金属学与热处理教案-哈尔滨工业大学(三)
哈工大,金属学与热处理课件,绪论
2
绪 论
(一)材料的定义及分类
• 按应用领域,材料可以分为:电子材料,航空航 天材料,核材料,建筑材料,能源材料,生物材 料等。 • 按使用用途,材料可以分为:结构材料和功能材 料。 • 按先进性,材料可以分为:传统材料和新材料 (先进材料)。
3
绪 论
(二)材料的发展与人类的进步
材料的发展是人类进步程度的重要标志, 是人类社会发展的里程碑。 • 一百万年以前,人类开始进入旧石器时代,可以 用石头作工具。 • 一万年以前,人类开始进入新石器时代,将石头 加工成器皿和工具,在8000年前,开始人工烧成 陶器,用于器皿和装饰品。
22
绪 论
(六)金属学及热处理的发展概况
近代的理论科学阶段 近几十年来,以马氏体相变为核心的固态相变 理论得到了迅速发展,固态相变理论日臻成熟。成 熟的热处理工艺已经广泛应用于工业领域,并且随 着金属物理的发展和其它新技术的移植应用,各种 先进的热处理技术不断出现并得到应用。
23
绪 论
(七)本课程的任务及在科研生产中的地位
绪 论
(四)材料科学与技术发展的重点
• 开发先进材料---材料制备新技术的开发;新材料 的设计与制备。 • 改进现有材料---传统材料的改性;先进复合材料 的研制。 • 材料的应用---材料的应用要考虑的主要因素有: 材料的使用性能;材料的使用寿命及可靠性;材 料制备、加工与使用期间与环境的适应性;价 格。
9
绪 论
(三)材料科学与工程的内涵
材料科学与工程就是研究有关材料的组成、结构、 制备与加工工艺、材料性能与使用效能以及他们之 间的关系.
性质 效能 成分 受环境影响 (气氛、温度、受力) 组织结构
合成/制备
性质
金属学与热处理(哈工大版)第三版 钢在加热和冷却时的转变
一、概述1、热处理:将钢在固态下加热到预定的温度,保温一定的时间,然后以预定的方式冷却到室温的一种热加工工艺(1)目的:细化晶粒、消除偏析、降低内应力,使组织和性能更加均匀(2)预备热处理:热加工后为随后冷拔、冷冲压和切削加工或最终热处理作好组织准备的热处理(3)热处理原理:钢的加热转变、P转变、M转变、B转变和回火转变2、钢的临界温度:A1、A3、A cm(过冷度和过热度)(1)A c1:加热时P向A转变的开始温度A r1:冷却时A向P转变的开始温度(2)A c3:加热时先共析F全部融入A的终了温度A r3:冷却时A开始析出先共析F的温度(3)A ccm:加热时Fe3C II全部溶入A的终了温度A rcm:冷却时A开始析出Fe3C II温度二、珠光体转变1、P转变:过冷A在临界温度A1以下比较高的温度范围内进行转变(1)实质:单相A分解为F和Fe3C两个新相的机械混合物的相变过程(2)扩散型相变:碳的重新分布和铁的晶格改组2、组织形态和机械性能(1)片状珠光体:由片层相间的F和Fe3C片组成P的片间距(S0):相邻两片F或Fe3C之间的距离→P形成时的过冷度(越大、越小)一般片状珠光体:在光学显微镜下能明显分辨出F和Fe3C层片状组织形态S(细片状P):只能在高倍光学显微镜下才能分辨出F和Fe3C层片状组织形态T(极细P):只能在电子显微镜下才能分辨出F和Fe3C层片状组织形态机械性能:片间距和P团的直径片间距和直径越小,强度和硬度越高;片间距减小能提高塑性(2)粒状珠光体:F基体上分布着粒状Fe3C的组织球化退火或淬火后经过中、高温回火得到机械性能:Fe3C颗粒的大小、形态和分布Fe3C颗粒越细(相界面越多),强度和硬度越高碳化物接近等轴状、分布越均匀,韧性越好**成分相同,粒状P比片状P硬度稍低,但塑性较好;硬度相同,粒状P比片状P具有良好的拉伸性能;粒状P具有较好的切削加工性能、冷成型性能及淬火工艺性能3、珠光体形成过程:(1)片状P:形核(A晶界或相界面),长大(受碳的扩散控制)晶格重构是由Fe原子自扩散完成(2)粒状P:淬火组织回火、过冷A直接分解;冷却速度的大小和等温温度的高低三、马氏体转变1、M转变:钢从A状态快速冷却,抑制其扩散性分解,在低于Ms点下发生的转变(1)实质:低温转变,非扩散性相变(Fe的晶格改组通过切边方式完成)(2)M:碳在α-Fe中的过饱和固溶体,具有很高的硬度和强度2、M的组织形态(1)板条M(位错M):由许多成群、相互平行排列的板条所组成空间形态:扁条状,小角晶界相间低、中碳钢、M时效钢、不锈钢亚结构:高密度位错位错胞:位错分布不均相互缠结,形成胞状亚结构(2)片状M(针状M):大量显微裂纹(增加高碳钢脆性)空间形态:双凸透镜状,光学显微镜下呈针状或竹叶状最大尺寸:取决于原始A晶粒大小→隐晶M(光学显微镜无法分辨)亚结构:孪晶(孪晶M)细微孪晶区(3)影响M形态的因素:M的形成温度(A的化学成分,即碳和合金元素的含量)板条M:200℃以上;片状M:200℃以下碳浓度越高,板条M越少,片状M越多:降低Ms的合金元素促进片状M形成Ms以上不太高温度进行塑性变形,增加板条M的数量3、M的晶体结构:正方度(轴比c/a,表示碳的过饱和程度,取决于M的质量分数)4、M的性能:(1)M的硬度和强度:硬度取决于M的含碳质量分数;合金元素影响强度固溶强化、相变强化、时效强化、晶界强化(原始A晶粒大小及板条M束大小)(2)M的塑性和韧性:取决于含碳质量分数、组织形态和内部的亚结构片状M 硬而脆;板条M 具有较高的强度、硬度以及相当高的塑性、韧性(3)M 的物理性质:铁磁性,高的矫顽力,高电阻率等5、M 转变的特点:(1)热力学特点:)(e S V G G G G ∆+∆+∆=∆,相变驱动力与表面能和弹性应能之和(2)晶体学特点:无扩散性,切变性,共格性,严格的位向关系和惯习面(3)动力学特点:M 的降温转变,A 的稳定化(热稳定化和机械稳定化(两种))(4)M 转变的可逆性:A 可以在冷却时转变为M ,M 重新加热又能形成A四、贝氏体转变1、B 转变(中温转变):介于珠P 和M 转变之间的一种转变既具有P 转变又具有M 转变的某些特征2、B 的组织形态:(1)上B :成束分布、平行排列的F 和夹于其间的断续的条状Fe 3C 的混合物羽毛状,亚结构是位错(2)下B :由含碳过饱和的片状F 和其内部沉淀的碳化物组成的机械混合物空间形态呈双凸透镜状,光学显微镜下呈黑色针状或竹叶状,亚结构是位错(3)粒状B :形成于上B 转变区上限温度范围内,无论如何冷却都可有粒状B 的形成 分解为F 和碳化物形成P ;发生M 转变;富碳的A 全部保留亚结构是位错(密度不大)3、B 的机械性能:取决于B 的组织形态(1)上B :强度和硬度较低,冲击韧性较低(2)下B :良好的综合力学性能(等温淬火工艺得到)(3)粒状B :良好的强韧性(复相强化作用)4、B 转变的特点:(1)B 转变的热力学特点:)(e S V G G G G ∆+∆+∆=∆(2)B 转变的晶体学特点:F 通过切变结构形成;一定的位向关系和惯习面(3)B 转变的动力学特点:F 的形成和碳化物的析出5、魏氏组织:从A 晶界上生长出来的F 或Fe 3C 近乎平行,呈羽毛状或三角形,其间存在着P 的组织,这种组织称为魏氏组织(1)形成:魏氏组织中的F 按B 切变共格机理形成,相当于无碳B (易出现在过热钢中)(2)影响:常伴随A 晶粒粗大,使钢的机械性能尤其是塑性、韧性显著降低(3)消除方法:细化晶粒的正火、退火以及锻造等,严重可采用二次正火五、钢在加热中的转变1、奥氏体化过程:钢加热获得A 的转变过程(1)热力学条件:)(e S V G G G G ∆+∆+∆=∆→A 的自由能低于P 的自由能(2)A 形成过程:形核、长大、剩余Fe 3C 溶解和A 均匀化形核:优先在F 和Fe 3C 的相界面上形成(浓度起伏、结构起伏、能量起伏) 长大:形核后便开始长大,F 向A 转变速度远大于Fe 3C 溶解速度剩余Fe 3C 溶解:趋于共析成分A 均匀化:均匀的单相A(3)A 形成速度:P 向A 转变开始、结束,剩余Fe 3C 溶解完毕,A 均匀化完成 孕育期:共析钢加热到A c1以上某一温度等温,A 并不是立即出现,而是需要保温一段时间才开始形成A 形核、长大阶段所需时间较短,剩余Fe 3C 溶解所需时间较长,A 均匀化更长(4)影响A 形成速度的因素:加热温度,原始组织,化学成分加热温度:加快扩散;增加自由能差原始组织:原始组织越细小,相界面积越大,A 形成越快化学成分影响:碳的质量分数,合金元素(扩散速度、临界温度、不均匀分布)2、A 的晶粒大小及其影响因素(1)A 的晶粒度:起始晶粒度,实际晶粒度,本质晶粒度起始晶粒度:A 转变刚刚完成,其晶粒边界刚刚相互接触时的A 晶粒大小(N/G ) 实际晶粒度:钢在某一具体的热处理或热加工条件下获得的A 的实际晶粒大小 本质晶粒度:根据标准试验方法,在(930±10)℃保温3~8 h 后测得的A 晶粒大小 本质晶粒度表示钢在一定条件下A 晶粒长大的倾向性(本质粗晶粒钢、本质细晶粒钢),与炼钢的脱氧方法和钢的化学成分有关(2)影响A 晶粒长大的因素:升温或保温过程中A 晶粒长大的倾向加热温度和保温时间,加热速度,质量分数,合金元素影响3、过冷A(临界温度A1以下处于不稳定状态的A称为过冷A)等温转变:C曲线(1)过冷A等温转变曲线建立:膨胀法,磁性法,金相硬度法(2)过冷A等温转变曲线分析:A1以上是A稳定区;Ms至M f为M转变区(3)影响A等温转变曲线因素:含碳质量分数,合金元素,A状态,4、过冷A连续冷却转变:CCT图(1)过冷A连续冷却转变曲线建立:膨胀法,金相法,热分析法(2)过冷A连续冷却转变曲线分析:只有P和M转变区,没有B转变区共析钢和过共析钢没有B转变区(A的碳浓度高使B的孕育期长,连续冷却时来不及进行B转变便冷却至低温),亚共析钢由B转变区上临界冷却速度(临界淬火速度):过冷A连续冷却过程中不发生分解,全部冷至Ms点以下发生M转变的最小冷却速度,v c,P+残余A下临界冷却速度:过冷A全部得到P的最大冷却速度,P+M**过冷A等温转变曲线和连续冷却转变曲线比较:①连续冷却转变过程中过冷A的转变温度低于相应的等温转变时的温度,且孕育期长②等温转变产物为单一的组织;连续冷却转变是在一定的温度范围内进行。
哈工大,金属学与热处理课件,第3章
3.1 二元合金相图的建立
3.1.2 二元相图的测定方法
临界点
上临界点 液相线 固相线 下临界点 临界点
用热分析法制作Cu-Ni二元合金相图过程
3.1 二元合金相图的建立
3.1.2 二元相图的测定方法
上临界点连接线称为液相 线,表示合金结晶开始温 度或加热过程中熔化终了 温度。 下临界点连接线称为固相 线,表示合金结晶终了温 度或加热过程中开始熔化 温度。
因此,固溶体结晶时,始终进行着溶质和溶剂原子 的扩散,包括在液相和固相内部的扩散和通过界面 进行的原子互扩散。 需要有足够长的时间,保证平衡结晶过程充分进行。
3.2 匀晶相图及固溶体的结晶
3.2.2 固溶体合金的平衡结晶过程
(2)固溶体合金的结晶需要一定的温度范围
固溶体合金的结晶需要原子之间的相互扩散。
400 300 200 100 A 20 40 60 w(B) / % 80 B T/℃
3.1 二元合金相图的建立
3.1.2 二元相图的测定方法
• 配制一系列成分不同的合金,测定合金相变点 温度,便可在温度-成分坐标图上得到一系列 坐标点。把各相同意义的点连接成线,这些线 把坐标图划分出一些区,称为相区,标明各区 存在的相名,相图建立完毕。 • 相变点的常用测量方法有:热分析法;膨胀 法;电阻法等。
第3章 二元合金相图及合金的凝固
• 本章的主要学习内容:
二元合金相图的建立; 匀晶相图及固溶体的结晶; 共晶相图及其合金的结晶; 包晶相图及其合金的结晶; 其它类型的二元合金相图; 二元相图的分析和使用; 铸锭的组织与缺陷。
3.1 二元合金相图的建立
3.1.1 二元相图的表示方法
• 合金存在的状态通常由合金的成分、温度和 压力三个因素确定。由于合金的加工处理常 在常压下进行,所以合金的状态可由合金的 成分和温度两个因素决定。 • 对于二元合金,通常用横坐标 表示成分,纵坐标表示温度, 700 600 建立二元合金相图。 •E 500 • 相图中任意一点的坐标值表示 一个合金的成分和温度,如图 中E点表示合金成分w(B)=40%, w(A)=60%,温度为500℃。
金属学与热处理(第三版)课后习题答案 哈工大工业大学 崔忠圻主编
金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(123)、(0-1-2)、(421)等晶面和[-102]、[-211]、[346]等晶向10、已知面心立方晶格常数为a,分别计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子排列密度(某晶向上的原子排列密度是指该晶向上单位长度排列原子的个数)答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答:组元:组成合金最基本的、独立的物质。
相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。
固溶体:合金组元之间以不同的比例相互混合形成的晶体结构与某一组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。
置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。
间隙固溶体的强化效果大于置换固溶体的强化效果。
原因:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。
间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的简单的晶体结构称为间隙相。
《金属学与热处理》课件
举例说明
电子器件中的微型线圈需要采用真空 热处理来确保其导电性能和稳定性; 而医疗器械中常用的钛合金则需要通 过特殊的化学热处理来提高其耐腐蚀 性和生物相容性。
05
热处理设备与工艺控 制
热处理设备的分类与选择
热处理设备的分类
根据加热方式、用途和特点,热处理设备可分为多种类型,如电炉、燃气炉、 真空炉、感应炉等。
举例说明
飞机发动机中的涡轮叶片需要采用特 殊的热处理工艺来提高其高温强度和 抗疲劳性能;而医疗器械中常用的钛 合金则需要通过精细的热处理来确保 其生物相容性和力学性能。
功能金属材料的热处理
总结词
详细描述
功能金属材料具有特殊的物理和化学 性能,其热处理工艺对材料的性能具 有重要影响。
功能金属材料的热处理主要包括真空 热处理、化学热处理和磁场热处理等 工艺。这些工艺能够改变金属的表面 组织结构和化学成分,从而赋予材料 特殊的物理和化学性能。例如,磁性 材料需要进行磁场热处理来提高其磁 导率和磁感应强度;而超导材料则需 要通过真空热处理和化学热处理来确 保其超导性能。
气氛控制
对于某些热处理工艺,如渗碳、 渗氮等,需要控制炉内的气氛, 包括气体组成、压力和流量等, 以确保工件表面的质量。
热处理过程中的环境保护
减少能源消耗
采用先进的热处理技术和设备,提高能源利用率 ,减少能源浪费。
降低污染物排放
通过改进工艺和设备,降低热处理过程中产生的 有害物质排放,如废气、废水和固体废弃物等。
热处理过程中的相变
相变概念
金属在加热和冷却过程中发生的组织结构变 化,包括晶体结构的变化和相的分离。
相变机理
固态相变、液态相变和气态相变等。
相变类型
共析转变、包晶转变、固溶体脱溶等。
金属材料与热处理教案
金属材料与热处理教案第一章:金属材料的概述教学目标:1. 了解金属材料的定义和分类。
2. 掌握金属材料的性质和用途。
教学内容:1. 金属材料的定义:金属材料是指由金属元素或金属合金组成的材料。
2. 金属材料的分类:金属材料主要包括纯金属和合金两大类。
3. 金属材料的性质:金属材料具有优良的导电性、导热性和韧性等。
4. 金属材料的用途:金属材料广泛应用于建筑、机械、电子等领域。
教学活动:1. 引入金属材料的概念,引导学生思考金属材料的日常应用。
2. 介绍金属材料的分类,让学生了解不同类型的金属材料。
3. 通过实例讲解金属材料的性质,如导电性、导热性和韧性等。
4. 探讨金属材料的用途,让学生了解金属材料在各个领域的重要性。
第二章:金属的结晶与晶体结构教学目标:1. 了解金属的结晶过程和晶体结构。
2. 掌握金属的晶体类型和性质。
教学内容:1. 金属的结晶过程:金属从液态转变为固态的过程称为结晶。
2. 金属的晶体结构:金属晶体主要由金属原子通过金属键相互连接而成。
3. 金属的晶体类型:金属晶体主要分为面心立方晶格和体心立方晶格两种类型。
4. 金属的晶体性质:不同晶体结构的金属具有不同的性质,如硬度和延展性等。
教学活动:1. 引入金属的结晶过程,引导学生了解结晶的基本概念。
2. 介绍金属的晶体结构,让学生掌握金属原子的排列方式。
3. 通过示意图讲解金属的晶体类型,如面心立方晶格和体心立方晶格。
4. 探讨金属的晶体性质,让学生了解不同晶体结构对金属性质的影响。
第三章:金属的塑性变形与再结晶教学目标:1. 了解金属的塑性变形和再结晶过程。
2. 掌握金属的塑性变形方式和再结晶的条件。
教学内容:1. 金属的塑性变形:金属在外力作用下发生形状改变而不断裂的过程。
2. 金属的塑性变形方式:主要包括拉伸、压缩、弯曲和扭转等。
3. 再结晶:金属在加热和冷却过程中,晶体结构发生改变的现象。
4. 再结晶的条件:再结晶发生的温度、应变量和时间等因素。
《金属学与热处理》课程教学大纲
材料科学与工程专业参考教材1.金属学与热处理,参考书:《金属学与热处理原理(第3版)》,崔忠圻刘北兴,哈尔滨工业大学出版社,20112.材料工程基础,参考书:《热加工工艺基础》,钱继峰,北京大学出版社,2006 3.材料工艺学,参考书:《钢的热处理》,胡光立谢希文,西北工业大学出版社,2004 第一部分专业综合课考试大纲理论考试部分(200分)《金属学与热处理》(70分)一、考试目的、性质与基本要求考试目的是考察考生是否具备进行材料科学与工程领域学习所要求的金属学与热处理基础知识。
本考试是测试材料类专业考生金属学与热处理基本知识和综合分析能力的水平考试。
要求学生全面掌握金属学与热处理的基本概念、基本规律、基本原理,要求能灵活运用金属学与热处理的基本理论综合分析金属材料中的基本问题。
二、考试形式本考试采取客观试题与主观试题相结合,基本概念与基本理论测试与计算和综合分析相结合的方法。
三、考试内容考试包括以下九部分内容:1、金属与合金的晶体结构掌握三种典型的晶体结构特点,掌握固溶体和金属化合物的分类及性能特点,了解面缺陷中的晶界及堆垛层错;熟练掌握晶胞、晶向指数和晶面指数的概念和指数的标定方法,熟练掌握点缺陷和线缺陷的特点、形成机制及对性能的影响。
2、纯金属的结晶了解金属铸锭的基本组织与常见缺陷;掌握金属结晶的基本规律:形核与过冷现象、纯金属的冷却曲线、晶体的生长方式、晶粒大小等。
3、二元合金相图与合金的凝固了解相的分类及影响相结构的因素,了解相图的分析与使用方法,了解成分过冷对晶体成长形状和铸锭组织的影响;掌握二元合金相图的表示方法与测定方法,掌握固溶体合金的平衡结晶与不平衡结晶,掌握典型合金的平衡、不平衡结晶及组织;熟练掌握相律与杠杆定律。
4、铁碳合金熟练掌握铁碳合金的基本相,Fe-Fe3C相图包括:相图中点、线、区及其意义,熟练掌握包晶转变、共晶转变、共析转变,熟练掌握铁碳合金的平衡结晶过程及组织:共析钢、亚共析钢、过共析钢、共晶白口铁、亚共晶白口铁、过共晶白口铁,熟练掌握含碳量对铁碳合金平衡组织和性能的影响。
金属学与热处理(哈工大)第三版大纲
第1章金属与合金的晶体结构1. 晶体、非晶体;晶胞、晶系、晶面指数与晶向指数;2. 三种典型金属晶体的原子排列方式、晶胞原子数、配位数、致密度、密排晶向与密排晶面、多晶型性;3. 合金中的相及其结构:固溶体、化合物;4. 点缺陷、位错、界面的基本概念。
第2章纯金属的结晶1. 纯金属结晶规律、结晶条件、结晶过程中的形核、长大过程与晶粒尺寸控制;2. 过冷度在结晶过程中的作用,临界晶核半径、临界形核功与过冷度之间的关系,细化晶粒的方法。
第3章二元合金相图和合金的凝固1. 二元合金相图建立与杠杆定律,二元相图的分析和使用;2. 二元合金凝固过程及组织形貌分析、平衡相、平衡组织计算;非平衡凝固过程及其组织分析、固溶体合金的结晶特点;3. 伪共晶、离异共晶、枝晶偏析、成分过冷的概念;4. 金属铸锭的组织与缺陷。
第4章铁碳合金1. Fe - Fe3C相图的特征温度点、碳含量、转变线、各区域的组成相、相图中的重要点(B包晶点、C共晶点、S共析点、E奥氏体最大含碳量、P铁素体最大含碳量等)、线(BHJ包晶转变线、ECF共晶转变线、PSK共析转变线、GS 线、ES线等)、相(铁素体、奥氏体、渗碳体);2. 各种成分合金结晶过程分析、室温下的显微组织、相组成物、组织组成物相对量的计算、五种渗碳体的来源、形态及相对量的计算;3. 含碳量对钢的平衡组织及性能的影响。
室温下碳钢及白口铁的显微组织及含碳量范围。
第5章三元合金相图1. 三元合金相图的表示方法和三相平衡的定量法则;2. 简单三元相图及其合金结晶过程分析,组织组成物、相组成物相对量计算;三元相图的等温截面和变温截面。
第6章金属的塑性变形和再结晶1. 金属塑性变形的方式:滑移、孪生;2. 晶体滑移的位错机制、滑移带、滑移线、滑移的临界分切应力、滑移面、滑移方向、滑移系;3. 塑性变形对金属组织与性能的影响,位错强化机制、细晶强化机制;4. 冷变形金属在加热过程中的组织与性能变化,回复与再结晶;5. 再结晶后的晶粒尺寸、影响再结晶晶粒尺寸和温度的主要因素、金属热加工的目的。
金属学与热处理(哈工大版)第3版 “四把火”
一、退火1、退火:将组织偏离平衡状态的钢加热到适当温度,保温一段时间,然后缓慢冷却,以获得接近平衡状态组织的热处理工艺(1)相变重结晶退火:临界温度(A C1或A C3)以上(2)再结晶退火:临界温度以下(3)连续退火和等温退火(4)正火2、完全退火:将钢加热到A C3以上,保温足够长时间,使组织完全奥氏体化后缓慢冷却,以获得接近平衡状态组织的热处理工艺(1)目的:细化晶粒、均匀组织、消除内应力和热加工缺陷,降低硬度,改善切削加工性能和冷塑性变形性能。
(2)加热温度:A C3以上20~30℃退火保温时间:工件透烧时间、组织转变所需时间(钢材化学成分、工件形状和尺寸、加热设备类型、装炉量以及装炉方式)冷却速度:缓慢,保证奥氏体在A r1温度以下不大的过冷条件下进行P转变(避免硬度过高)(3)等温退火:奥氏体化后很快降至稍低于A r1温度等温一段时间,可缩短退火时间3、不完全退火:将钢加热至A C1~A C3或A C1~A ccm之间,保温后缓慢冷却,以获得接近平衡组织的热处理工艺(1)组织:仅是P发生相变重结晶转变为A,基本上不改变先共析F或Fe3C形态和分布(2)优点:加热温度低,工艺周期短,消耗热量少,成本低,生产率高4、球化退火:使钢中的碳化物球化,获得粒状珠光体的一种热处理工艺(不完全退火)(1)目的:降低硬度,改善切削加工性能,获得均匀组织,改善热处理工艺性能(为淬火作组织准备)(2)加熱溫度:A C1以上20~30℃,随炉加热保温时间:不能太长(2~4 h)冷却方式:炉冷,或在A r1以下20℃左右进行长时间等温处理(3)关键:使A中保留大量未溶碳化物质点,造成A中碳浓度分布不均匀性(4)一次球化退火等温球化退火(广泛应用)往复球化退火5、扩散退火(均匀化退火):将钢锭、铸件或锻坯加热至略低于固相线的温度,长时间保温,然后随炉缓慢冷却(1)目的:消除晶内偏析,使成分均匀化(2)实质:使钢中各元素的原子在A中充分扩散——温度高时间长(3)退火加热温度:A C3或A ccm以上150~300℃保温时间:根据钢件最大截面积厚度计算(4)组织:A晶粒十分粗大→进行一次完全退火或正火细化晶粒、消除过热缺陷(5)缺点:生产周期长,热能消耗大,设备寿命短,生产成本高,工件烧损严重6、去应力退火:(精加工或淬火之前)将工件加热至A C1以下某一温度,保温一定时间,然后缓慢冷却(1)目的:消除铸件、锻件、焊接件、冷冲压件以及机械加工工件中的残余内应力,提高工件的尺寸稳定性,防止变形和开裂(2)退火加热温度:宽泛,根据具体情况而定(500~650℃)保温时间:根据工件的截面尺寸或装炉量冷却速度:保温后缓慢冷却,200~300℃后出炉空冷至室温7、再结晶退火(中间退火):将冷变形后的金属加热到再结晶温度以上,保温适当时间后,使变形晶粒重新转变为新的等轴晶粒,同时消除加工硬化和残余内应力的热处理工艺(1)退火温度:高于再结晶温度(与金属化学成分和冷变形量有关)(2)一般钢材650~700℃,1~3 h,空冷(3)临界变形度→正火或完全退火代替再结晶退火二、正火1、正火:将钢加热到A C3或A ccm以上适当的温度,保温一定时间,使之完全奥氏体化,然后在空气中冷却,得到P类型组织的热处理工艺(1)加热温度与时间:与完全退火相同(A C3或A ccm以上30~50℃)冷却速度:较快亚共析钢正火组织析出的F较少,P较多且间距小转变温度:较低过共析钢正火可抑制先共析网状渗碳体的析出冷却方式:工件从炉中取出后空冷,大件可采用鼓风或喷雾等方式(2)实质:完全奥氏体化加伪共析转变(3)适用对象:碳素钢及低、中合金钢(4)应用:改善低碳钢的切削加工性能;消除中碳钢热加工缺陷;消除过共析钢的网状碳化物(增加材料脆性,降低强度,降低零件疲劳寿命);提高普通结构件的机械性能三、淬火1、淬火:将钢加热到临界点A C3或A ccm以上一定的温度,保温一定时间,然后以大于临界淬火速度的速度冷却,使过冷奥氏体转变为马氏体(或贝氏体)组织的热处理工艺(1)实质:奥氏体化后进行马氏体转变(或贝氏体转变)(2)组织:马氏体(或下贝氏体),少量残余A及未溶的第二相(3)特点:提高工件的强度、硬度和耐磨性结构钢:淬火和高温回火(调制),获得较好的强度和塑性、韧性配合弹簧钢:淬火和中温回火,获得很好的弹性极限工具钢、轴承钢:淬火和低温回火,获得高硬度和高耐磨性2、淬火应力:热应力和组织应力(1)热应力:工件在加热或冷却过程中,由于不同部位的温度差异,导致热胀冷缩的不一致而产生的应力→快速冷却时工件截面上温差造成的快速冷却,表层先冷中心后冷,表层冷却快中心冷却慢冷却初期,表层冷却快、温度低、收缩量大,表层产生拉应力、心部产生压应力冷却后期,心部体积继续收缩,表层产生压应力、心部产生压应力(2)组织应力:工件在冷却过程中,由于温差造成的不同部位组织转变不同时性而引起的内应力→与钢在M转变温度范围的冷却速度、工件尺寸、钢的导热性、A的屈服强度,钢的含碳质量分数、M的比热容及钢的淬透性有关淬火初期,表层发生M转变体积膨胀,表层产生压应力、心部产生拉应力继续冷却,心部发生M转变体积膨胀,表层产生拉应力、心部产生压应力组织应力引起的残余应力与热应力恰好相反3、淬火加热:加热温度、加热时间、加热方式、选择介质(1)加热温度:根据钢的临界点确定,以得到均匀细小的A晶粒为原则、以便淬火后获得细小M组织亚共析钢:A C3+(30~50℃)共析钢和过共析钢:A C1+(30~50℃)低合金钢:根据临界点A C1或A C3、合金元素的作用确定,A C1或A C3+(50~100℃)(2)过热:工件在淬火加热时。
哈工大金属学与热处理讲课文档
位错与第二相粒子的交互作用 ——切过机制
本片选自西安交大范群成先生作品 在此表示感谢!
第五十三页,共66页。
位错与第二相粒子的交互作用 ——绕过机制
本片选自西安交大范群成先生作品 在此表示感谢!
第五十四页,共66页。
§5-4 塑性变形对金属组织和性能的影响
一 塑性变形对组织结构影响 1 晶粒变形:等轴状→拉长
→易滑移
→使滑移方向灵活, 可 降低脆性
第二十七页,共66页。
交滑移 多系滑移
单系滑移
不同合金加工硬化效果不同
第二十八页,共66页。
3 滑移系及滑移系数的实际意义 (1) 滑移系
一个滑移面和该面上的一个滑移方向 称为 ~ 。
└ 每种晶格滑移系数目的多少可 用来衡量滑移难易
第二十九页,共66页。
(2)各晶体结构的滑移系 体心立方 (b.c.c)
(2)改善铸态组织,消除铸态缺陷。
第三页,共66页。
§5-1 金属的变形特性
一 金属变形的方式及研究方法
1 方式:弹性变形
塑性变形
断裂
成形 失效
第四页,共66页。
2 研究方法
曲线种类: ① 载荷—变形曲线 ② 真应力—真应变曲线
③ 工程应力—应变曲线 ┗主要研究手段
第五页,共66页。
拉伸过程与拉伸曲线示意
—— τ实 〈〈 τ理的原因 └实际金属强度远小于理想结构金属强度。
第三十八页,共66页。
2 滑移过程中存在位错增殖
背景: 退火态ρ位错≈1010m-2; 冷变形: ρ位错≈1015~1016m-2; —— 位错增殖学说
——下图为Frank-Read位错源增殖机制
位错源
金属学与热处理教案
金属学与热处理工作任务单
冶金学院
材料工程技术教研室
x x 工业职业学院
教案首页
课次5 编定月日
课题项目一:金属的结构和性能
任务4:硬度
教学目的:(任务目标)
✧了解布氏硬度、洛氏硬度维氏硬度的测定原理;
✧学习和初步掌握布氏硬度仪、洛氏硬度仪的使用方法;
✧掌握使用布氏硬度仪、洛氏硬度仪测定材料的硬度;
✧根据各种测量的要求和结果,理解各种硬度测量的优缺点。
教学重点、难点:(任务实施要点)
✧掌握布氏硬度仪、洛氏硬度仪的使用方法;
✧掌握使用布氏硬度仪、洛氏硬度仪测定材料的硬度。
教学措施(课型、教法、教具、参考书):
✧课型:任务驱动
✧教法:任务引领现场教学、多媒体教学、任务演示、分组讨论。
✧教具:金属材料与热处理实验室、布氏硬度仪、洛氏硬度仪。
✧参考书:教材p19-25、任务指导书
课外作业(复习、练习、预习):
完成任务单所要求的内容
教学后记:(情景说明)
以金属材料与热处理实验室为教学现场,在学生完全不具备硬度测量知识的前提下,设计硬度测量及认识的工作任务,使学生对硬度有一个初步认识,并能初步掌握使用布氏硬度仪、洛氏硬度仪测定材料的硬度。
金属学与热处理教案-哈尔滨工业大学
绪论一、本课程的任务及在工业生产中的地位任务:研究固态相变的规律性,研究金属或合金热处理组织与性能之间的关系以及热处理理论在工业生产中和应用。
地位:(1)工业生产领域:工业生产中不可缺少的技术,是提高产品质量和寿命的关键工序,是发挥材料潜力、达到机械零部件轻量化的主要手段。
(2)材料研究领域:研制和开发新材料。
列举工业生产切削刀具实例,提出“服役条件”使用性能组织结构化学成分(材料)二、金属热处理的发展概况中国:古代高水平。
春秋战国~明清以前:从出土文物可见。
近代落后。
明清~新中国以前:统治者闭关锁国。
现代奋起直追。
新中国以前~至今:总体上和发达国家比仍有一定差距。
具体表现在(1)科研:个别研究处于世界领先水平,总体研究水平相对落后;(2)生产:工业生产自动化程度不高,能耗较大,特别是技术设备和装备相对落后。
世界范围:十九世纪以前:民间技艺阶段十九世纪后期:实验技术和科学阶段现代:理论科学阶段:X-ray、SEM、TEM等检测手段的提高和应用,极大地促进了材料科学研究和应用的进一步发展。
固态相变以马氏体相变为核心,围绕马氏体相变展开研究工作,材料工作者经历了一个多世纪的研究,取得了丰硕的研究成果,并用这些成果指导实践,取得了巨大的经济效益。
值得指出的是,马氏体相变的研究工作也存在一些未知问题需要继续深入探索。
马氏体相变的研究经历以下几个阶段:(1)1878年德国Martens首次采用光学显微镜观察到淬火钢的针状组织;(2)1895年法国Osmond将钢淬火后的相命名为马氏体;(3)1926~1927年X-ray衍射确定钢中马氏体为体心正方结构(4)近代马氏体相变的研究领域扩大,由金属或合金扩展到无机非金属和高分子材料,马氏体定义(命名)也存在诸多争论。
三、本课程的学习内容学习内容共分六章。
按照教学大纲接续上部分(金属学部分)内容排序为:第九章:金属在加热过程中的相变——奥氏体相变;第十章:金属在冷却过程中的转变图;第十一章:珠光体相变;第十二章:马氏体相变;第十三章:贝氏体相变;第十四章:钢在回火过程中的转变。
哈工大金属学与热处理课件1
(二)塑性 材料断裂前发生永久不可逆变形的能力。 材料断裂前发生永久不可逆变形的能力。 (1) 伸长率( δ):试样拉断后标距的增 伸长率( ): ):试样拉断后标距的增 长量与原始标距长度之比; 长量与原始标距长度之比 δ= (L断后-L原始)/ L原始×%=∆L / L0 ×% (2) 断面收缩率( ψ ):试样拉断处横截 断面收缩率( ):试样拉断处横截 面积的缩减量与原始横截面积之比. 面积的缩减量与原始横截面积之比 ψ= (A原始- A断后)/ A原始×%=∆A / A0 ×%
化学成分相同,处理方式不同 不同, ② 化学成分相同,处理方式不同,性能不同 0.8℅C 的钢锯条→800℃,冷却方式不同 ℅C 的钢锯条→ ℃ 一根出炉后水冷 水冷, 硬而脆,一弯就断; 一根出炉后水冷,性硬而脆,一弯就断; 另一根随炉缓慢冷却 性软,弯曲90 ℃ 缓慢冷却, 另一根随炉缓慢冷却,性软,弯曲 不断。 不断。 又如: 又如: 石墨和金刚石均由碳原子构成, 石墨和金刚石均由碳原子构成, 但性能迥异。 但性能迥异。 原因: 原因:碳原子的空间排列方式不同 即内部组织结构不同
性能取决于什么因素呢? 性能取决于什么因素呢?
化学成分不同, ① 化学成分不同,性能不同 举例: 举例: σb(MPa) 40 纯铝 400~600 铝合金 ~ 60 纯铜 600~700 铜合金 ~ 200 纯铁 40钢(退火态 退火态) 500 钢 退火态 40钢(调质态 调质态) 800 钢 调质态
应 力 σ
弹 性 变 形 塑 性 变 形 断 裂
变形三阶段: 变形三阶段: 弹性变形、 (1) 弹性变形、 (2) 塑性变形、 塑性变形、 (3) 断裂
变
变ε 变
(1) 弹性变形 弹性变形: 特点: 特点: 应力撤消后, 变形消失; 应力撤消后 变形消失; 应力与应变成正比关系; 应力与应变成正比关系; 总变形量很小:<1% 总变形量很小: 低碳钢应力应 变曲线 主要性能指标: 主要性能指标: 弹性极限σ 弹性极限 e :保持弹性 变形的最大应力, 变形的最大应力,MPa 弹性模量E: 弹性模量 : σ=E·ε
哈工大金属学与热处理课件钢的热处理原理与热处理工艺
是过冷奥氏体在临界温度A1以下较高的温度范 围内进行的转变(共析钢在A1~550℃之间), 又称高温转变。是典型的扩散型相变。
奥氏体γ
A1以下
珠光体P( α+ Fe3C)
体心立方 (bcc) 0.0218%C
面心立方 (fcc) 0.77% C
复杂斜方 6.69%C
§7.4 珠光体转变
相互平行排列的板条
针状或竹叶状 凸透镜状 孪晶 高碳钢 硬而脆
扁条状 高密度的位错 低/中碳钢 强韧性
§7.5马氏体转变
热力学
转变特点
晶体学 动力学
§7.6贝氏体转变
§7.6贝氏体转变
贝氏体
贝氏体转变的主要特点:中温相变 上贝氏体 形成温度: 550 ~ 350℃ 下贝氏体 350℃ ~ Ms
性能: 取决于粒状渗碳体的大 小、形态和分布。具有较高的 强度,较好的切削加工性能( 塑韧性好)及淬火工艺性能。 颗粒越细,强度越高;颗 粒越均匀,韧性越好。
在硬度相同的条件下, P 粒状 比 P片 拉伸性能好
获得:球化退火 、淬火+ 回火
§7.5马氏体转变
§7.5马氏体转变
§7.5马氏体转变
1)片状长大机制
领先相
片状珠光体刚形成时碳的浓度示意图
§7.4 珠光体转变
P粒状比P片拉伸性能比较
片状珠光体形成时成片形成机制示意图
§7.4 珠光体转变
珠光体转变的主要特点
(1)在A1温度以下的高温区进行的相变,对非合金钢 约在550~720℃; (2)是渗碳体和铁素体交替组成的片层状组织,为共 析转变; (3)在渗碳体和铁素体形核和长大的过程中,必须依 靠碳的扩散,是扩散型相变; (4)珠光体的形核率随转变温度的降低而增大,而原 子的扩散随温度的降低而困难,故珠光体转变的 温度—时间曲线呈C字形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章:马氏体相变概述:(1)钢经奥氏体化后快冷,抑制了扩散相变,在较低温度下发生无扩散相变转变为马氏体,是热处理强化的主要手段,对工业生产有十分重要的意义;(2)上个世纪初把高碳钢淬火后得到的脆而硬、具有铁磁性的针状组织称为马氏体,六十年代以来现代测试技术发展,对马氏体成分-组织-结构-性能之间有了较深刻的认识;(3)在除了钢以外的铁合金、非铁合金、陶瓷材料等发现了马氏体相变;(4)马氏体相变仍存在一些未知的问题(转变机理等)需待研究。
本章重点:马氏体相变的主要特点、马氏体的组织形态及性能、Ms点定义及影响因素。
本章难点:马氏体转变的主要特征、马氏体产生异常正方度的原因以及马氏体相变的晶体学位向关系。
§12-1 马氏体的晶体结构马氏体是C在α-Fe中的过饱和间隙式固溶体。
具有体心立方点阵(C%极低钢)或体心正方(淬火亚稳相)点阵。
一、马氏体的点阵常数与C%的关系室温下马氏体的点阵常数与C%的关系由X-ray测得:式中,α=0.116±0.002;β=0.013±0.002;γ=0.046±0.001;ρ马氏体的含碳量(wt.%);a0:α-Fe的点阵常数2.861Ǻ。
c=a0+αρ(12-1)a=a0-βρc/a=1+γρ0.40.81.21.62.02.842.923.04含碳量,%cac/a图12-1随C%提高,马氏体点阵常数c增大,a减小,正方度c/a增大,见图12-1二、马氏体的点阵结构及畸变图12-2马氏体为C在α-Fe中的过饱和固溶体。
C原子处于Fe原子组成的扁八面体间隙中心,此间隙在短轴方向的半径为0.19Ǻ,碳原子半径为0.77Ǻ,室温下C在α-Fe中的溶解度为0.006%,但钢中马氏体的含碳量远远此数。
C原子的溶入α-Fe后使体心立方变成体心正方,并造成α-Fe非对称畸变,这个畸变可视为一个强烈应力场,C原子位于此应力场中心。
三、新生马氏体异常正方度实验证明,许多钢新生成的马氏体(淬火温度得到的马氏体而不是室温)的正方度与式(12-1)不符,与式(12-1)比较c/a相当低称异常低正方度(Mn钢);其点阵是体心正交的(a≠b≠c,a、b轴缩短c轴伸长),与式(12-1)比较c/a相当高称异常高正方度(Al钢、高Ni钢);其点阵是体心正方的(a=b≠c,a、b轴伸长c轴缩短)。
当温度恢复到室温,正方度又恢复到接近式(12-1)的正方度。
C%增加,正方度偏差增加。
四、C原子在马氏体点阵中的分布1.亚点阵概念并非所有的C原子都能占据可能位置,这些可能位置可分为三组,每一组都构成一个八面体,C原子分别占据着这些八面体的顶点。
由C原子构成的八面体点阵称为亚点阵。
C轴称为第三亚点阵;b轴称为第二亚点阵;a轴称为第三亚点阵。
见图12-3所示。
第三亚点阵第二亚点阵第一亚点阵图12-32.产生异常正方度的原理若C原子在三个亚点阵上分布的几率相等,即C原子为无序分布时,马氏体应为体心立方结构;实际上马氏体为体心正方结构,则C原子在三个亚点阵上分布的几率必然不相等,表明C原子可能优先占据其中某一个亚点阵而呈有序分布。
研究表明,C原子是优先占据第三亚点阵的。
但是C原子全部占据第三亚点阵时与式(12-1)的测量结果也不吻合。
而与80%C原子优先占据第三亚点阵,20%C原子分布在另外两个亚点阵较为符合,即C原子在马氏体中是部分有序分布(或部分无序分布)的。
因此:具有异常低正方度的新生马氏体,是因为部分有序分布在第二或第一亚点阵的C原子增加的结果,而当两个亚点阵上C原子分布几率不相等时,出现a≠b的正交点阵。
温度回升到室温,C原子重新分布,有序度增加,正方度升高。
具有异常高正方度的新生马氏体,其C原子接近全部占据第三亚点阵。
但计算表明,即使C 原子全部占据第三亚点阵,马氏体正方度也不能达到实验测得的正方度,所以有人认为,Al钢或Ni钢异常高正方度还与合金元素的有序分布有关。
3.马氏体异常正方度实验证明采用中子流、电子流以及γ-射线等辅照后,马氏体正方度下降,随后几个月室温时效正方度又恢复(加热到70℃几分钟即可达到此效果)。
这种可逆变化是C原子有序-无序转变的有力证明。
4.实验解释辅照使点阵缺陷密度增大,C原子发生重新分布,部分C原子离开第三亚点阵偏聚到缺陷处导致正方度降低,时效使点阵缺陷密度下降,C原子又回到第三亚点阵上,C原子有序度升高,正方度随之上升。
§12-2 马氏体相变的主要特征一、切变共格和表面浮凸现象马氏体形成时,和它相交的试样表面发生转动,一边凹陷,一边凸起,并牵动奥氏体突出表面。
可见马氏体形成是以切变方式实现的,同时以第二类切应力共格切变,即以惯习面为中心马氏体和奥氏体发生对称倾动,这种界面称“切变共格”界面。
二、马氏体转变的无扩散性1.钢中马氏体转变无成分变化,仅有晶格改组:γ-Fe(C)→α-Fe(C)。
2.马氏体转变在相当低的温度内进行(Fe-Ni合金20~-196℃),扩散已无可能,并且转变速度极快(5×10-6秒完成)。
3.原子协调移动,原来相邻的原子转变后仍相邻(“军队式转变”),相邻原子的移动位移不超过一个原子间距。
二、具有确定的晶体学位向关系和惯习面1.K-S关系:(1.4%碳钢){110}α′∥{111}γ(密排面平行);<111>α′∥<110>γ(密排方向平行)。
每一个奥氏体的{111}γ面上,马氏体有6中不同的取向,而(111) γ有四个,因此按K-S关系马氏体共有24种可能的取向。
2.西山(N)关系:(Fe-30Ni合金){110}α′∥{111}γ(密排面平行);<110>α′∥<211>γ(次密排方向平行)。
图12-4{111}γ{011}α′<111>α′<101>γ<211>γ<110>α′每一个奥氏体{111}γ面上,马氏体有6中不同取向,而(211)γ有两个,因此按K-S关系马氏体共有12种可能的取向;K-S关系和西山(N)关系如图12-4。
<110>γ<211>γ30º35º16′<111>α′<101>α′图12-5马氏体按K-S关系取向为35º16′,按西山(N)关系取向为30º,取向相差5º16′(可以证明,见图12-5)3.G-T关系:精确测量(Fe-0.8%C-22%Ni合金)发现,K-S关系为:{110}α′∥{111}γ差1º;<111>α′∥<110>γ差2º。
4.惯习面及其不变性C%不同及形成温度不同,惯习面也不同,钢中常见的惯习面有三种,即:(111)γ,(225)γ,(259)γ。
(1)含碳量对惯习面有影响。
当C%<0.6%时,惯习面为(111)γ;0.6%<C%<1.4%时,惯习面为(225)γ;C%>1.4%时,惯习面为(259)γ;(2)随着温度的降低,惯习面为(111)γ→(225)γ→(259)γ。
(3)惯习面为无畸变、无转动的平面。
四、马氏体相变是在一个温度范围内进行的(1)马氏体转变是在不断降温条件下完成的,有开始转变温度Ms和转变结束温度Mf;(2)马氏体也有等温条件下形成的,无论降温还是等温转变,马氏体转变具有不彻底性,有残余奥氏体剩余,需冷处理使残余奥氏转变为马氏体。
五、马氏体转变的可逆性在某些非Fe合金中,奥氏体冷却转变为马氏体,重新加热,已形成的马氏体通过逆转变机制转变为奥氏体,称为马氏体的可逆转变。
把马氏体直接向奥氏体的转变称为逆转变,逆转变的开始温度为As转变结束温度为Af。
§12-3 钢中马氏体的主要形态一、板条状马氏体常见于低碳钢、马氏体时效钢、不锈钢中。
其显微组织是由许多成群的板条组成,称板条马氏体。
亚结构为位错,也称位错马氏体。
(1)显微结构。
板条马氏体的示意图见图12-6,一个原奥氏体晶粒内可以有3~5个马氏体板条束(图中A、B、C、D),一个板条束内又可以分成几个平行的板条块(如B区域);板条块间成大角晶界,块界长尺寸方向与板条马氏体边界平行;每个板条块由若干个板条单晶组成,板条单晶的尺寸约为0.5×5.0×20μm。
即:板条单晶→板条块→板条束→马氏体晶粒。
稠密的板条单晶之间夹着高度变形的、非常稳定的、厚度约200Ǻ的残余奥氏体。
DABC原奥氏体晶界图12-6 板条马氏体组织结构示意图(2)亚结构。
高密度位错(0.3~0.9×1012个),局部也有少量的孪晶(3)位向关系。
在一个板条束内,马氏体惯习面接近{111}γ;马氏体和奥氏体符合介于K-S 关系和西山(N)关系之间的G-T关系最多;符合K-S关系和西山(N)关系的较少,在一个板条束内,存在几种位向关系的原因尚不清楚。
(4)与C%的关系。
马氏体的显微组织随合金成分的变化而改变。
对于碳钢:C%<0.3%时,板条束和板条块比较清楚;0.3%<C%<0.5%时,板条束清楚而板条块不清楚;0.6%<C%<0.8 %时,无法辨认板条束和板条块,板条混杂生长,板条组织逐渐消失并向片状马氏体组织过渡。
(5)与奥氏体晶粒的关系。
试验表明,奥氏体晶粒越大,板条束越大,而一个原奥氏体晶粒内板条束个数基本不变,奥氏体晶粒大小对板条宽度几乎没影响。
(6)与冷却速度的关系。
冷却速度越大,板条束和块宽同时减小,组织变细,因此提高冷却速度有利于细化马氏体晶粒。
二、片状马氏体常见于淬火高、中碳钢、及Fe-Ni-C钢。
空间形态呈凸透镜片形状,称透镜片状马氏体或片状马氏体,试样磨面相截在显微镜下呈针状或竹叶状,又称针状马氏体或竹叶状马氏体,亚结构为孪晶,也称孪晶马氏体。
(1)显微结构。
马氏体片间相互不平行,先形成的第一片马氏体贯穿整个原奥氏体晶粒,将奥氏体晶粒分成两部分,使后形成的马氏体片大小受到限制,因此马氏体片的大小不同。
(2)亚结构。
孪晶,孪晶的结合部分的带状薄筋是“中脊”(中脊——高密度的相变孪晶区,其形成原因目前尚不清楚)。
孪晶间距约为50Ǻ,一般不扩展到马氏体的边界,马氏体片的边界为复杂的位错;也有的片状马氏体无中脊。
(3)位向关系。
片状马氏体惯习面接近{225}γ或{259}γ;马氏体和奥氏体符合K-S关系或西山(N)关系。
表明马氏体的亚结构与钢的化学成分有关。
(4)与C%的关系。
片状马氏体的组织形态随合金成分的变化而改变。
对于碳钢:C%<0.3%时,板条马氏体;0.3%<C%<1.0%时,板条马氏体和片状马氏体混合组织;1.0%时<C%时,全部为片状马氏体组织。
并且随着C%增加,残余奥氏体的含量逐渐增加。
合金元素Cr、Mo、Mn、Ni增加形成孪晶马氏体倾向。
(5)与奥氏体晶粒的关系。
奥氏体晶粒越大,马氏体片越大。
(6)片状马氏体存在显微裂纹。