初一下方程及不等式应用题

合集下载

初一下专题 方程与不等式应用题

初一下专题 方程与不等式应用题

专题3:方程与不等式-应用题1、仔细观察下图,认真阅读对话:2、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B 种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。

(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?3、为迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则如下表:当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积19分.请通过计算,判断A队胜、平、负各几场?4、为了美化城市,迎接七一,城市园林部门利用乙搭配A,B两种园艺造型共50个,摆放在文庙广场,搭配每个造型所需花情况如右表,结合上述信息,解答下列问题:说明:不同种植户种植的同类蔬菜每亩平均收入相等.(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.7、某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?8、建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停(1)车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?A B9、某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.。

一元一次方程,二元一次方程,一元一次不等式,一元二次不等式应用题及答案

一元一次方程,二元一次方程,一元一次不等式,一元二次不等式应用题及答案

一元一次方程例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间二元一次方程例2两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,一元一次不等式例3将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?设笼有x个,那么鸡就有(4x+1)只,根据若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,可列出不等式求解.解:设笼有x个.4x+1>5(x?2) 4x+1<5(x?2)+3 ,解得:8<x<11 x=9时,4×9+1=37x=10时,4×10+1=41(舍去).故笼有9个,鸡有37只一元二次不等式例4用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?解:设有x辆汽车,则货物有(4x+20)吨,根据题意,有不等式组:4x+20﹤8x (1)4x+20﹥8(x-1) (2)解不等式(1)得:x﹥5解不等式(2)得:x﹤7所以,不等式组的解为 5﹤x﹤7因为x为整数,所以 x=6答:有6辆汽车。

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。

(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。

该公司所筹资金不少于2090万元,但不超过2096万元。

且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。

初一下方程及不等式应用题

初一下方程及不等式应用题

方程及不等式应用题一、解不等式 (1)⎩⎨⎧=+=-524753y x y x (2)(解不等式组并在数轴表示出来),二、二元一次方程组和不等式解决实际问题1、列方程(组)和不等式(组)解决实际问题的步骤:①审题,设未知数 ②列方程(组)和不等式(组)③解方程(组)和不等式(组)④检验并作答1、(2014•长沙,第23题9分)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?]&2、(9分)(2015•长沙)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线,2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?3、以“开放崛起,绿色发展”为主题的第七届“中博会”已于2018年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个。

(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个?(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?【{4、(12分)(2019•湘西州)湘西盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆部不少于3辆.(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;、(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?&5、(2018•六盘水)为了抓住2018年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?|6、(2019•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.`、7、(2019•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?`8、(2015•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?。

初中数学方程与不等式的应用题(及答案)

初中数学方程与不等式的应用题(及答案)

初中数学方程与不等式的应用题(及答案)知识点睛1.理解题意:分层次,找结构借助表格等梳理信息2.建立数学模型:方程模型、不等式(组)模型、函数模型等①共需、同时、刚好、恰好、相同等,考虑方程;②显性、隐性不等关系等,考虑不等式(组) ;③最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数3.求解验证,回归实际①数据是否异常;②结果是否符合题目要求及取值范围;③结果是否符合实际意义例题精选应用题1.小明周末守护爷爷输液,输液袋上标有药液共250毫升,15滴/毫升.输液开始时,细心的小明发现药液流速为每分钟75滴.爷爷感觉身体不适,输液10分钟时调整了药液流速直至结束.输液20分钟时,输液袋中的药液余量为160毫升.(1)求输液10分钟时输液袋中的药液余量是多少毫升?(2)求10到20分钟期间药液流速是每分钟多少滴?(3)求从开始输液到结束输液共用了多少分钟?2.列方程解应用题:已知A地与B地相距150千米,小华自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费是驾驶新购买的纯电动车所需电费的4倍,如果每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.3.某商品原先的利润率为20%,为了促销,现降价15元销售,此时利润率下降为10%,那么这种商品的进价是多少?4.某工厂生产A,B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%,清扫2100m所用的时间,A型机器人比B型机器人多用40分钟.求A型号扫地机器人每小时清扫面积是多少?5.某书城开展学生优惠购书活动:凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.(1)甲同学一次性购书标价的总和为100元,需付款多少元.(2)丙同学第一次去购书付款63元,第二次去购书享受了八折优惠,他查看了所买书的定价,发现两次共节约了37元,求该学生第二次购书实际付款多少元?6.若“☆”表示一种新的运算符号,且有如下运算规律.已知2☆3=2+3+4,7☆2=7+8,3☆5=3+4+5+6+7,9☆4=9+10+11+12…按此规律,如果n☆3=33,求n的值.7.如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a、b的代数式表示绿化面积(结果需化简);(2)若3a+b=11,a+b=5,绿化成本为50元/平方米,则完成绿化共需要多少元?8.列方程组解应用题:某车间10月份计划加工甲、乙两种零件共200个,由于采用新技术,实际产量为216个,其中甲零件超产10%,乙零件超产5%求,该车间10月份计划加工甲、乙零件各多少个?9.七年级1班全体学生为地震灾区共捐款428元,七年级2班每个学生捐款10元,七年级1班所捐款数比七年级2班少22元,两班学生人数相同,每班有多少学生?10.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了20%,结果提前40天完成了这一任务.求原计划每天绿化多少万平方米?11.2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,当地加强了防控措施,对外出进行限制,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?12.甲和乙在长400米的环形跑道上散步,甲的速度是6米/秒,乙的速度是4米/秒.(1)两人同时同地同向走,几秒钟第一次相遇?(2)两人同时同地反向走,几秒后两人第二次相距10米?13.某县准备用灯饰美化广场,需用A、B两种不同类型的灯笼共200个,且B种灯笼的个数是A种灯笼的23,求A,B两种灯笼各需多少个.14.人体下半身(脚底到肚脐的长度)与身高的比例越接近0.618,越给人美感遗憾的是,即使是身材修长的芭蕾舞演员也达不到如此的完美某女士,身高1.68m,下半身1.02m,她应选择多高的高跟鞋看起来更美呢?(精确到0.01m)15.下面是小彬同学解一元一次方程的过程,认真阅读并完成相应任务.解方程:11 26x x--=.解:________,得()316x x --=.第一步去括号,得316x x -+=.……第二步移项,得361x x -=+.……第三步合并同类项,得27x =.……第四步方程两边同除以2,得 3.5x = ……第五步填空:任务一.以上求解步骤中,第一步进行的是________,这一步的依据是________________;任务二. 以上求解步骤中,第________步开始出现错误,具体的错误是________; 任务三. 该方程正确的解为________.任务四. 除纠正上述错误外,请你根据平时的学习经验,就解一元一次方程时还需要注意的事项给其他同学提一条建议.【参考答案】应用题1.(1)200毫升(2)60滴(3)60分钟【解析】【分析】(1)先求出药液流速为5毫升/分钟,再求出输液10分钟的毫升数,用250减去输液10分钟的毫升数即为所求;(2)用20分钟时剩余药液量减去10分钟时剩余药液量,再乘以每毫升滴数求出总的滴数,最后除以时间即可得出答案;(3)可设从输液开始到结束所需的时间为t 分钟,根据输液20分钟时,瓶中的药液余量为160毫升,列出方程计算即可求解.(1)解:25075151025050200-÷⨯=-=(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)解:10到20分钟期间药液流速是每分钟()200160156010-⨯=(滴);(3)解:设从输液开始到结束所需的时间为t 分钟,依题意有()200160201602010t --=-,解得60t =.故从输液开始到结束所需的时间为60分钟.【点睛】本题考查了一元一次方程的应用,本题关键是求出输液前10分钟药液流速和输液10分钟后药液流速.2.新购买的纯电动汽车每行驶1千米需要电费0.18元.【解析】【分析】设每行驶1千米,新购买的纯电动车需要电费x 元,根据如果每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元列方程即可.【详解】解:设每行驶1千米,新购买的纯电动车需要电费x 元, 根据题意列方程,得 ()41501500.54x x ⨯=+.解得:0.18x =答:新购买的纯电动汽车每行驶1千米需要电费0.18元.【点睛】本题考查了一元一次方程的应用,解题关键是准确理解题意,找准等量关系列出方程. 3.这种商品的进价为150元.【解析】【分析】设这种商品的进价为x 元,从而可得原来的售价为1.2x 元,现在的售价为(1.215)x -元,再根据“售价-进价=利润率⨯进价”建立方程,解方程即可得.【详解】解:设这种商品的进价为x 元,则原来的售价为1.2x 元,现在的售价为(1.215)x -元, 由题意得:1.21510%x x x --=,解得150x =,答:这种商品的进价为150元.【点睛】本题考查了一元一次方程的应用,正确建立方程是解题关键.4.A 型号扫地机器人每小时清扫面积250m .【解析】【分析】设A 型号扫地机器人每小时清扫面积2xm ,则B 型号扫地机器人每小时清扫面积21.5xm ,根据题意列出方程求解即可得,注意对分式方程的解进行检验.【详解】解:设A 型号扫地机器人每小时清扫面积2xm ,则B 型号扫地机器人每小时清扫面积21.5xm ,40分钟23=小时,根据题意可得:10010021.53x x -=, 解得:50x =,检验:当50x =时,1.50x ≠,∴50x =为分式方程的解,∴A 型号扫地机器人每小时清扫面积250m .【点睛】题目主要考查分式方程的应用,理解题意,找准等量关系,列出方程是解题关键. 5.(1)需付款90元;(2)该学生第二次实际付款为220元.【解析】【分析】(1)根据一次性购书不超过200元的一律九折优惠的办法计算即可求出;(2)设第二次购书的标价为x 元,且200x >,可得第二次需付款为0.820x +,第一次的标价为70,依据题意列出方程求解得出第二次购书的标价,然后根据第二次实际付款的计算方法求解即可.【详解】(1)由题意,得:10090%90⨯=元,∴需付款90元;(2)设第二次购书的标价为x 元,且200x >,根据题意得:第二次需付款为:()2000.92000.80.820x x ⨯+-⨯=+, 第一次的标价为:63700.9=, 可得:()()700.8206337x x +-+-=,解得:250x =元,则第二次需付款为:()2000.92502000.8220⨯+-⨯=元,∴该学生第二次实际付款为220元.【点睛】题目主要考查一元一次方程的应用及列代数式,理解题意,列出相应方程是解题关键. 6.10【解析】【分析】根据所给的式子可以找出其规律:从整数几开始,连续的几个整数的和,据此进行求解即可.【详解】解:由题意得:n ☆3()()1233n n n =++++=,解得:10n =.【点睛】题目主要考查列代数式及解方程,根据题中规律,列出方程是解题关键.7.(1)253a ab +;(2)完成绿化共需要3150元.【解析】【分析】(1)根据绿化面积=长方形面积﹣空白部分面积可得结论;(2)先解二元一次方程组可得a ,b 的值,再将a ,b 的值直接代入化简的代数式求值即可.【详解】解:(1)()()()()32++=+-+S a b a b a b a b()22226+32++2=+-+a ab ab ab b a b ,22226+32+2=+---a b a a ab b b a b , 25+3=a ab ;故答案为:253a ab +;(2)由题意得:3115a b a b +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, 当3a =,2b =时,()()250535045183150a ab ⨯+=⨯+=,答:完成绿化共需要3150元.【点睛】题目主要考查了多项式乘多项式与图形的面积,解二元一次方程组,根据图形找到等量关系是解题的关键.8.该车间10月份计划加工甲、乙零件各120个,80个.【解析】【分析】根据等量关系,甲加工的数量加上乙加工的数量等于总量列出方程组即可;【详解】解:设该车间10月份计划加工甲、乙零件各x 个,y 个,由题意得:()()2001101%%5216x y x y +=⎧⎪⎨+++=⎪⎩ 解得12080x y =⎧⎨=⎩答: 该车间10月份计划加工甲、乙零件各120个,80个【点睛】本题考查了二元一次方程组的应用,根据等量关系列出方程组是解题的关键.9.每班有45名学生.【解析】【分析】设每班有x 名学生,则七年级2班共捐款10x 元,七年级1班共捐款10x −22元,根据七年级1班全体学生为地震灾区共捐款428元列出方程解决问题.【详解】解:设每班有x 名学生,由题意得1042822x -=,解得:x =45,答:每班有45名学生.【点睛】此题考查一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.原计划每天绿化13万平方米 【解析】【分析】设原计划每天绿化x 万平方米,则实际每天绿化(1+20%)x 万平方米,根据工作时间=工作总量÷工作效率结合提前40天完成任务,即可得出关于x 的分式方程.【详解】解:设原计划每天绿化x 万平方米,则实际每天绿化(1+20%)x 万平方米. 由题意,得808040(120%)x x-=+ 解得,13x = 经检验,13x =是原方程的解,且符合题意. 答:原计划每天绿化13万平方米. 【点睛】本题主要考查了分式方程的应用.找到关键描述语,找到合适的等量关系是解决问题的关键.11.小伟原计划每天做2页数学寒假作业.【解析】【分析】设小伟原计划每天做x 页数学寒假作业,则效率提高做作业后每天做2x 页,根据“做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业”,列出方程,即可求解.【详解】解:设小伟原计划每天做x 页数学寒假作业,则效率提高做作业后每天做2x 页,根据题意得:34345562x x x -⎛⎫-+= ⎪⎝⎭, 解得:2x =,经检验:2x =是原方程的解,且符合题意,答:小伟原计划每天做2页数学寒假作业.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.12.(1)200(2)39【解析】【分析】(1)设两人同时同地同向走,x秒钟第一次相遇,根据题意列出方程求解即可;(2)设两人同时同地反向走,y秒钟后两人第二次相距10米,根据题意列出方程求解即可.(1)解:(1)设两人同时同地同向走,x秒钟第一次相遇,根据题意列方程得,(6-4)x=400,解得,x=200;答:两人同时同地同向走,200秒钟第一次相遇;(2)解:设两人同时同地反向走,y秒钟后两人第二次相距10米,根据题意列方程得,(6+4)y=400-10,解得,y=39;答:两人同时同地反向走,39秒钟后两人第二次相距10米.【点睛】本题考查了一元一次方程的应用,解题关键是熟练把握题目中的数量关系,找出等量关系列方程.13.A、B两种灯笼分别需要120个,80个【解析】【分析】首先设A种灯笼需x个,则B种灯笼个数=A种灯笼个数×23,根据关键语句“需采用A、B两种不同类型的灯笼200个”可列出一元一次方程,再解即可.【详解】解:设A种灯笼需x个,则B种灯笼需23x个,根据题意,得22003x x+=,解这个方程,得120x=,则2212080 33x=⨯=.即A、B两种灯笼分别需要120个,80个.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,抓住题目中的关键语句,找出等量关系,列出方程.14.05.【解析】【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】解:设她应选择高跟鞋的高度是x m ,则1.021.68x x++=0.618, 解得:x ≈0.05m .经检验,x ≈0.05是原方程的解,故本题答案为:0.05.【点睛】本题考查了比例线段和分式方程,解题关键是根据题意设未知数列出方程.注意身高不要忘记加上高跟鞋的高度.15.任务一:去分母;等式的基本性质2;任务二:三;移项时没有变号;任务三:2.5x =;任务四:答案不唯一,如:去分母时不要漏乘不含分母的项 【解析】【分析】先去分母,再去括号,再移项,再合并同类项,最后化系数为“1”,从而可得答案.【详解】解:任务一.方程的两边都乘以6,所以第一步是:去分母,依据是:等式的基本性质2;任务二.第三步开始出现错误,错误是:移项没有改变符号;任务三.去分母,得()316x x --=.第一步去括号,得316x x -+=.……第二步移项,得361x x -=-.……第三步合并同类项,得25x =.……第四步方程两边同除以2,得 2.5x = ……第五步所以方程的正确的解为: 2.5.x =任务四.答案不唯一,如:去分母时不要漏乘不含分母的项.【点睛】本题考查的是一元一次方程的解法,掌握一元一次方程的解法的基本步骤是解题的关键.。

七年级数学下一元一次不等式方程应用题练习

七年级数学下一元一次不等式方程应用题练习

七年级数学下一元一次不等式方程应用题练习七年级数学下一元一次不等式方程应用题练习要想在考试中取得好成绩就必须注重平时的练习与积累,下面是店铺为大家搜索整理的七年级数学下一元一次不等式方程应用题练习,希望对大家有所帮助。

一选择题:1.下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.下列式子:(1)5>-3;(2)3x+1;(3)s=vt;(4)x2-4≤0;(5)5x-3=2x+2;(6)a>b;(7)a2+b2≠c2中,不等式有( )A.4个;B.5个;C.6个;D.7个;3.若a>b,则下列各式中一定成立的是( )①a+2>b+2;②ac﹣2b;④3﹣a<3﹣b.A.①②B.③④C.②③D.①④4.下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b5.如果a<0,b>0,a+b<0,那么下列关系式中正确的是( )A.a>b>-b>-aB.a>-a>b>-bC.b>a>-b>-aD.-a>b>-b>a6.不等式3(x-2)≤x+4的非负整数解有( )个.A.4B.5C.6D.无数7.若关于x的方程的解为正数,则m的取值范围是( )A.m>0;B.m<0;C.m> ;D.m< ;8.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书1 0本以上,超过10本部分打八折.设一次购书数量为x本(x>10),则付款金额为( )A.6.4x元B.(6.4x+80)元C.(6.4x+16)元D.(144-6.4x)元9.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( )A.66厘米B.76厘米C.86厘米D.96厘米10.某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打( )A.8折B.8.5折C.7折D.6折学11.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买( )A.3支笔B.4支笔C.5支笔D.6支笔12.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A.40%B.33.4%C.33.3%D.30%二填空题:13.不等式3x<2x-3变形成3x-2x<-3,是根据______________________________.14.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有人.15.某种商品进价为元,出售时标价为元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降元出售此商品.16.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了场.17.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共张.18.不等式2x+4>0 的负整数解是_______。

方程与不等式应用题及答案

方程与不等式应用题及答案

方程与不等式应用题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(方程与不等式应用题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为方程与不等式应用题及答案的全部内容。

方程与不等式应用题及答案1.(2012湖北省恩施市)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高( )A .40%B .33.4%C .33.3%D .30%【解析】根据关系式:售价≥进价×(1+20%)进行计算.设超市购进大樱桃P 千克,每千克Q 元,售价应提高x %,则有P (1—10%)•Q(1+x%)≥PQ (1+20%),即(1-10%)(1+x%)≥1+20%,∴x%≥33.3%. 【答案】B2。

( 2012年浙江省宁波市)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“[说明:①]已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a,b 的值(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?【解析】(1)由题意,得错误!用加减法解此方程组,得a=2.2,b=4.2(2)当用水量为30吨时,水费为:17×3+13×5=116元,9200×2%=184元,∵116﹤184,∴小王家六月份的用水量超过30吨,设小王家6月份用水量为x 吨,由题题,得17×3+13×5+6。

最新人教版初一数学下册二元一次方程组应用题及不等式的性质和解法试题

最新人教版初一数学下册二元一次方程组应用题及不等式的性质和解法试题

2013—2014学年七年级数学(下)周末辅导资料(12) 理想文化教育培训中心 学生姓名________ 得分_______一、方程组应用题:1、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,下面所列的方程组正确的是( ).A .⎩⎨⎧=+=+y x y x 2134B .⎩⎨⎧+==+1234y x y xC .⎩⎨⎧+==+1234y x y xD .⎩⎨⎧+==+12342y x y x 2、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A .⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB .⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y x y x C .⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D .⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 3、成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是( )4、为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A .()x+y=5010x+y =320⎧⎪⎨⎪⎩B .x+y=506x+10y=320⎧⎨⎩C .x+y=506x+y=320⎧⎨⎩D .x+y=5010x+6y=320⎧⎨⎩5、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.6、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?7、一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?二、不等式的性质:(一)知识点梳理:1、不等式:用不等号表示不相等关系的式子,叫做不等式。

方程与不等式应用题(习题及解析)

方程与不等式应用题(习题及解析)

方程与不等式应用题(习题及解析)例题示范例 1:现要把 228 吨物资从某地运往甲、乙两地,用大、小两种货车共 18 辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为 16 吨/辆和 10 吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆.(2)假如安排 9 辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为 a 辆,前往甲、乙两地的总运费为 w 元,求出 w 与a 之间的函数关系式,并写出自变量的取值范畴.(3)在(2)的条件下,若运往甲地的物资许多于 120 吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【思路分析】2.建立数学模型(1)结合题中信息“用大、小两种货车共 18 辆,恰好能一次性运完这批物资”,考虑方程模型;(2)结合题中信息“自变量的取值范畴”,考虑建立不等式模型,查找题目中的不等关系(显性和隐性);(3)结合题中信息“运费最少的货车调配方案”,考虑建立函数模型.3.求解验证,回来实际.【过程书写】解:(1)设大货车用 x 辆,则小货车用(18-x)辆,依照题意得,16x +10(18-x)=228解得,x=8即大货车用 8 辆,小货车用 10 辆.(2)由题意得,w 720a 800(8 a) 500(9 a) 650[10 (9 a)]70a 11550a ≥ 08 a ≥ 09 a ≥ 010 (9 a) ≥ 0∴ 0 ≤ a ≤ 8 ,且 a 为整数∴ w 70a 11550( 0 ≤ a ≤ 8 ,且a为整数)(3)由题意得,16a 10(9 a) ≥120解得, a ≥ 5∵ 0 ≤ a ≤ 8 ,且 a 为整数∴ 5 ≤ a ≤ 8 ,且 a 为整数在 w 70a 11550 中∵ 70 0∴w 随 a 的增大而增大∴当 a=5 时, wmin 11900(元)即最优方案为:甲地乙地大货车 5 3小货车 4 6巩固练习已知 2 辆 A 型车和 1 辆 B 型车载满物资时一次可运货 10 吨;1 辆 A 型车和2 辆 B 型车载满物资时一次可运货 11 吨.某物流公司现有物资 31 吨,打算同时租用 A 型车和 B 型车,要求一次运完,且恰好每辆车都载满物资.依照以上信息,解答下列问题:(1)1 辆 A 型车和 1 辆 B 型车都载满物资时一次可分别运货多少吨?(2)请你关心该物流公司设计出所有的租车方案;(3)若每辆 A 型车的租金为 100 元/次,每辆 B 型车的租金为120 元/次,请选出最省钱的租车方案,并求出最少的租车费.受金融危机的阻碍,某店经销的甲型号手机今年的售价与去年相比,每台降价 500 元,假如卖出相同数量的手机,去年销售额为 8 万元,今年销售额只有 6 万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,今年该店决定再经销乙型号手机,已知甲型号手机每台进价为 1 000 元,乙型号手机每台进价为 800 元,打算用不多于 1.8 4 万元且许多于 1.76 万元的资金购进这两种手机共 20 台,则该店有哪几种进货方案?(3)若乙型号手机每台售价为 1 400 元,为了促销,打九折销售,而甲型号手机仍按今年的售价销售,则在(2)的各种进货方案中,哪种方案获利最大?最大利润是多少元?小王家是新农村建设中涌现出的“养殖专业户”,他预备购置 80 只相同规格的网箱,养殖 A,B 两种淡水鱼(两种鱼不能混养).打算用于养鱼的总投资多于 6.7 万元,但不超过6.91 万元,其中购置网箱等基础建设需要 1.2 万元.设他用 x 只网箱养殖 A 种淡水鱼,目前平均每只网箱养殖 A,B 两种淡水鱼所需投入及产出情形如下表:(1)小王有哪几种养殖方式?(2)哪种养殖方案获得的利润最大?(3)依照市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A 种鱼价格上涨 40%,B 种鱼价格下降 20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)摸索小结应用题的处理框架是什么?①明白得题意:分,找借助等梳理信息;②建立:方程模型、不等式(组)模型、函数模型等③求解验证,回来实际目前我们差不多学习了几种数学模型,在什么情形下考虑对应的模型?【参考答案】巩固练习1.(1)1 辆 A 型车载满物资时一次可运货 3 吨,1 辆 B 型车载满物资时一次可运货 4 吨.(2)该物流公司共有 3 种租车方案.方案一,租用 A 型车 1 辆,B 型车 7 辆;方案二,租用 A 型车 5 辆,B 型车 4 辆;方案三,租用 A 型车 9 辆,B 型车 1 辆.(3)最省钱的租车方案为,租用 A 型车 1 辆,B 型车 7 辆.最少的租车费为 940 元.2.(1)今年甲型号手机每台售价为 1 500 元.(2)该店共有 5 种进货方案.方案一,购进甲型号手机 8 台,乙型号手机 12 台;方案二,购进甲型号手机 9 台,乙型号手机 11 台;方案三,购进甲型号手机 10 台,乙型号手机 10 台;方案四,购进甲型号手机 11 台,乙型号手机 9 台;方案五,购进甲型号手机 12 台,乙型号手机 8 台.(3)购进甲型号手机 12 台,乙型号手机 8 台,所获利润最大,最大利润为 9 680 元.3.(1)小王共有 5 种养殖方案.方案一,养殖 A 种淡水鱼 45 箱,B 种淡水鱼 35 箱;方案二,养殖 A 种淡水鱼 46 箱,B 种淡水鱼 34 箱;方案三,养殖 A 种淡水鱼 47 箱,B 种淡水鱼 33 箱;方案四,养殖 A 种淡水鱼 48 箱,B 种淡水鱼 32 箱方案五,养殖 A 种淡水鱼 49 箱,B 种淡水鱼 31 箱.(2)养殖 A 种淡水鱼 45 箱,B 种淡水鱼 35 箱,所获利润最大.(3)价格变化后,养殖 A 种淡水鱼 49 箱,B 种淡水鱼 31 箱,所获利润最大.摸索小结①层次,结构,表格②数学模型共学了 3 种数学模型,分别是是方程模型,不等式(组)模型,函数模型①有共需、同时、刚好、恰好、相同等关键词时,考虑方程模型②有显示、隐性不等关系等,考虑不等式(组)模型③有最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数模型。

不等式组、一次函数、分式方程综合应用题

不等式组、一次函数、分式方程综合应用题

不等式组、一次函数、分式方程、二元一次方程组综合应用题1.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【关键词】不等式组的简单应用2.某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.3.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次.....购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?5.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案.产品名称每件产品的产值(万元)甲45乙756.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒2个.①根据题意,完成以下表格:竖式纸盒(个) 横式纸盒(个)x正方形纸板(张) 2(100-x)长方形纸板(张) 4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则a的值是.(写出一个即可)7.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?8.星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.(1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?9.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?10.据统计,2008年底义乌市共有耕地267000亩,户籍人口724000人,2004年底至2008年底户籍人口平均每两年...约增加2%,假设今后几年继续保持这样的增长速度。

初一数学方程组与不等式组试题

初一数学方程组与不等式组试题

初一数学方程组与不等式组试题1.如果,那么++= 。

【答案】10【解析】解:由题意得,,解得,则2.若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个).【答案】x+y=1,答案不唯一【解析】方程的解是,把x=2,y=1代入方程,方程的左右两边一定相等,这个方程可能是:x+y=1,答案不唯一.3.下图是一个数值转换机的示意图,若输入的值为3,的值为-2时,则输出的结果为:________.【答案】5【解析】略4.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a= .【答案】8【解析】因为方程2x+a﹣4=0的解是x=﹣2,所以把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得a=8,【考点】一元一次方程的解.5.已知是二元一次方程组的解,求m+3n的立方根.【答案】2.【解析】把x,y值代入这个方程组,观察发现两方程相加能求出m+3n的值,进而求其立方根.试题解析:把代入方程组,得,两个方程相加得:m+3n=8,∴= ="2" .【考点】1.解二元一次方程组;2.求一个数的立方根.6.(9分)关于x的不等式组有21个整数解,则a的取值范围是.【答案】<a≤1【解析】分别解两个不等式,然后根据不等式组解集的求法:都大取较大,都小取较小,大小小大取中间,大大小小无解,确定出解集,再根据整数解的个数确定出a的范围.试题解析:解:解不等式①得x<21解不等式②得x>2-3a所以不等式组的解集为2-3a<x<21由于不等式组有21个整数解,因此-1≤2-3a<0因此<a≤1【考点】不等式组的解集7.(本题满分10分)小明参加学校组织的知识竞赛,共有道题.答对一题记分,答错(或不答)一题记分,小明参加本次竞赛要超过分,他至少要答对多少道题?【答案】14【解析】根据题意可设小明答对了x道题,答错或不答有(20-x)道题,根据二者得分超过100分,可列不等式解决.试题解析:解:设小明答对了x道题,则:解之得:因为x为整数,所以x≥14答:小明至少要答对14道题。

七年下册二元一次方程组及不等式应用题练习

七年下册二元一次方程组及不等式应用题练习

12、某童装厂现有甲种布料38米,乙种布料 、某童装厂现有甲种布料 米 乙种布料26 现计划用这两种布料生产L、 两种型号的 米,现计划用这两种布料生产 、M两种型号的 童装共50套 已知做一套L型号的童装需用甲种 童装共 套。已知做一套 型号的童装需用甲种 布料0.5米 乙种布料1米 可获利45元 布料 米,乙种布料 米,可获利 元;做一套 M型号的童装需用甲布料 米,乙种布料 米, 型号的童装需用甲布料0.9米 乙种布料0.2米 型号的童装需用甲布料 可获利30元 设生产L型号的童装为 型号的童装为x套 可获利 元,设生产 型号的童装为 套。 求童装生产有多少种方案? ①求童装生产有多少种方案? 该厂在生产这批童装中, ②该厂在生产这批童装中,当L型号的童装为多 型号的童装为多 少套时,能使该厂所获的利润最大? 少套时,能使该厂所获的利润最大?最大利润为 多少? 多少?
7、有人问一位老师,他所教的班有多少学生,老师说: 、有人问一位老师,他所教的班有多少学生,老师说: 现在班中有一半的学生正在做数学作业, “现在班中有一半的学生正在做数学作业,四分之一 的学生做语文作业,七分之一的学生在做英语作业, 的学生做语文作业,七分之一的学生在做英语作业, 还剩不足6位的学生在操场踢足球 位的学生在操场踢足球。 还剩不足 位的学生在操场踢足球。”试问这个班共有 多少学生? 多少学生? 8、八年级数学兴趣小组在老师带领下去社会实践,其 、八年级数学兴趣小组在老师带领下去社会实践, 中老师有x人 学生数比教师数的7倍多 倍多4人 中老师有 人,学生数比教师数的 倍多 人,且老师和 学生的总数在40和 之间 包括40和 , 之间(包括 学生的总数在 和50之间 包括 和50),求老师和学 生的人数。 生的人数。 9、甲、乙两人各有书若干本,如果甲从乙处拿来10本, 、 乙两人各有书若干本,如果甲从乙处拿来 本 那么甲拥有的书是乙所剩书的5倍 那么甲拥有的书是乙所剩书的 倍;如果乙从甲处拿来 10本,那么乙所有的书与甲所剩的书相等,问甲、乙 本 那么乙所有的书与甲所剩的书相等,问甲、 两人原来各有几本书? 两人原来各有几本书?

2019年 七年级下 初一 数学 二元一次方程与不等式应用题

2019年 七年级下 初一 数学 二元一次方程与不等式应用题

二元一次方程(组)与一元一次不等式(组)的应用【相遇追及问题】1.甲乙两地相距160km,一辆汽车和一辆拖拉机同时两地相向而行,1小时20分钟后相遇;相遇后,拖拉机继续前行,汽车在相遇处停留1小时后调转车头按原路返回,汽车再次出发1小时后追上了拖拉机,这时,汽车拖拉机各自走了多少千米?2.甲、乙二人同时绕400m的环形跑道行走,如果他们同时从同一起点背向而行,2分30秒后首次相遇;如果他们同时由同一地点同向而行,甲12分30秒后超过乙一圈,甲、乙两人每分钟各走多少米?3.甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少?4.A、B两地间的路程为360千米,甲车从A地出发开往B地,每小时72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,乙车出发多少小时后两车相遇?14.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.15.某铁桥长1000米,有一列火车从桥上通过,测得火车开始上桥到完全过桥用1分钟,整列火车完全在桥上时间为40秒,求火车的速度和车长各是多少?16.一个两位数,十位数字与个位数字之和为8,若十位数字与个位数字对调后,所得新两位数比原两位数小36,求原两位数,17.张先生是集邮爱好者,他带一定数量的钱到邮市上去购买邮票,发现两种较为喜欢的纪念邮票,面值分别为10元和6元。

(1)经盘算发现所带的钱全部用来买面值为10远的邮票,钱数正好不多不少。

若全部钱数用来购买面值为6元的邮票可以多买6张,但余下4元,你知道张先生带了多少钱?(2)若张先生所带的钱全部购进这两种邮票,有多少种购买方案?(3)经估测,这两种邮票都会升值,其中面值为10元的可以上涨100%,面值为6元的邮票会上涨150%,张先生决定把集邮当成一种投资,准备2000元全部投入,请设计最大盈利购邮方案,并作说明。

(完整版)多元一次方程组与一元多次不等式组经典应用题

(完整版)多元一次方程组与一元多次不等式组经典应用题

(完整版)多元一次方程组与一元多次不等式组经典应用题引言本文将介绍多元一次方程组与一元多次不等式组的经典应用题,旨在帮助读者更好地理解和应用这些数学概念。

多元一次方程组多元一次方程组是由多个未知数和这些未知数的一次项组成的方程组。

例如,以下是一个多元一次方程组的例子:x + y = 52x - y = 1经典应用题1. 问题描述:小明和小红在一家商场里购物,他们买了一些衣服和鞋子,总共花费了150元。

已知一件衣服的价格为x元,一双鞋子的价格为y元。

已知小明买了3件衣服和2双鞋子,小红买了2件衣服和3双鞋子。

求解衣服和鞋子的单价。

解答:设衣服的单价为x元,鞋子的单价为y元。

根据题目的描述,可以得到以下两个方程:3x + 2y = 1502x + 3y = 150解方程组可以得到衣服的单价x=30元,鞋子的单价y=45元。

2. 问题描述:小明和小红在一家餐厅吃饭,他们点了若干份菜品,总共消费了100元。

已知一份菜品的价格为x元,小明点了3份菜品,小红点了5份菜品。

如果小明和小红平分账单,则每人应付多少钱?解答:设一份菜品的价格为x元。

根据题目的描述,可以得到以下两个方程:3x + 5x = 100解方程可以得到菜品的单价x=10元。

所以小明和小红每人应付10元。

一元多次不等式组一元多次不等式组是由一个未知数和这个未知数的多次项组成的不等式组。

例如,以下是一个一元多次不等式组的例子:x^2 + 3x - 4 > 02x^3 - 5x^2 + x < 0经典应用题1. 问题描述:求解不等式4x^2 - x - 3 > 0。

解答:首先,化简不等式为标准形式:4x^2 - x - 3 > 0然后,我们需要找到不等式的根,即使不等式成立。

可以使用因式分解或配方法得到根x=1/2和x=-3/4。

由于不等式的符号是大于号,所以我们需要找到不等式根的右边区间使得不等式成立。

根据图像可知x>1/2或x<-3/4。

(完整版)二次方程与一元二次不等式经典应用题

(完整版)二次方程与一元二次不等式经典应用题

(完整版)二次方程与一元二次不等式经典应用题引言本文将介绍二次方程与一元二次不等式的经典应用题。

二次方程和一元二次不等式是数学中经常出现的内容,对于理解和解决实际问题非常有帮助。

二次方程经典应用题求解问题一:汽车行驶假设一辆汽车以恒定速度行驶,从起点出发到目的地共需6小时。

如果以每小时80公里的速度行驶,则行驶多少公里?我们可以建立如下二次方程:$$6x = 80x$$解这个方程,我们可以得到汽车行驶的总距离。

求解问题二:面积计算求解以下问题:一个长方形的周长是30米,且长比宽多5米,求长方形的长和宽。

我们可以建立如下二次方程:$$2(x + (x+5)) = 30$$解这个方程,我们可以得到长方形的长和宽。

一元二次不等式经典应用题求解问题三:数学课成绩某位同学参加数学考试,已知平时成绩占总评成绩的40%,期末考试成绩占总评成绩的60%。

如果总评成绩要达到90分以上,那么期末考试至少需要得多少分呢?我们可以建立如下二次不等式:$$40x + 60y \geq 90$$解这个不等式,我们可以得到期末考试的最低分。

求解问题四:油漆面积我们需要在一个长方形房间的四面墙壁上涂抹油漆。

而一桶油漆只能涂抹25平方米的面积。

如果我们知道这个房间的长和宽,并且每面墙都需要涂抹2遍,那么至少需要几桶油漆?我们可以建立如下二次不等式:$$2(2x+2y) \leq 25z$$解这个不等式,我们可以得到至少需要的油漆桶数。

结论通过解决以上经典应用题,我们可以加深对二次方程和一元二次不等式的理解,以及它们在实际问题中的应用。

这些经典题目不仅能提升我们的数学能力,还能培养我们解决实际问题的能力。

(完整版)多元一次方程与一元多次不等式经典应用题

(完整版)多元一次方程与一元多次不等式经典应用题

(完整版)多元一次方程与一元多次不等式经典应用题本文将介绍一些关于多元一次方程和一元多次不等式的经典应用题。

这些问题可以帮助我们更好地理解和应用这两个数学概念。

多元一次方程应用题1. 问题描述:假设一个苹果和一个橙子的总重量是10克,若一个苹果的重量是3克,一个橙子的重量是4克,那么分别有多少个苹果和橙子?解答思路:设苹果的个数为x,橙子的个数为y,则可以建立以下方程:3x + 4y = 10解方程可得:x = 2, y = 1因此,有2个苹果和1个橙子。

2. 问题描述:某商场进行打折促销活动,其中苹果和橙子按重量打折。

苹果每克打8折,橙子每克打9折。

小明买了苹果x克,橙子y克,总共花了50元。

若已知x+y=600克,求小明买了多少元的苹果和橙子?解答思路:根据打折规则,可以建立以下方程:0.8x + 0.9y = 50解方程可得:x = 200, y = 400因此,小明买了200元的苹果和400元的橙子。

一元多次不等式应用题1. 问题描述:求解不等式 x^2 - 4 < 0 的解集。

解答思路:对不等式进行因式分解,可以得到:(x-2)(x+2) < 0构建符号表格,解得:-2 < x < 2因此,解集为 (-2, 2)。

2. 问题描述:某班级进行考试,小明的数学成绩为x分,英语成绩为y分。

已知数学成绩不小于60分,英语成绩不小于70分,那么小明的总成绩z(总成绩等于数学成绩和英语成绩的平均分)不小于多少分?解答思路:根据题目要求,可以建立以下不等式:x ≥ 60y ≥ 70z = (x + y) / 2将不等式代入等式,得到:z = (x + y) / 2 ≥ (60 + 70) / 2z ≥ 65因此,小明的总成绩不小于65分。

通过以上几个经典应用题的解答,我们可以更好地理解和应用多元一次方程和一元多次不等式的概念和计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程及不等式应用题
一、解不等式
(1)⎩⎨⎧=+=-524753y x y x (2) (解不等式组并在数轴表示出来)
二、二元一次方程组和不等式解决实际问题
1、列方程(组)和不等式(组)解决实际问题的步骤:①审题,设未知数 ②列方程(组)和不等式(组)③解方程(组)和不等式(组)④检验并作答
1、(2014•长沙,第23题9分)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.
(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?
2、(9分)(2015•长沙)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.
(1)求1号线,2号线每千米的平均造价分别是多少亿元?
(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?
3、以“开放崛起,绿色发展”为主题的第七届“中博会”已于2018年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个。

(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个?
(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?
4、(12分)(2019•湘西州)湘西盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆部不少于3辆.
(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表
种?请写出每种安排方案;
(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?
5、(2018•六盘水)为了抓住2018年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.
(1)购进甲乙两种纪念品每件各需要多少元?
(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?
(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?
6、(2019•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.
(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.
7、(2019•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.
(1)两种跳绳的单价各是多少元?
(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?
8、(2015•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.
(1)求购进甲,乙两种钢笔每支各需多少元?
(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?
(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
9、(2017•遵义)2017年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.
(1)若将这批货物一次性运到灾区,有哪几种租车方案?
(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?
三、课堂测试
1、(2019年黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()
A.4种
B.11种
C.6种
D.9种
2、(2017台湾、27)图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()
A.5B.10C.15D.20
3、(2018•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有种租车方案.
4、(2019•绍兴)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有只,兔有只.
5、(2019•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?。

相关文档
最新文档