1数列求和的七种基本方法

合集下载

数列求和的九种方法

数列求和的九种方法

数列求和的九种方法数列求和是数学中的一项基本技巧,在解题过程中经常会遇到。

为了求和一个数列,我们需要确定数列的通项公式,即根据数列中的规律找到一个表示该数列的函数。

在数列求和的过程中,有许多不同的方法可以使用。

下面将介绍九种常见的数列求和方法:逐项相加法、换元法、望眼法、边缘和法、归纳法、递推法、辅助行法、减法求和法和计算机辅助法。

1.逐项相加法逐项相加法是最基本的数列求和方法,即将数列中的每一项相加得到总和。

这种方法适用于数列的项数较少且没有明显的规律的情况。

2.换元法换元法是将数列中的每一项用一个新的变量表示,从而简化数列求和。

通过代入和逆代(将通项公式反解为原始项)两种方法,将数列求和转化为变量求和,从而计算出数列的总和。

3.望眼法望眼法是通过观察数列中的规律,寻找数列中的重复子列来简化求和。

通过找到重复子列后可以将数列分解为几个相同的子列求和,从而简化计算。

4.边缘和法边缘和法是将数列中的每一项的和用前面项的和表示,从而将数列求和转化为前缀和的计算。

该方法适用于数列中的每一项与前面的项之间有明显的关系的情况。

5.归纳法归纳法是通过数学归纳法的思想,利用数列的递推关系来计算数列的总和。

通过假设前n-1项的和为Sn-1,并推导得到前n项的和Sn的表达式,从而计算数列的总和。

6.递推法递推法是通过数列的递推关系来计算数列的总和。

通过将数列中的每一项与前面的项之间的关系列出,从而将数列的求和转化为递推关系的计算。

7.辅助行法辅助行法是将数列构造成一个表格的形式,通过辅助行的计算来求解数列的总和。

通过辅助行的计算,可以将原本复杂的数列求和转化为简单的表格求和。

8.减法求和法减法求和法是通过将数列求和转化为数列的差的求和来计算数列的总和。

通过将数列中相邻项之间的差进行求和,从而求解数列的总和。

9.计算机辅助法计算机辅助法是利用计算机的计算能力来求解复杂的数列求和问题。

通过编写计算机程序来实现数列求和,从而计算出数列的总和。

数列求和7种方法(方法全-例子多)

数列求和7种方法(方法全-例子多)

一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和Sn=2n-1,则=题2.若12+22+…+(n-1)2=an3+bn2+cn,则a= ,b= ,c=.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=.(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2.∴原等式成立练习题1.答案:.练习题2。

高中数学数列求和的七种方法

高中数学数列求和的七种方法

高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等距离的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

5、乘公比错项相减(等差等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{anbn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的
前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应
用范围,确定公式适用于这个数列之后,再计算。

7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等
比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一
系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种根本方法甘志国局部容(已发表于 数理天地(高中),2014(11):14-15)数列求和是数列问题中的基此题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种根本方法.1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记:还要记住一些正整数的幂和公式:例1 数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤⇔>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时,所以 2232(1,2,,16)32512(17,)n n nn T n n n n *⎧-=⎪=⎨-+≥∈⎪⎩N 且例2 求1)2(3)1(21⋅++-⋅+-⋅+⋅=n n n n S n .解 设2)1()1(k n k k n k a k -+=-+=,此题即求数列}{k a 的前n 项和.高考题1 (2014年高考卷文科第19题(局部))求数列{}21n -的前n 项和n S . 答案:2n S n =.高考题2 (2014年高考卷理科第19题(局部))求数列{}24n -的前n 项和n S . 答案:23n S n n =-.高考题3 (2014年高考卷文科第17题)在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .答案:(1)13n na -=;(2)22n n nS -=.高考题4 (2014年高考卷文科第16题){}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.(1)求n a 及n S ;(2)设{}n b 是首项为2的等比数列,公比q 满足244(1)0q a q S -++=,求{}n b 的通项公式及其前n 项和n T .答案:(1)221,n n a n S n =-=;(2)2122,(41)3n n n n b T -==-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 例3 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S 也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=例4 设4()42xx f x =+,求和12320012002200220022002f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.解 可先证得()(1)1f x f x +-=,由此结论用倒序相加法可求得答案为20012. 3 裂项相消法例5 假设}{n a 是各项均不为的等差数列,求证:1113221111++=+++n n n a a n a a a a a a . 证明 设等差数列}{n a 的公差为d :假设0d =,要证结论显然成立;假设0≠d ,得例8 证明222211112(123n n*++++<∈N 且2)n ≥. 证明 22221312111n++++高考题5 (2014年高考全国大纲卷理科第18题)等差数列{}n a 的前n 项和为n S ,110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 答案:(1)133n a n =-;(2)10(103)n nS n =-.高考题6 (2014年高考卷文科第19题)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有31)1(1)1(1)1(12211<++++++n n a a a a a a .答案:(1)12a =;(2)2n a n =;(3)当1n =时,可得欲证成立.当2n ≥时,111111(1)2(21)(21)(21)22121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,再用裂项相消法可得欲证.高考题7 (2014年高考卷理科第19题)等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(1)求数列}{n a 的通项公式;(2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 答案:(1)21n a n =-,2221221n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数.4 分组求和法例9 求11111111111224242n nS -⎛⎫⎛⎫⎛⎫=+++++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以此题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 例10 设数列}{n a 的前n 项和n S 满足221⎪⎭⎫⎝⎛+=n n a S ,又n n n S b )1(-=,求数列}{n b 的前n 项和n T .解 在221⎪⎭⎫⎝⎛+=n n a S 中,令1n =可求得11=a .还可得相减,得所以}{n a 是首项为1公差为2的等差数列,得所以 222)1(,21n b n a S n n n n ⋅-==⎪⎭⎫⎝⎛+=当n 为偶数时, 当n 为奇数时, 总之,2)1()1(+⋅-=n n T nn . 高考题8 (2014年高考卷文科第15题){}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.答案:(1)1=3,=32n n n a n b n -+;(2)3(1)212n n n ++-. 高考题9 (2014年高考卷文科第19题)在等差数列{}n a 中,公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .答案:(1)2n a n =,2(1)2(1)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数.高考题10 (2014年高考卷理科第19题(局部))求数列12(1)n n n ⎧⎫-⎨⎬+⎩⎭的前n 项和n S .答案:1221n nn +--+. 5 错位相减法高考题11 (2014年高考卷理科第17题)首项都是1的两个数列{}{}∈≠n b b a n n n ,0(,N *)满足02111=+-+++n n n n n n b b b a b a .(1)令nnn b a c =,求数列{}n c 的通项公式; (2)假设13-=n n b ,求数列{}n a 的前n 项和n S .解 (1)12-=n c n .(2)得13)12(-⋅-==n n n n n c b a .先写出n S 的表达式:13213)12(37353311-⋅-++⋅+⋅+⋅+⋅=n n n S ①把此式两边都乘以公比3,得n n n n n S 3)12(3)32(35333131321⋅-+⋅-++⋅+⋅+⋅=- ②①-②,得n n n n S 3)12(32323232121321⋅--⋅++⋅+⋅+⋅+=-- ③13)12()3232323232(213210-⋅--⋅++⋅+⋅+⋅+⋅=--n n n n S ④由等比数列的前n 项和公式,得23)22(13)12(132+⋅-=+⋅-++-=n n n n n n S ⑤因为此解答确实步骤多,且有三步容易出错:(1)等式③右边前n 项的符号都是"+〞,但最后一项为哪一项"—〞;(2)当等式③右边的前n 项不组成等比数列时,须把第一项作微调,变成等比数列(即等式④),这增加了难度;(3)等式⑤中最后一步的变形(即合并)有难度.但这种方法(即错位相减法)又是根本方法且程序法,所以备受命题专家的青睐,在高考试卷中频频出现就缺乏为怪了.考生在复习备考中,应彻底弄清、完全掌握,争取拿到总分值.这里笔者再给出一个小技巧——检验:算得了n S 的表达式后,一定要抽出万忙的时间检验一下21,S S 是否正确,假设它们均正确,一般来说就可以确定算对了,否则就算错了,需要检查(重点是检查容易出错的三点)或重算.对于此题,已经算出了13)1(+⋅-=n n n S ,所以10,121==S S .而由通项公式可知1033,1111121=⋅+==⋅=S S S ,所以求出的答案正确.高考题12 (2014年高考课标全国卷I 文科第17题){}n a 是递增的等差数列,42,a a 是方程2560x x -+=的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 答案:(1)121+=n a n . (2)用错位相减法可求得答案为1242++-n n . 高考题13 (2014年高考卷文科第18题)数列{}n a 满足111,(1)(1),n n a na n a n n n +==+++∈N *.(1)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)设3nn b =,求数列{}n b 的前n 项和n S . 答案:(1)略.(2)由(1)可求得2n a n =,所以3n n b n =⋅,再用错位相减法可求得433)12(1+⋅-=+n n n S .高考题14 (2014年高考卷文科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *). (1)证明:数列{}n b 为等比数列;(2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n n a b 的前n 项和n S .答案:(1)略.(2)可求得,2n n n a n b ==,所以24n n n a b n =⋅,再用错位相减法可求得944)13(1+⋅-=+n n n S .高考题15 (2014年高考卷理科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *).(1)假设12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 答案:(1)2=3n S n n -.(2)可求得,2n n n a n b ==,所以2n n n a nb =,再用错位相减法可求得答案为nn n T 222+-=. 6 待定系数法例11 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得 先用错位相减法求数列{}m m a b ⋅的前n 项和n S :所以有下面的结论成立:假设{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解此题: 可设()3n n S an b b =+⋅-(其中,a b 是常数).可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .例12 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅.解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法例13 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n ;(3)求数列{}(21)3nn -⋅的前n 项和n S(此即例6).解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立.(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立.(3)1(21)3=6(3)3nn n n n --⋅⋅-.由(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又数列{}3n的前n 项和为2331-+n .所以数列{}(21)3nn -⋅的前n 项和为高考题16 (2008年高考卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对*求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证: (i))1(1=-∑=nk knkkC ; (ii))1(12=-∑=nk k n kC k ;(iii)1121110+-=++=∑n C kn nk kn .答案:(1)在等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在等式两边在[0,1]上对x 积分后可得欲证.。

(完整word版)数列求和常见的7种方法(word文档良心出品)

(完整word版)数列求和常见的7种方法(word文档良心出品)

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k 43421321个个 (找通项及特征) ∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n nn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;。

数列求和7种方法

数列求和7种方法

1、2、3、5、一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法n(a1 a n) “ n(n - 1)dna1 d2等差数列求和公式:等比数列求和公式:S nS n=^n(n 1)2nS n 八k3k 4[例1]已知log 3 x解:由log3x* a1 (1 -q.1-qa i —^n qi -q(q =1)、& 八k2n(n 1)(2n 1)-1 2 3,求x x x 'I Xn项和.log 23-1=log 3 -log3 2 =log 2 31x =—2由等比数列求和公式得S n = x x2x3(利用常用公式)[例2]设S= 1+2+3+…+n, n€ N,求f (n)解: 由等差数列求和公式得S n•••当题1.等比数列S nf(n) ,n 32)S n 1x(1 x n)1 -xSn1 1齐-班)_ 1丄1一1 —歹2(n 32)Sm的最大值.1」n(n1), S22n 34n 641= -(n 1)( n 2)2(利用常用公式)1n 34 64(、n 8 )250n J n— 8、n ——,即 n= 8 时,f (n)(8max1502 2J 的前n项和 S n= 2n- 1,则Ll'i 〔4—1练习题1 已知 1 f ,求数列{ a n }的前n 项和S. 答案爲二〃2" _ 1$ _ 22心二泌-2"+1 答案: -1 3 5 加-1■ ■ ' '■■'・' ______ ■ ■ ■练习题2 221V2"的前n 项和为 ____题 2.若 12+22+…+(n -1) 2=an 3+bn 2+cn ,贝H a = , b = , c = __________(卑T)用•(沏-1) 2h-划+罔 1 1J 解: 原式= •」 . 答案:_ _ 1 二、错位相减法求和 这种方法是在推导等比数列的前 n 项和公式时所用的方法, 这种方法主要用于求数列{a n • b n }的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列 • [例 3]求和:S n =1 3x 5x 2 7x 3(2n -1)x nJL.............. ①解:由题可知,{ (2 n-L )x n J }的通项是等差数列{2n — 1}的通项与等比数列{x n」}的通项之积设xS n =1x 3x 2 5x 3 • 7x 4心……爲(2n- 1)x n..................... .②(设制错位) ①—②得(1 -x )^ =1 2x 2x 2 2x 3 • 2x 4「一 2x nJ -(2 n-1)x n(错位相减)再利用等比数列的求和公式得:n J1 — X(1 _x)S n=1 2x(2n _ 1)x nS n =(2n - 1)x n 1 -(2n 1)x n (1 x)(1-x)2[例4]求数列2, 42 , 63 ,,前n 项的和.2 2 2 2解:由题可知,出}的通项是等差数列{2n }的通项与等比数列{2n}的通项之积设S nWn2n①•②1 2 2 ①-②得(一評匸歹F IF-/n(设制错位) (错位相减)S n 1^_2nJ2n-4 -答案:— 、反序相加法求和 这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序) 数列相加,就可以得到 n 个(a 1 a n ). [例 5]求证:c : 3C : 5C ; (2n 1)C : =(n 1)2n ,再把它与原证明:设 S n =C n ■ 3C 15C^. . (2n . 1)C : .............. ..①把①式右边倒转过来得S n =(2n 1)C : (2 n-1)C :「3C : C :又由o m 二可得1n 1 nS n -(2n 1)C n (2n- 1)C n 3C n - C n .......... . ……..②① + ②得 2S n =(2n+2)(C : +C : + …y +C :) = 2(n +1) 2n5 =(n 1) 2n[例 6]求 sin 1 sin 2 sin 3 飞in 88 sin 89 的值 (反序)(反序相加)(2) 2 ' 2 ' 2 ' 2 ••• 2 " 解:设 S = sin 1 sin 2 sin 3 亠 亠 sin 88 sin 89 .................... ① 将①式右边反序得 2 0 2。

数列求和的七种方法是什么

数列求和的七种方法是什么

数列求和的七种方法是什么
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

2、倒序相加法。

倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

3、分组求和法。

分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

4、错位相减法。

错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

5、裂项相消法。

裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

6、乘公比错项相减(等差×等比)。

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

7、公式法。

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

8、迭加法。

主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

13.数列求和7种常用方法

13.数列求和7种常用方法

例.已知函数 f (x) ,4x求
4x 2
f ( 1 ) f ( 2 ) f ( 3 ) f ( 2012) f ( 2013)。
2014 2014 2014
2014 2014
解:
f (1 x)
41 x 41x 2
4 4 24x
2 4x 2
f (x) f (1 x) 1
(3)an 2n, Sn n 2 n
(6)an
n3, Sn
[ n(n 1)]2 2
2、公式法 (1)等差数列:
(2)等比数列:
Sn
a1
a2 2
n
na1
n(n 1) 2
d
Sn
na1 a1 (1
q
n
)
1 q
a1 anq) 1 q
q 1 q 1
3、倒序相加法
适用于与首末两项等距离的两项之和相等的数 列求和,比如等差数列求和的推导.
数列求和常见解题方法
数列求和的常用方法
不同的数列求和,适用不同的方法,决定选取哪 种方法关键是看数列的通项的形式。
1、记忆法:适用于常见数列求和
1 (1)an n, Sn 2 n(n 1)
(4)an
n2,
Sn
n(n
1)(2n 6
1)
(2)an 2n 1, Sn n2
(5)an 2n1, Sn 2n 1
相邻两项组合,所 以要分n的奇、偶
例.化简 1 5 9 13 17 21 (1)n1 (4n 3);
解: 当n为偶数时:
原式 (1 5) (9 13) [(4n 7) (4n 3)];
4444
n 个4 2
2n
注意 个数
当n为奇数时:

数列求和的七种方法

数列求和的七种方法

数列求和的七种方法数列求和是数学中非常基础的概念之一,它在高中数学中被广泛讨论和应用。

在数学中,我们经常遇到需要求解数列的和的问题,这样的问题可以通过不同的方法和技巧来解决。

在这篇文章中,我们将讨论七种常见的数列求和方法,并深入探讨它们的原理和应用。

第一种方法是等差数列的求和方法。

等差数列是指一个数列中每一项与其前一项之差保持恒定的数列。

对于一个等差数列,我们可以通过使用求和公式来求解其总和。

具体来说,对于首项为a,公差为d的等差数列,其前n项和可以通过公式Sn = (n/2)(2a + (n-1)d)来计算,其中n表示项数。

这种方法适用于各种等差数列,无论是正数还是负数的等差数列。

第二种方法是等比数列的求和方法。

等比数列是指一个数列中每一项与其前一项之比保持恒定的数列。

对于一个等比数列,我们可以通过使用求和公式来求解其总和。

具体来说,对于首项为a,公比为r的等比数列,其前n项和可以通过公式Sn = (a(1-r^n))/(1-r)来计算,其中n表示项数。

需要注意的是,公比不能为0或1,否则求和公式将无法使用。

第三种方法是利用等差数列的性质进行求和。

等差数列具有很多性质,其中一个重要的性质是数列的和等于首项与末项乘以项数的一半。

具体来说,对于首项为a,末项为b,项数为n的等差数列,其总和可以通过公式Sn = (a + b) * n / 2来计算。

这种方法在一些情况下更加简便和直观,特别是当我们只关注数列的总和而不关心具体的项时。

第四种方法是利用等比数列的性质进行求和。

等比数列也具有一些特殊的性质,其中一个重要的性质是当公比小于1时,数列的和可以表示为首项与末项的差除以1减去公比。

具体来说,对于首项为a,公比为r的等比数列(其中|r|<1),其总和可以通过公式Sn = (a -ar^n)/(1-r)来计算。

这种方法在一些情况下也更加简洁和有效。

第五种方法是使用递归关系进行求和。

递归关系是数列中的每一项与前一项之间存在一定规律的关系。

数列求和的常用方法有哪些数列求和的七种方法

数列求和的常用方法有哪些数列求和的七种方法

一、数列求和的常用方法有哪些
1.裂项相加法:数列中的项形如的形式,可以把表示为
,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。

4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。

5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
数列求和的方法多种多样,要视具体情形选用合适方法。

1、裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。

数列求和的方法多种多样,要视具体情形选用合适方法。

数列求和特别提醒:
(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。

数列求和常见的7种方法

数列求和常见的7种方法

数列求和常见的7种方法数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的应用。

在数学中,我们常常使用不同的方法来求解数列求和问题,以下将介绍一些常见的数列求和方法。

一、公式法:公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,我们可以通过找到它们的通项公式,从而直接计算出数列的和。

例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。

同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *(1 - r^n)/(1 - r),其中a1为首项,r为公比。

二、递推法:递推法是另一种求解数列求和问题的常用方法。

通过推导出数列的递推关系式,我们可以通过逐项求和的方式来求解数列求和问题。

例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过递推的方式来求得前n项和。

三、画图法:画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。

四、换元法:换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。

五、差分法:差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。

例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。

数列求和7种方法(方法全,例子多)

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

数列求和的8种方法

数列求和的8种方法

数列求和的8种方法数列求和是数学中一个很重要的概念,常常在数学课上出现,也被广泛应用于其他学科中。

本文将为您介绍数列求和的8种常用方法。

一、公式法公式法是数列求和中最常用的一种方法。

当数列具有规律性时,可以通过观察数列的特点和规律,得出数列求和的公式。

例如,等差数列的求和公式为Sn = (a1 + an) × n / 2,其中a1为首项,an为尾项,n为项数。

二、差累加法差累加法是一种通过累加差值来求和的方法。

将一个数列中的每一项与其前一项的差相加,即可得到数列的和。

例如,斐波那契数列的差累加法求和公式为Sn=Fn+2-1三、奇偶分拆法奇偶分拆法是一种将数列分为奇数项和偶数项两个数列的方法。

通过将原数列中的项按照奇偶分类,并分别求和,然后将奇数部分和偶数部分的和相加,即可得到原数列的和。

这种方法特别适用于等差数列或等比数列求和。

四、数形结合法数形结合法是通过图形化数列来求和的方法。

将数列用图形的形式展现出来,然后通过计算图形的面积、周长或者中点之间的连线长度等等,来求得数列的和。

这种方法特别适用于几何数列或者满足其中一种几何规律的数列。

五、递推关系法递推关系法是通过递推关系来求和的方法。

数列中的每一项可以通过前面一项或者多项之间的关系得到,因此可以通过递推关系来直接求得数列的和。

例如,斐波那契数列的递推关系是Fn=Fn-1+Fn-2,可以利用这个关系式求得数列的和。

六、数列分解法数列分解法是通过将数列分解成其他数列的和来求和的方法。

通过将数列拆分成两个或多个数列,然后分别求得每个数列的和,并将它们相加,即可得到原数列的和。

这种方法适用于数列可以被分解成多个简单数列的情况。

七、夹逼定理法夹逼定理法是一种通过构造相等的两个或多个数列来求和的方法。

通过找到与原数列相等的其他数列,然后求得这些数列的和,并将它们相加,就可以求得原数列的和。

这种方法特别适用于数列无法通过常规的方法求和的情况。

八、换元法换元法是一种通过将数列中的索引进行变换,来求得数列的和的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的七种基本方法数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过题目(这些题目基本涵盖了2016年高考卷中的数列求和题)简单介绍数列求和的七种基本方法. 1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列前n 项和n S 的公式,因此以下常用公式应当熟记:221231123(1)2135(21)12222111111122222n nn n n n n n n -++++=+++++-=++++=-++++=-还要记住一些正整数的幂和公式:2233332222)1(41321)12)(1(61321+=++++++=++++n n n n n n n题1 (2016年高考全国卷I 文科第17题)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和.解 (1)在11n n n n a b b nb +++=中选1n =,得1221a b b b +=,即11111,233a a +==. 又因为{}n a 是公差为3的等差数列,所以23(1)31n a n n =+-=-. (2)由(1)得()1131n n n n b b nb ++-+=,即113n n b b +=,得{}n b 是以1为首项,13为公比的等比数列,得113n n b -⎛⎫= ⎪⎝⎭.所以{}n b 的前n 项和111313122313n n n S --==-⋅-. 2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 题2 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:31,32,34,,34,32,31---+++n n n m m m有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=题3 求数列{}123n ++++的前n 项和n S .解法1 因为211123(1)()22n n n n n ++++=+=+,所以 22221[(123)(123)]2n S n n =+++++++++1111(1)(21)(1)(1)(2)2626n n n n n n n n ⎡⎤=++++=++⎢⎥⎣⎦ 解法2 因为2331211123(1)C C C (2)2n n n n n n n +++++++=+==-≥ 所以33333333343542121C (C C )(C C )(C C )C (1)(2)(2)6n n n n S n n n n +++=+-+-++-==++≥ 进而可得1(1)(2)(6n S n n n n =++∈N *). 解法3 (倒序相加法)可得1(12)(123)(123)n S n =+++++++++++1(21)(321)[(1)(2)1]n S n n n =++++++++-+-++1212[(1)(1)][(2)(2)(2)](1111)n n n S n n n n n n --=+-+-+-+-+-++++++个个()3个()把它们相加,得31(2)2(2)3(2)(2)n S n n n n n =++++++++1(123)(2)(1)(2)2n n n n n =+++++=++ 1(1)(2)6n S n n n =++ 3 裂项相消法题4 (2016年高考天津卷理科第18题)已知{}n a 是各项均为正数的等差数列,公差为d .对任意的*n ∈N ,n b 是n a 和1n a +的等比中项.(1)设22*1,n n n c b b n +=-∈N ,求证:数列{}n c 是等差数列;(2)设1a d =,()2211nkn k k T b ==-∑,*n ∈N ,求证:21112nk kT d =<∑. 解 (1)可得21n n n b a a +=,所以221n n n c b b +=-=121n n n n a a a a +++-=12n da + ①()212122n n n n c c d a a d +++-=-=所以数列{}n c 是等差数列.(2)可得1(1)(1)n a a n d d n d nd =+-=+-=,还可得①式在这里也成立,所以()()()2222221234212n n n T b b b b b b -=-++-+++-+=()2422n d a a a +++=()222(2462)21d n d n n =++++=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑ 4 分组求和法题5 求11111111111224242n n S -⎛⎫⎛⎫⎛⎫=+++++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以本题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和:111111212222422n n n n S n n a n --⎛⎫=-++++=-=-+ ⎪⎝⎭题6 (2016年高考天津卷文科第18题)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解 (1)设等比数列{}n a 的公比为q ,可得2111112a a q a q-=,解得2q =或1-. 又由61(1)631n a q S q-==-知,1q ≠-,所以61(12)6312a -=-,解得11a =. 得数列{a n }的通项公式是12n n a -=. (2)由题意,可得21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n 所以数列})1{(2n n b -的前n 项和为22221234()()b b b b -++-++⋅⋅⋅+222122121222()()22n n n n n b b b b b b b n -+-+=++⋅⋅⋅+== 题7 (2016年高考浙江卷文科第17题)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*n ∈N .(1)求通项公式n a ;(2)求数列{}2n a n --的前n 项和.解 (1)可得21221421S a a a a ⎧=+=⎨=+⎩,解得1213a a =⎧⎨=⎩.由121n n a S +=+,121n n a S -=+()2n …,可得()()1121212n n n n n a a S S a +--=+-+=, 13n n a a +=()2n ≥.又因为213a a =,所以可得数列{}n a 的通项公式为13n n a -=.(2)得b n =|a n -n -2|=|3n -1-n -2|,所以b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,所以b n =3n -1-n -2(n ≥3). 设数列{b n }的前n 项和为T n ,得T 1=2,T 2=3. 当n ≥3时,可得T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112进而可得T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *. 题8 (2016年高考四川卷文科第19题)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0q >,*n ∈N .(1)若2a ,3a ,23+a a 成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离心率为n e ,且22e =,求22212ne e e ++⋅⋅⋅+. 解 (1)由S n +1=qS n +1,S n +2=qS n +1+1(n ∈N *),两式相减得a n +2=qa n +1(n ∈N *). 又由S 2=qS 1+1,11a =,可得a 2=qa 1,所以a n +1=qa n (n ∈N *).得数列{a n }是首项为1,公比为q 的等比数列,所以a n =q n -1.再由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3即a 3=2a 2,得q =2.所以数列{a n }的通项公式是a n =2n -1.(2)在(1)的解答中已得a n =qn -1,所以双曲线x 2-y 2a 2n=1的离心率22(1)11n n n e a q -=+=+.由e 2=1+q 2=2,解得q =3,所以e 21+e 22+…+e 2n =(1+1)+(1+q 2)+…+[1+q2(n -1)] =n +[1+q 2+…+q2(n -1)]=n +q 2n -1q 2-1=n +12(3n -1)5 错位相减法题9 (2016年高考山东卷理科第18题即文科第19题)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+(1)求数列{}n b 的通项公式;(2)令1(1).(2)n n n nn a c b ++=+求数列n C 的前n 项和n T . 解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 又因为a 1=S 1=11,所以a n =6n +5(n ∈N *). 设等差数列{b n }的公差为d .可得⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d 17=2b 1+3d ,解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1.(2)由(1)的解答,可得c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又由T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1]2T n =3×[2×23+3×24+…+(n +1)×2n +2]把它们相减,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4×(1-2n )1-2-(n +1)×2n +2] =-3n ·2n +2所以T n =3n ·2n +2.6 待定系数法题10 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得111[(1)](1,2,,)m m m a b a m d b q m n -⋅=+-⋅=先用错位相减法求数列{}m m a b ⋅的前n 项和n S :21111112111111211112111111{()(2)[(1)]}{()[(2)][(1)]}(1){[(1)]}{()[(1)]}[(1n n n n n n n n n n n S b a a d q a d q a n d q qS b a q a d q a n d q a n d q q S b a dq dq dq a n d q b d dq dq dq a n d q a d d dq b a n q ----=+++++++-=+++++-++--=++++-+-=++++-+-+---+-=11)]n d q a d ⎧⎫-+-⎨⎬⎩⎭111111n n q d dS dn a d q a d b q q ⎛⎫-=+---++ ⎪--⎝⎭ 所以有下面的结论成立:若{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S nn -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解本题: 可设()3nn S an b b =+⋅-(其中,a b 是常数).可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .题11 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅. 解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法题12 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nxx x n n ; (3)求数列{}(21)3n n -⋅的前n 项和n S .解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立.(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立.(3)1(21)3=6(3)3nn n n n --⋅⋅-.在(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又因为数列{}3n的前n 项和为2331-+n .所以数列{}(21)3n n -⋅的前n 项和为33)1(233413)12(611+⋅-=--+⋅-⋅=++n n n n n n S题13 (2008年高考江苏卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对x 求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证:(i)0)1(1=-∑=nk knkkC ; (ii)0)1(12=-∑=nk k nkC k ; (iii)1121110+-=++=∑n C kn nk kn .答案:(1)在已知等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由已知等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在已知等式两边在[0,1]上对x 积分后可得欲证.。

相关文档
最新文档