(甘志国)数列求和的七种基本方法
(完整版)数列求和常见的7种方法
∴
= (分组求和)
=
=
=
[例16]已知数列{an}: 的值.
解:∵ (找通项及特征)
= (设制分组)
= (裂项)
∴ (分组、裂项求和)
=
=
提高练习:
1.已知数列 中, 是其前 项和,并且 ,
⑴设数列 ,求证:数列 是等比数列;
⑵设数列 ,求证:数列 是等差数列;
2.设二次方程 x - +1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.
∴ 原等式成立
答案:
六、分段求和法(合并法求和)
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.
解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°
∴ =
= =
∴当 ,即n=8时,
二、错位相减法求和
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.
[例3]求和: ………………………①
解:由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积
…………..②(反序)
又因为
①+②得(反序相加)
=89
∴S=44.5
题1已知函数
(1)证明: ;
(2)求 的值.
数列求和7种方法(方法全-例子多)
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和的七种基本方法
数列求和的七种基本方法甘志国部分内容(已发表于数理天地(高中),2014(11) : 14-15)数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种基本方法.1运用公式法很多数列的前n项和S n的求法,就是套等差、等比数列S n的公式,因此以下常用公式应当熟记:L 1123n n(n21) 135L(2n1) n2 1222L2n1 2n1111L 11122232n2还要记住一些正整数的幕和公式:2 2 2 2 11 2 3 n n(n 1)( 2n 1)6小3 小3 3 1 2 “八21 2 3 n n (n 1)4例1已知数列{a n}的前n项和S n32n n2,求数列{a n}的前n项和T n.(1) 所以2由S n 32n n ,可得a n16 时,T n=S n17时,T nT n求S n 133 2n, a n 0 16,所以:32na1(a1S]62S162n32n2na2a2(S nS n32nn232n2 (n 1)a na®S6)5125123 (n 2)(ai7 a18 a n)(n(n1,2,L17,且n N ),16)k(n 1 k) k(n 1) k2,本题即求数列{a/的前n项和.解设a kS n (12 3 n)(n 1) (1222 32 n 2)11n(n 1) (n 1) n(n 1)(2n 1) 2 6 1:n(n 1)(n 2) 6答案:S n n 2.答案:S n n 3n .(1)求 a n ; ⑵设b h log 3a n ,求数列{bj 的前n 项和S n .答案:(1)2n 1n na n 3; (2) S n2. 咼考题4 (2014年高考重庆卷文科第 16题)已知a n 是首项为1,公差为2的等差数列,S n 表示a n 的前n 项和.(1)求 a n 及 S n ;2(2)设b n 是首项为2的等比数列,公比 q 满足q @4 1)q S 4 0,求b n 的通 项公式及其前n 项和T n .答案:(1) a n 2n 1,S n n 2; (2) b n 22n1,T n 2(4n 1).32倒序相加法事实上,等差数列的前 n 项和S n 的公式推导方法就是倒序相加法•例3 求正整数 m 与n (m n )之间的分母为3的所有既约分数的和 S . 解显然,这些既约分数为:1 24 4 2 1 m ,m ,m , ,n ,n ,n 33 3 3 33高考题1 (2014年高考浙江卷文科第19题(部分))求数列2n 1的前n 项和S n .高考题2 (2014年高考四川卷理科第19题(部分))求数列2n 4的前n 项和S n .咼考题3(2014年咼考福建卷文科第 17题)在等比数列{a n }中,a 2 3,a 5 81.3裂项相消法a 1 10, a 2为整数,且5 S 4. (1)求{a n }的通项公式;有12442S (m 3)(m 3)(m3 (n3)(n(n也有S (n2(n才4(n3)4(m 3)(m 1) (m所以2S (mn) 2(n m) 2(n 2 2m ),S 2nm2例4设f (x)4x 4x,求和2120022 f3 L f 20012002 2002 2002解可先证得f (x)f(1 x) 1,由此结论用倒序相加法可求得答案为2001 2 例5若{a n }是各项均不为0的等差数列,1 11n求证:a 〔a 2 a ?a 3a n a n 1a 1a n 1证明 设等差数列 {a n }的公差为d :1 1和―a 〔 a ? a ? a 3a n a n 11 1 1 1 1 1 1— (- ) (- ) ( d a 1 a 2 a 2 a 3 a n a n1 1 11 ndnd a 1a n 1da 1 a n 1a 1 a n 11 T T 12 12L1—2(nN 且n 2)1 23n证明1121-2n1 (n 1) n高考题5(2014年高考全国大纲卷理科第18题)等差数列{a n }的前n 项和为S n ,已知要证结论显然成立; 0,得若 d1 11证明-)1 a na n 1a n a n 122 2⑵设b n ,求数列{b n }的前n 项和T n . a n a n 1答案:⑴a n 13 3n ;⑵S n10(10 3n)高考题6 (2014年高考广东卷文科第 19题)设各项均为正数的数列 a n 的前n 项和为S n ,且 S n 满足 S ;n 2 n 3 6 3n 2 0,n N • (1)求a i 的值; ⑵求数列a n 的通项公式; (3)证明:对一切正整数 n ,有 答案: (1) a 1 2;ag 1) a2@ 1) 1a n (a n 1) ⑵a n 2n ; (3)当 n 1时, 可得欲证成立.当n 2时, 1 a n (a n 1)1 2n (2 n 1) (2n 1)(2 n 1) 2n 1 2n 1 1 1 ,再用裂项相消法可得欲高考题 7 (2014年高考山东卷理科第 19题)已知等差数列{a n }的公差为2,前n 项和 为& ,且S 1,S 2,S 4成等比数列.(1) 求数列{a n }的通项公式; ⑵令b n =( 1)n1^J,求数列{b n }的前n 项和人. a n an 1 答案:(1) a n2n ,T n 2n 22n 1 2n2n 1 n 为奇数n 为偶数 4分组求和法 例9求S n解设a n,得 a n所以本题即求数列2 丄 的前n 项和:2的前n 项和T n .a 12解在S na n 1中,令n 1可求得a 11 .2还可得4S n2(a n 1),4S n 1(a n 11)2相减,得4a n 12 2a n 1a n2a n 12a n(a n 1a n )(a n 1 an2) 0a n 1 a na n 2n 1当n 为奇数时,T n T n1 b n 虫」『(用以上结论) 2 2总之,T n ( 1广P 卫. 2(1) 求数列a n 和b n 的通项公式;⑵求数列b n 的前n 项和.S n 2 n 1 - - L2 42n a n2n 22n例10设数列{a n }的前n 项和S n 满足S na n,又b n(1)n S n ,求数列{b n }所以{a n }是首项为 1公差为2的等差数列,得所以S na n 122n 2,b n(1)n当n 为偶数时,T n ( 1222) ( 32 42)[(n 1)2 n 2] 3 7 11(2n 1)n(n 1)2高考题8(2014年高考北京卷文科第15题)已知a n 是等差数列,满足 a 1 3,a 4 12,数列b n 满足bi 4,b 4 20,且b n a n 是等比数列3答案:⑴a n=3n,d=3n 2n 1;(2) n(n 1) 2n 1.2高考题9 (2014年高考山东卷文科第19题)在等差数列{a n}中,已知公差d 2 , a2是a1与a4的等比中项•(1) 求数列{a n}的通项公式;⑵设b n an(n 1),记T n2bi b2 b3b4 …(1)n b n ,求Tn . (n 1)2n为奇数答案:⑴a n 2n , T n2n(n 1)2n为偶数咼考题10(2014年高考浙江卷理科第19题(部分))求数列2n-1-的前n项n(n 1)和S n.答案:2n1—2.n 15错位相减法高考题11 (2014年高考江西卷理科第17题)已知首项都是1的两个数列a n , b n (b n 0, n M)满足a n b n 1 a n 1b n 2b n 1b n 0.a“(1)令C n —,求数列C n的通项公式;b n(2)若b n3n 1,求数列a n的前n项和S n.解(1) c n2n 1.⑵得a n b n C n (2n1)3n1.先写出S n的勺表达式:S n 11331 5 32733(2n1) 3n1①把此式两边都乘以公比3, 得3S n1 31332 5 33(2n3)3n1(2n1)3n②①-②,得2S n 1231 2 32 2 3323n 1(2n1)3n③2S n(2 302312 32 23323n 1)(2n1)3n 1④由等比数列的前n项和公式,得2S n3n 1 (2n 1) 3n 12S n3n 1 (2n 1) 3n 1 (2n 2) 3n 2 ⑤S n (n 1) 3n1因为此解答确实步骤多,且有三步容易出错:(1)等式③右边前n项的符号都是“ +”,但最后一项是“一”;(2)当等式③右边的前n项不组成等比数列时,须把第一项作微调,变成等比数列(即等式④),这增加了难度;(3)等式⑤中最后一步的变形(即合并)有难度•但这种方法(即错位相减法)又是基本方法且程序法,所以备受命题专家的青睐,在高考试卷中频频出现就不足为怪了•考生在复习备考中,应彻底弄清、完全掌握,争取拿到满分这里笔者再给出一个小技巧一一检验:算得了S n的表达式后,一定要抽出万忙的时间检验一下确,一般来说就可以确定算对了,否则就算错了,需要检查或重算•1S 1 1 1,S2 S1 3 3 10,所以求出的答案正确2a2,a4是方程x 5x 6 0的根.(1)求a n的通项公式;⑵求数列色的前n项和•2n1答案:(1) a n— n 1.2a1 1, na n 1(n1)a n n(n 1),n N*.(1)证明:数列O n.是等差数列;n⑵设b n3n \ a n,求数列{b n}的前n项和S n答案:⑴略•S, 5是否正确,若它们均正(重点是检查容易出错的三点对于本题,已经算出了S n (n 1) 3n1,所以S1 1,S2 10.而由通项公式可知高考题12 (2014年高考课标全国卷I文科第17题)已知a n是递增的等差数列,(2)用错位相减法可求得答案为2n1高考题13(2014 年高考安徽卷文科第18题)数列{a n}满足62,点@8,4^)在函数f (x)的图象上,求数列{a n}的前n项和S n ;1,函数f (x)的图象在点(a2,d)处的切线在x轴上的截距为2 1,求数In 2an的前n项和T n.b n⑵由(1)可求得a n n2,所以b n 3n n,再用错位相减法可求得高考题14 (2014年高考四川卷文科第19题)设等差数列{a n}的公差为d,点(a n , b n )在函数f(x) 2x的图象上(n N*).(1) 证明:数列{b n}为等比数列;⑵若印1,函数f (x)的图象在点(a2,d)处的切线在x轴上的截距为2—,求数ln 2列何嶄}的前n项和S n.答案:(1)略.⑵可求得a n n,b n 2n,所以a n b;n 4n,再用错位相减法可求得n 1& (3n 1) 4 4高考题15 (2014年高考四川卷理科第19题)设等差数列{a n}的公差为d,点(a n,b n)在函数f (x)x2的图象上(n N*).答案:(1) Sn= n23n.T n⑵可求得a na nn,bn2n,所以b n歹,再用错位相减法可求得答案为n 22〒待定系数法例11数列{(2n 1)3n}的前n项和S n解设等差数列{a m}的公差为d,等比数列{b m}的公比为q(q 1),得6七、求导法、积分法 例13(1)求证:m 1a mb m [a 1 (m 1)d] bq (m 1,2,L ,n)S n佝 d)q (印 2d)q 2 L[印(n1)d]q n qS n bi{ag⑻ d)q 2 L [a 1 (n 2)d]q'(1 q)S n bg dq dq 2 1 L dq n 1[a 1 (n 1)d]q n }d{(d dqdq 2 L dq n 1) [印(n 1)d]q n= b db1.dq n [a 1 (n 1)d ]q n a 1 d1 qq1 cdn a ddna 1 d1 1qbq等比数列(其公比q1),且a i ,d 均是与n 无关的常数,则数列{a m b m }的前n 项和S n (an b )q nb ,其中 a,b 是与n 无关的常数•由此结论就可以用待定系数法快速求解本题: 可设S n(an b) 3n b (其中a,b 是常数).可得S 3,S 23 27 30,所以3(a b) 9(2a b)b 3,解得b 30a 3,所以b 3S n (n 1)3n 13.例12求和 S nnn 1n2+2 2+3 22+L +(n 1) 22 + n 2.+211 1 丄+3丄22+ L +n用待定系数法可求出该等式的右边为 1 ,所以S n2n 2 2n4.1);⑵求证:1 2x3x 2nnx[(x⑶求数列(2n 1) 3n的前n 项和 S n (此即例6).先用错位相减法求数列{a m b m }的前n 项和S n :na i d} 所以有下面的结论成立: 若{a m },{b m }分别是等差数列、d q 11} 1n[a 1 (n 1)d]q }解(1)当x 0时,显然成立•当x 0时,由等比数列的前 n 项和公式知,欲证结论也成立.(2) 视(1)的结论为两个函数相等,两边求导后即得欲证成立 (3) (2n 1) 3n =6(n 3n 1) 3n .3n 1的前n 项和为(2n°3一1 ;又数列3n(2)对于整数n 3,求证:n1 n k 2n1 1Cnk 01 k n 1答案:(1)在已知等式两边对⑵(i) 在结论(1)中令xx 求导后移项可得欲证.1可证.n即 (1)k (k 2 k)Cn 0,再由结论(i)得结论(ii)成立.k 1(iii) 在已知等式两边在[0,1]上对x 积分后可得欲证(ii) 由已知等式两边对 x 求导后再求导,又令 x 1,得k(k 1)c k ( 1)k2由⑵的结论中令x 3,得数列前n 项和为33.所以数列(2n21) 3n的前n 项和为高考题16 的两边对(sin 2x) 2 S n 6 3宁(n 1) 23n 1 3(2008年高考江苏卷第23题)请先阅读:在等式 导,得(cos2x) (2cos x1) 4cosx (sinx),化简后得等式sin2x (1)利用上题的想法 (或其他方法 ),试由等式(1 x)n整数n 2)证明:n [(1x)n11]nk k 1 kC nx2cos2x 2cos x 1(x .由求导法则,2sin xcosx .C0 C ;x C 2x 2C :x n (xR,(i)n(1)k kC :k 1(ii)n(1)k k 2Cnk 1(iii)。
常见数列求和七法
( 转 103 页 )
2009.5
▲ ▲
101
〈 〈
解题技巧与方法
J IETI J IQIAO YU FANGFA
二 、 没有个体区分的相同元素的分配与分组问题 例 2 把 7 个大小完全相同的小球放置在编号为 1 ,2 ,3 的三个盒子中 . (1 ) 每个盒子至少放一个,有多少种不同的放置方法? (2 ) 每个盒子可空 , 有多少种不同的放置方法 ? 解 (1 ) 首先 3 个盒子可以看做是由 2 块挡板分隔 成的 3 个空间 , 把 7 个小球排成一排 , 它们之间有 6 个 间隔 , 从这 6 个间隔中选出 2 个放上隔板 , 把小球分成 3 段 , 第 i 段 (1 ≤ i ≤ 3 ) 的小球对应放入第 i 个 盒 子 , 共有 C6 = 15 种不同的放置方法 . (2 ) 因为每个盒子可空 , 所以两块隔板之间允许无 球 , 为了套用 第 (1 ) 题 的 方 法 我 们 可 以 再 借 用 3 个 球 , 共 10 个球考虑问题 , 把 10 个小球排成一排 , 它们之间 有 9 个间隔 , 从这 9 个间隔中选出 2 个放上隔板 , 把小 球分成 3 段 , 第 i 段 (1 ≤ i ≤ 3 ) 的 小 球 去 掉 一 个 对 应 放入第 i 个盒子就满足题意了 , 共有 C9 = 36 种不同的 放置方法 . 推广 把以上两个问题一般化 , 可转化为求不定方 程 x1 + x2 + … + xm = n 的 正 整 数 解 和 自 然 数 解 各 有 多 少组的问题 . 解 考虑并列放着的 n 个 1 :111 … 1 , 在每相邻两 个 1 之间都有 1 个空隙 , 共有 (n - 1 ) 个空隙 . 在这 (n 1 ) 个空隙中放上 (m - 1 ) 个 “+ ” 号 , 每个空至多放一个 , 共有 Cn-1 种放法 , 在每一种放法中这 n 个 1 被 “+ ” 隔为
数列求和的七种方法是什么
数列求和的七种方法是什么
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
2、倒序相加法。
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
3、分组求和法。
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
4、错位相减法。
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
5、裂项相消法。
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
6、乘公比错项相减(等差×等比)。
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
7、公式法。
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
8、迭加法。
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
(甘志国)数列求和的七种基本方法
数列求和的七种基本方法甘志国部分内容(已发表于 数理天地(高中),2014(11):14-15)数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种基本方法.1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记:221231123(1)2135(21)12222111111122222n nn n n n n n n -++++=+++++-=++++=-++++=-还要记住一些正整数的幂和公式:2233332222)1(41321)12)(1(61321+=++++++=++++n n n n n n n例1 已知数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤⇔>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时,512322)()()(21616161817162121+-=-=--=+++++++=+++=n n S S S S S a a a a a a a a a T n n n nn所以 2232(1,2,,16)32512(17,)n n nn T n n n n *⎧-=⎪=⎨-+≥∈⎪⎩N 且例2 求1)2(3)1(21⋅++-⋅+-⋅+⋅=n n n n S n .解 设2)1()1(k n k k n k a k -+=-+=,本题即求数列}{k a 的前n 项和.)2)(1(61)12)(1(61)1()1(21)321()1)(321(2222++=++-+⋅+=++++-+++++=n n n n n n n n n n n n S n高考题1 (2014年高考浙江卷文科第19题(部分))求数列{}21n -的前n 项和n S . 答案:2n S n =.高考题2 (2014年高考四川卷理科第19题(部分))求数列{}24n -的前n 项和n S . 答案:23n S n n =-.高考题3 (2014年高考福建卷文科第17题)在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .答案:(1)13n na -=;(2)22n n nS -=.高考题4 (2014年高考重庆卷文科第16题)已知{}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.(1)求n a 及n S ;(2)设{}n b 是首项为2的等比数列,公比q 满足244(1)0q a q S -++=,求{}n b 的通项公式及其前n 项和n T .答案:(1)221,n n a n S n =-=;(2)2122,(41)3n n n n b T -==-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 例3 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:31,32,34,,34,32,31---+++n n n m m m有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S 也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=例4 设4()42xx f x =+,求和12320012002200220022002f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.解 可先证得()(1)1f x f x +-=,由此结论用倒序相加法可求得答案为20012. 3 裂项相消法例5 若}{n a 是各项均不为0的等差数列,求证:1113221111++=+++n n n a a n a a a a a a . 证明 设等差数列}{n a 的公差为d :若0d =,要证结论显然成立;若0≠d ,得)11(1111++-=n n n n a a d a a11111113221132211111)11()11()11(1111+++++=⋅=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-++-+-=+++n n n n n n n a a na a nd d a a d a a a a a a d a a a a a a 例8 证明222211112(123n n*++++<∈N 且2)n ≥. 证明 22221312111n++++11111223(1)11111111223111121n nn n n <++++⋅⋅-⋅⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫=+-< ⎪⎝⎭高考题5 (2014年高考全国大纲卷理科第18题)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 答案:(1)133n a n =-;(2)10(103)n nS n =-.高考题6 (2014年高考广东卷文科第19题)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有31)1(1)1(1)1(12211<++++++n n a a a a a a .答案:(1)12a =;(2)2n a n =;(3)当1n =时,可得欲证成立.当2n ≥时,111111(1)2(21)(21)(21)22121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,再用裂项相消法可得欲证.高考题7 (2014年高考山东卷理科第19题)已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列. (1)求数列}{n a 的通项公式;(2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 答案:(1)21n a n =-,2221221n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数.4 分组求和法例9 求11111111111224242n nS -⎛⎫⎛⎫⎛⎫=+++++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以本题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 111111212222422n n n n S n n a n --⎛⎫=-++++=-=-+ ⎪⎝⎭例10 设数列}{n a 的前n 项和n S 满足221⎪⎭⎫⎝⎛+=n n a S ,又n n n S b )1(-=,求数列}{n b 的前n 项和n T .解 在221⎪⎭⎫⎝⎛+=n n a S 中,令1n =可求得11=a .还可得22114(1),4(1)n n n n S a S a ++=+=+相减,得20)2)((22411112211=-=--+-+-=++++++n n n n n n n n n n n a a a a a a a a a a a所以}{n a 是首项为1公差为2的等差数列,得12-=n a n所以 222)1(,21n b n a S n n n n ⋅-==⎪⎭⎫⎝⎛+=当n 为偶数时,2)1()12(1173])1([)43()21(222222+=-++++=+--+++-++-=n n n n n T n 当n 为奇数时,2)1()(2)1(21+-=--=+=-n n n n n b T T n n n 用以上结论 总之,2)1()1(+⋅-=n n T n n .高考题8 (2014年高考北京卷文科第15题)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.答案:(1)1=3,=32n n n a n b n -+;(2)3(1)212n n n ++-. 高考题9 (2014年高考山东卷文科第19题)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .答案:(1)2n a n =,2(1)2(1)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数.高考题10 (2014年高考浙江卷理科第19题(部分))求数列12(1)n n n ⎧⎫-⎨⎬+⎩⎭的前n 项和n S .答案:1221n nn +--+. 5 错位相减法高考题11 (2014年高考江西卷理科第17题)已知首项都是1的两个数列{}{}∈≠n b b a n n n ,0(,N *)满足02111=+-+++n n n n n n b b b a b a .(1)令nnn b a c =,求数列{}n c 的通项公式; (2)若13-=n n b ,求数列{}n a 的前n 项和n S .解 (1)12-=n c n .(2)得13)12(-⋅-==n n n n n c b a .先写出n S 的表达式:13213)12(37353311-⋅-++⋅+⋅+⋅+⋅=n n n S ①把此式两边都乘以公比3,得n n n n n S 3)12(3)32(35333131321⋅-+⋅-++⋅+⋅+⋅=- ②①-②,得n n n n S 3)12(32323232121321⋅--⋅++⋅+⋅+⋅+=-- ③ 13)12()3232323232(213210-⋅--⋅++⋅+⋅+⋅+⋅=--n n n n S ④由等比数列的前n 项和公式,得13)12(132-⋅---=-n n n n S23)22(13)12(132+⋅-=+⋅-++-=n n n n n n S ⑤13)1(+⋅-=n n n S因为此解答确实步骤多,且有三步容易出错:(1)等式③右边前n 项的符号都是“+”,但最后一项是“—”;(2)当等式③右边的前n 项不组成等比数列时,须把第一项作微调,变成等比数列(即等式④),这增加了难度;(3)等式⑤中最后一步的变形(即合并)有难度.但这种方法(即错位相减法)又是基本方法且程序法,所以备受命题专家的青睐,在高考试卷中频频出现就不足为怪了.考生在复习备考中,应彻底弄清、完全掌握,争取拿到满分.这里笔者再给出一个小技巧——检验:算得了n S 的表达式后,一定要抽出万忙的时间检验一下21,S S 是否正确,若它们均正确,一般来说就可以确定算对了,否则就算错了,需要检查(重点是检查容易出错的三点)或重算.对于本题,已经算出了13)1(+⋅-=n n n S ,所以10,121==S S .而由通项公式可知1033,1111121=⋅+==⋅=S S S ,所以求出的答案正确.高考题12 (2014年高考课标全国卷I 文科第17题)已知{}n a 是递增的等差数列,42,a a 是方程2560x x -+=的根. (1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 答案:(1)121+=n a n . (2)用错位相减法可求得答案为1242++-n n . 高考题13 (2014年高考安徽卷文科第18题)数列{}n a 满足111,(1)(1),n n a na n a n n n +==+++∈N *.(1)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)设3nn b ={}n b 的前n 项和n S . 答案:(1)略.(2)由(1)可求得2n a n =,所以3n n b n =⋅,再用错位相减法可求得433)12(1+⋅-=+n n n S .高考题14 (2014年高考四川卷文科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *). (1)证明:数列{}n b 为等比数列;(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n n a b 的前n 项和n S .答案:(1)略.(2)可求得,2n n n a n b ==,所以24n n n a b n =⋅,再用错位相减法可求得944)13(1+⋅-=+n n n S .高考题15 (2014年高考四川卷理科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *).(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 答案:(1)2=3n S n n -. (2)可求得,2n n n a n b ==,所以2n n n a nb =,再用错位相减法可求得答案为n n n T 222+-=. 6 待定系数法例11 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得111[(1)](1,2,,)m m m a b a m d b q m n -⋅=+-⋅=先用错位相减法求数列{}m m a b ⋅的前n 项和n S :21111112111111211112111111{()(2)[(1)]}{()[(2)][(1)]}(1){[(1)]}{()[(1)]}[(1n n n n n n n n n n n S b a a d q a d q a n d q qS b a q a d q a n d q a n d q q S b a dq dq dq a n d q b d dq dq dq a n d q a d d dq b a n q ----=+++++++-=+++++-++--=++++-+-=++++-+-+---+-=11)]n d q a d ⎧⎫-+-⎨⎬⎩⎭111111n n q d dS dn a d q a d b q q ⎛⎫-=+---++ ⎪--⎝⎭ 所以有下面的结论成立:若{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解本题: 可设()3n n S an b b =+⋅-(其中,a b 是常数). 可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .例12 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅.解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法例13 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n ;(3)求数列{}(21)3nn -⋅的前n 项和nS(此即例6).解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立.(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立. (3)1(21)3=6(3)3nn n n n --⋅⋅-.由(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又数列{}3n的前n 项和为2331-+n .所以数列{}(21)3nn -⋅的前n 项和为33)1(233413)12(611+⋅-=--+⋅-⋅=++n n n n n n S高考题16 (2008年高考江苏卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对x求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证:(i)0)1(1=-∑=nk knkkC ; (ii)0)1(12=-∑=nk k nkC k ; (iii)1121110+-=++=∑n C k n nk kn . 答案:(1)在已知等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由已知等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在已知等式两边在[0,1]上对x 积分后可得欲证.。
数列求和7种方法
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a == [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111 (裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和的七种方法
数列求和的七种方法数列求和是数学中的一个基本问题,我们经常会在数学课上遇到。
在解决数列求和的问题时,我们可以使用多种方法来计算数列的和。
下面我将介绍七种常见的方法。
第一种方法是等差数列求和。
等差数列的特点是每一项与前一项的差值都相等,我们可以使用等差数列求和公式来计算其和。
如果一个等差数列的首项为a,公差为d,有n项,则等差数列的和可以表示为Sn = (n/2)(2a + (n-1)d)。
通过这个公式,我们可以快速计算等差数列的和。
第二种方法是等比数列求和。
等比数列的特点是每一项与前一项的比值都相等,我们可以使用等比数列求和公式来计算其和。
如果一个等比数列的首项为a,公比为r,有n项,则等比数列的和可以表示为Sn = a(1 - r^n)/(1 - r)。
通过这个公式,我们可以方便地计算等比数列的和。
第三种方法是求和公式法。
对于一些特殊的数列,我们可以找到一个求和公式来计算其和。
例如,等差数列和等比数列都有对应的求和公式。
在解决数列求和的问题时,我们可以通过寻找求和公式来简化计算过程。
第四种方法是换元法。
有时候,我们可以通过将数列中的项进行变量替换来简化计算过程。
例如,我们可以将数列中的项表示为一个多项式,并对该多项式进行求和。
通过变量替换和多项式求和,我们可以迅速得出数列的和。
第五种方法是递推法。
对于一些没有明显规律的数列,我们可以使用递推法来计算其和。
递推法的思想是通过前几项的和来求解后一项的值。
通过不断累加并递推,我们可以得到数列的和。
第六种方法是分组求和法。
对于一些复杂的数列,我们可以将其划分为多个子数列,并分别计算每个子数列的和。
然后将所有子数列的和相加,即得到整个数列的和。
这个方法常常在解决难题时使用,可以将复杂问题化简为简单问题。
第七种方法是利用数学工具求和。
在现代数学中,我们有各种各样的数学工具可以用来辅助求和。
例如,我们可以使用微积分中的积分来计算一些复杂数列的和。
通过利用数学工具,我们可以更加高效地求解数列求和的问题。
数列求和常见的7种方法
数列求和常见的7种方法数列求和常见的7种方法一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和分段求和法(合并法求和)利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.。
(完整版)数列求和常见的7种方法
答并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.
解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°
(1)试用 表示a ;
3.数列 中, 且满足
⑴求数列 的通项公式;
⑵设 ,求 ;
=
=
=
=5
[例14]在各项均为正数的等比数列中,若 的值.
解:设
由等比数列的性质 (找特殊性质项)
和对数的运算性质 得
(合并求和)
=
=
=10
七、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.
[例15]求 之和.
…………..②(反序)
又因为
①+②得(反序相加)
=89
∴S=44.5
题1已知函数
(1)证明: ;
(2)求 的值.
解:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,
两式相加得:
所以 .
练习、求值:
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
[例7]求数列的前n项和: ,…
解:设
将其每一项拆开再重新组合得
(分组)
当a=1时, = (分组求和)
数列求和常见的7种方法
数列求和常见的7种方法数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x xx 32的前n 项和.解:由212log log 3log 1log3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nSn Sn f 的最大值.解:由等差数列求和公式得)1(21+=n n S n ,)2)(1(21++=n n S n (利用常用公式)∴1)32()(++=n nS n S n f =64342++n nn=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{nn22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设n n n S 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1na a +.[例5] 求证:nn nnnnn C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由m n nmnC C -=可得nnn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ① 将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aaa n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a Sn n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(nn n S n -+==2)13(nn +(分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11nn a a a n -+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设kk k k k k a k++=++=2332)12)(1(∴∑=++=nk n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n(分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n-+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则(7))11(1))((1CAn B An B C C An B An a n+-+-=++=(8)11na n nn n ==+++[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设nn n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n an,又12+⋅=n n na a b,求数列{b n }的前n 项的和.解: ∵211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n(裂项求和)=)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S(裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1-=1cot 1sin 1⋅=1sin 1cos 2∴ 原等式成立 答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵)180cos(cos n n --=(找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90°(合并求和)= 0 [例13] 数列{a n }:nn n a a a a a a-====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a+⋅⋅⋅+++ 由nn n a a a a a a-====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a+++ =46362616+++++++k k k k a a a a=5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a Sn+⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k 个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n(分组求和)=)1111(91)10101010(911321个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅ =)91010(8111n n --+[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n(找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,nS 是其前n项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n,求证:数列{}nb 是等比数列;⑵设数列),2,1(,2 ==n a cnn n,求证:数列{}nc 是等差数列;2.设二次方程na x 2-na +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3. (1)试用na 表示a 1n +;3.数列{}na 中,2,841==a a 且满足nn n a a a-=++122*N n ∈⑴求数列{}na 的通项公式; ⑵设||||||21n n a a a S +++= ,求nS ;。
数列求和7种方法
数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。
3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。
例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。
二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。
6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。
三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。
数列求和常见的7种方法
数列求和常见的7种方法数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的应用。
在数学中,我们常常使用不同的方法来求解数列求和问题,以下将介绍一些常见的数列求和方法。
一、公式法:公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,我们可以通过找到它们的通项公式,从而直接计算出数列的和。
例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。
同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *(1 - r^n)/(1 - r),其中a1为首项,r为公比。
二、递推法:递推法是另一种求解数列求和问题的常用方法。
通过推导出数列的递推关系式,我们可以通过逐项求和的方式来求解数列求和问题。
例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过递推的方式来求得前n项和。
三、画图法:画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。
四、换元法:换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。
五、差分法:差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。
例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。
数列求和常见的7种方法
数列求和常见的7种方法数列求和是数学中常见的问题之一、在数学中,数列是按照一定规律排列的一组数,求和则是将数列中的所有数相加得到一个结果。
在实际问题中,数列求和涉及到很多应用,比如计算排列组合、概率统计、几何等。
本文将介绍常见的七种求和方法,包括等差数列求和、等比数列求和、递推数列求和、特殊数列求和、级数求和、积性函数求和和递归求和。
一、等差数列求和方法等差数列指的是数列中的每一项与下一项之间的差值都相等的数列。
等差数列求和的方法有两种:公式法和递推法。
公式法:设等差数列的首项为a1,公差为d,求等差数列的前n项和Sn,则有下面的公式:Sn = (a1+an) * n / 2,其中an是数列的末项。
递推法:通过递推方法,可以依次计算等差数列的每一项,将它们相加得到数列的和。
递推公式为:an = a1 + (n-1) * d。
使用递推法时要注意,计算的次数需要与指定的项数相等。
二、等比数列求和方法等比数列是指数列中的每一项与前一项之比都相等的数列。
等比数列求和的方法有两种:公式法和递推法。
公式法:设等比数列的首项为a1,公比为q,求等比数列的前n项和Sn,则有下面的公式:当q≠1时:Sn=a1*(1-q^n)/(1-q)。
当q=1时:Sn=a1*n。
递推法:通过递推方法,可以依次计算等比数列的每一项,将它们相加得到数列的和。
递推公式为:an = a1 * q^(n-1)。
同样,使用递推法时要注意计算的次数与指定的项数相等。
三、递推数列求和方法递推数列是指数列中的每一项都由前面的项经过其中一种规律计算得到的数列。
递推数列求和的方法有两种:递推法和公式法。
递推法:通过递推方法,依次计算数列的每一项,将它们相加得到数列的和。
递推公式由数列的规律决定。
公式法:有些递推数列可以找到与之对应的公式,从而可以直接通过公式计算数列的和。
四、特殊数列求和方法特殊数列是指具有特殊性质的数列,比如斐波那契数列、Lucas数列等。
数列求和7种方法(方法全-例子多)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和公式七个方法
数列求和公式七个方法
由普通的等差数列和等比数列求和公式,到利用递推关系求和,以及利用数列的性质等多种方法,这些都可以用来研究数列求和的问题。
在此,我们将详细介绍七种常用的数列求和方法。
一、等差数列求和法。
当数列符合等差数列的特性(即每两项之间的差值是一个常数)时,可以使用公式S=n/2*(a1+an)来求和。
其中,n是项数,a1是首项,
an是末项。
二、等比数列求和法。
在数列成等比数列(即每两项之间的比值是一个常数)时,可以利用公式S=a1*(1-q^n)/(1-q)(没有公比为1)或S=n*a1(公比为1)求和。
其中,n是项数,a1是首项,q是公比。
三、高斯求和法。
这是一种巧妙的求和方法,是德国数学家高斯在少年时期首创的。
基本的思想是将数列“对折”后相加,然后对结果进行二分。
四、递推关系求和法。
通过对数列中的关系进行递推,可以获得新的数列,然后通过求和公式或其他方法求和。
五、利用公式变换法。
将数列通过某种变换,转换成为我们能够处理的形式,然后再进行求和。
六、分部求和法。
将一个复杂的数列,通过适当的方法,拆分成若干个简单的数列,然后分别求和,再将结果进行合并。
七、利用数列的性质求和。
诸如奇偶性、交错性、单调性等数列的性质,都可以在特定的情况下用于求和。
此外,还可以对称求和、循环求和等方法。
以上就是数列求和的七种方法,掌握这些方法能让我们更灵活地解决数列求和问题。
当然,这些方法并不是孤立存在的,而是需要根据具体的数列,灵活运用和组合,才能解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的七种基本方法甘志国部分内容(已发表于 数理天地(高中),2014(11):14-15)数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种基本方法.1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记:还要记住一些正整数的幂和公式:例1 已知数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤⇔>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时,所以 2232(1,2,,16)32512(17,)n n nn T n n n n *⎧-=⎪=⎨-+≥∈⎪⎩N L 且例2 求1)2(3)1(21⋅++-⋅+-⋅+⋅=n n n n S n Λ.解 设2)1()1(k n k k n k a k -+=-+=,本题即求数列}{k a 的前n 项和.高考题1 (2014年高考浙江卷文科第19题(部分))求数列{}21n -的前n 项和n S . 答案:2n S n =.高考题2 (2014年高考四川卷理科第19题(部分))求数列{}24n -的前n 项和n S . 答案:23n S n n =-.高考题3 (2014年高考福建卷文科第17题)在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .答案:(1)13n na -=;(2)22n n nS -=.高考题4 (2014年高考重庆卷文科第16题)已知{}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.(1)求n a 及n S ;(2)设{}n b 是首项为2的等比数列,公比q 满足244(1)0q a q S -++=,求{}n b 的通项公式及其前n 项和n T .答案:(1)221,n n a n S n =-=;(2)2122,(41)3n n n n b T -==-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 例3 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S Λ 也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S Λ所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=例4 设4()42xx f x =+,求和12320012002200220022002f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L . 解 可先证得()(1)1f x f x +-=,由此结论用倒序相加法可求得答案为20012. 3 裂项相消法例5 若}{n a 是各项均不为0的等差数列,求证:1113221111++=+++n n n a a n a a a a a a Λ. 证明 设等差数列}{n a 的公差为d :若0d =,要证结论显然成立;若0≠d ,得例8 证明222211112(123n n*++++<∈N L 且2)n ≥. 证明 22221312111n++++Λ高考题5 (2014年高考全国大纲卷理科第18题)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 答案:(1)133n a n =-;(2)10(103)n nS n =-.高考题6 (2014年高考广东卷文科第19题)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有31)1(1)1(1)1(12211<++++++n n a a a a a a Λ.答案:(1)12a =;(2)2n a n =;(3)当1n =时,可得欲证成立.当2n ≥时,111111(1)2(21)(21)(21)22121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,再用裂项相消法可得欲证.高考题7 (2014年高考山东卷理科第19题)已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列. (1)求数列}{n a 的通项公式;(2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 答案:(1)21n a n =-,2221221n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数.4 分组求和法例9 求11111111111224242n nS -⎛⎫⎛⎫⎛⎫=+++++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L . 解 设11111242n n a -=++++L ,得1122n n a -=-.所以本题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 例10 设数列}{n a 的前n 项和n S 满足221⎪⎭⎫⎝⎛+=n n a S ,又n n n S b )1(-=,求数列}{n b 的前n 项和n T .解 在221⎪⎭⎫⎝⎛+=n n a S 中,令1n =可求得11=a .还可得相减,得所以}{n a 是首项为1公差为2的等差数列,得所以 222)1(,21n b n a S n n n n ⋅-==⎪⎭⎫⎝⎛+=当n 为偶数时, 当n 为奇数时, 总之,2)1()1(+⋅-=n n T nn . 高考题8 (2014年高考北京卷文科第15题)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.答案:(1)1=3,=32n n n a n b n -+;(2)3(1)212n n n ++-. 高考题9 (2014年高考山东卷文科第19题)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .答案:(1)2n a n =,2(1)2(1)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数.高考题10 (2014年高考浙江卷理科第19题(部分))求数列12(1)n n n ⎧⎫-⎨⎬+⎩⎭的前n 项和n S .答案:1221n nn +--+. 5 错位相减法高考题11 (2014年高考江西卷理科第17题)已知首项都是1的两个数列{}{}∈≠n b b a n n n ,0(,N *)满足02111=+-+++n n n n n n b b b a b a .(1)令nnn b a c =,求数列{}n c 的通项公式; (2)若13-=n n b ,求数列{}n a 的前n 项和n S .解 (1)12-=n c n .(2)得13)12(-⋅-==n n n n n c b a .先写出n S 的表达式:13213)12(37353311-⋅-++⋅+⋅+⋅+⋅=n n n S Λ ①把此式两边都乘以公比3,得n n n n n S 3)12(3)32(35333131321⋅-+⋅-++⋅+⋅+⋅=-Λ ②①-②,得n n n n S 3)12(32323232121321⋅--⋅++⋅+⋅+⋅+=--Λ ③ 13)12()3232323232(213210-⋅--⋅++⋅+⋅+⋅+⋅=--n n n n S Λ ④由等比数列的前n 项和公式,得23)22(13)12(132+⋅-=+⋅-++-=n n n n n n S ⑤因为此解答确实步骤多,且有三步容易出错:(1)等式③右边前n 项的符号都是“+”,但最后一项是“—”;(2)当等式③右边的前n 项不组成等比数列时,须把第一项作微调,变成等比数列(即等式④),这增加了难度;(3)等式⑤中最后一步的变形(即合并)有难度.但这种方法(即错位相减法)又是基本方法且程序法,所以备受命题专家的青睐,在高考试卷中频频出现就不足为怪了.考生在复习备考中,应彻底弄清、完全掌握,争取拿到满分.这里笔者再给出一个小技巧——检验:算得了n S 的表达式后,一定要抽出万忙的时间检验一下21,S S 是否正确,若它们均正确,一般来说就可以确定算对了,否则就算错了,需要检查(重点是检查容易出错的三点)或重算.对于本题,已经算出了13)1(+⋅-=n n n S ,所以10,121==S S .而由通项公式可知1033,1111121=⋅+==⋅=S S S ,所以求出的答案正确.高考题12 (2014年高考课标全国卷I 文科第17题)已知{}n a 是递增的等差数列,42,a a 是方程2560x x -+=的根. (1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 答案:(1)121+=n a n . (2)用错位相减法可求得答案为1242++-n n . 高考题13 (2014年高考安徽卷文科第18题)数列{}n a 满足111,(1)(1),n n a na n a n n n +==+++∈N *.(1)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)设3nn b ={}n b 的前n 项和n S . 答案:(1)略.(2)由(1)可求得2n a n =,所以3n n b n =⋅,再用错位相减法可求得433)12(1+⋅-=+n n n S .高考题14 (2014年高考四川卷文科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *). (1)证明:数列{}n b 为等比数列;(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n n a b 的前n 项和n S .答案:(1)略.(2)可求得,2n n n a n b ==,所以24n n n a b n =⋅,再用错位相减法可求得944)13(1+⋅-=+n n n S .高考题15 (2014年高考四川卷理科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *).(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 答案:(1)2=3n S n n -. (2)可求得,2n n n a n b ==,所以2n n n a nb =,再用错位相减法可求得答案为n n n T 222+-=. 6 待定系数法例11 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得 先用错位相减法求数列{}m m a b ⋅的前n 项和n S :所以有下面的结论成立:若{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解本题: 可设()3n n S an b b =+⋅-(其中,a b 是常数). 可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .例12 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅L .解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L .用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法例13 (1)求证:)1(111132≠--=++++++x x x x x x x n nΛ; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n Λ;(3)求数列{}(21)3nn -⋅的前n 项和nS(此即例6).解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立.(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立.(3)1(21)3=6(3)3nn n n n --⋅⋅-.由(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又数列{}3n的前n 项和为2331-+n .所以数列{}(21)3nn -⋅的前n 项和为高考题16 (2008年高考江苏卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对x求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x n n n n n n n ()1(2210ΛR ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证:(i)0)1(1=-∑=nk knkkC ; (ii)0)1(12=-∑=nk k nkC k ; (iii)1121110+-=++=∑n C k n nk kn . 答案:(1)在已知等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由已知等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在已知等式两边在[0,1]上对x积分后可得欲证.。