60,75,90];
f=[0,,,,,,1];
q=polyfit(a,f,5);
y=polyval(q,x);
plot(x,p,':o',x,y,'-*')
tan(x)函数:
三次样条方法:
x=0:75;
a=[0,15,30,45,60,75];
f=[0,,,1,,];
interp1(a,f,x,'spline')%spline要加单引号,否则错误
5次多项式拟合方法:
x=0:75;
a=[0,15,30,45,60,75];
f=[0,,,1,,];
p=polyfit(a,f,5);
y=polyval(p,x);
plot(x,ans,':o',x,y,'-*')
4.已知一组实验数据如表6-5所示。
表6-5 一组实验数据
求它的线性拟合曲线。
第三题:
x=[165,123,150,123,141];
y=[187,126,172,125,148];
p=polyfit(x,y,1);
q=polyval(p,x);
plot(x,q)。