高浓度氨氮废水中氨氮的去除
超声波技术在高浓度氨氮废水处理中的应用
![超声波技术在高浓度氨氮废水处理中的应用](https://img.taocdn.com/s3/m/2d6c6867bf23482fb4daa58da0116c175f0e1ea3.png)
超声波技术在高浓度氨氮废水处理中的应用超声波技术是一种通过声波的频率、振幅和功率对物质进行处理和改变的技术。
在高浓度氨氮废水处理中,超声波技术具有很大的应用潜力。
本文将详细介绍超声波技术在高浓度氨氮废水处理中的应用,并探讨其优势、适用性和挑战。
1. 氨氮去除:超声波技术可以通过破碎和溶解气泡的方式,加速氨氮的氧化和还原反应,促进氨氧化细菌的生长和代谢活性,从而快速去除废水中的氨氮。
研究表明,超声波处理后的氨氮去除率可以显著提高。
2. 悬浮物和胶体颗粒去除:超声波技术可以产生剧烈的涡流和局部振荡,破坏颗粒之间的吸附和固聚力,使悬浮物和胶体颗粒更容易被沉降或过滤。
与传统的物理处理方法相比,超声波技术具有较高的去除效率和较低的处理成本。
3. 气体释放和溶解:超声波技术可以通过声波振荡的力量将溶解气体释放到液体中,也可以将气体溶解到液体中。
在高浓度氨氮废水处理中,可以利用超声波技术将废水中的氨氮气体迅速释放,从而降低氨氮浓度。
4. 膜分离和浓缩:超声波技术可以改变膜孔的形状和大小,提高膜的透过率和抗污染性能,从而提高膜分离和浓缩的效果。
在高浓度氨氮废水处理中,可以利用超声波技术改善膜的通量和分离效果,降低膜的堵塞和清洗频率。
1. 快速、高效:超声波技术可以快速传播和传递能量,使废水中的污染物被快速和高效地处理。
2. 非热能:超声波技术主要基于声能传递,不需要额外的热能输入,因此不会造成废水温度升高。
3. 环保:超声波技术没有化学药剂的使用和产生有害物质的风险,对环境无污染。
4. 操作简单:超声波设备的操作和维护相对简单,可以方便地集成到现有的废水处理系统中。
超声波技术在高浓度氨氮废水处理中仍然面临一些挑战。
超声波技术的能量传递效率受到废水的温度、浓度、含气情况等因素的影响,需要根据实际情况进行调整和优化。
在大规模应用时,超声波设备的成本和能耗也需要进一步降低。
氨氮去除原理
![氨氮去除原理](https://img.taocdn.com/s3/m/b1ae884ee97101f69e3143323968011ca200f765.png)
氨氮去除原理氨氮是水体中的一种重要污染物,它主要来自于工业废水、农业排放和生活污水等渠道。
高浓度的氨氮不仅会对水生生物造成危害,还会影响水体的生态平衡,因此对氨氮的去除成为了环境保护和水处理领域的重要课题。
本文将介绍氨氮去除的原理及相关技术。
氨氮去除的原理主要包括生物法、化学法和物理法三种途径。
生物法是利用微生物对氨氮进行降解转化,其中包括厌氧氨氮去除和好氧氨氮去除两种方式。
厌氧氨氮去除是在缺氧或无氧条件下进行的,通过厌氧细菌的作用将氨氮转化为氮气或氮化合物。
而好氧氨氮去除则是在充足氧气存在的情况下,利用好氧细菌将氨氮氧化成硝酸盐的过程。
生物法去除氨氮具有操作简单、能耗低、无二次污染等优点,因此在实际应用中得到了广泛的推广和应用。
化学法是利用化学试剂与氨氮发生反应,将其转化为不易挥发的氮化合物,从而达到氨氮去除的目的。
常用的化学法包括氯化铁法、硫酸铜法、氯氧化法等。
这些方法具有反应速度快、去除效果好的特点,适用于处理氨氮浓度较高的废水。
然而,化学法去除氨氮存在着试剂成本高、产生大量污泥等问题,因此在实际应用中需要综合考虑其经济性和环保性。
物理法是通过物理手段将水中的氨氮分离出来,常用的方法包括吸附法、膜分离法和电解法等。
吸附法是利用吸附剂对氨氮进行吸附,然后再对吸附剂进行再生或处理。
膜分离法则是利用特定的膜对氨氮进行截留和分离。
电解法则是通过电化学反应将氨氮转化为氮气或氮化合物。
这些物理法去除氨氮的技术成熟,操作简便,但是设备投资和能耗较高,适用于氨氮浓度较低的水体处理。
综上所述,氨氮去除的原理主要包括生物法、化学法和物理法三种途径。
各种方法各有优劣,应根据具体情况选择合适的氨氮去除技术。
在实际应用中,还可以采用多种方法联合处理,以达到更好的去除效果。
希望本文对氨氮去除原理有所帮助,谢谢阅读。
氨氮去除方法
![氨氮去除方法](https://img.taocdn.com/s3/m/10639570f46527d3240ce090.png)
根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。
物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
高浓度氨氮废水处理方案
![高浓度氨氮废水处理方案](https://img.taocdn.com/s3/m/9560b5381611cc7931b765ce05087632311274e6.png)
高浓度氨氮废水处理方案1. 引言高浓度氨氮废水是一种常见的工业废水,其中含有较高浓度的氨氮物质。
氨氮的高浓度废水对环境造成严重的污染,需要采取适当的处理方法来降低其对环境的影响。
本文将介绍一种针对高浓度氨氮废水的处理方案。
2. 处理原理高浓度氨氮废水处理方案主要依靠氨氧化反应降解氨氮物质。
氨氧化反应是将氨氮氧化为亚硝酸盐和硝酸盐的过程,从而将高浓度氨氮废水转化为低浓度的氨氮废水。
该反应通常依靠合适的菌群来实现,例如:硝化菌和反硝化菌。
3. 处理步骤高浓度氨氮废水处理方案包括以下几个步骤:3.1 氨氮预处理首先,对高浓度氨氮废水进行预处理。
预处理的目的是去除废水中的杂质和颗粒物,以确保后续处理步骤的顺利进行。
预处理可以采用物理方法(如筛网、沉淀等)和化学方法(如中和、氧化等)。
3.2 硝化反应将预处理后的废水送入硝化反应池进行处理。
硝化反应池中加入适量的硝化菌,并提供合适的环境条件,如适宜的温度、氧气供应等。
硝化菌能够将废水中的氨氮氧化为亚硝酸盐和硝酸盐,从而将废水中的氨氮转化为低浓度的氨氮。
3.3 反硝化反应硝化反应后的废水将进入反硝化反应池进行处理。
反硝化反应池中加入适量的反硝化菌,并提供合适的环境条件。
反硝化菌能够利用亚硝酸盐和硝酸盐来进行呼吸代谢,并将其还原为氮气释放到空气中,从而进一步降低废水中的氨氮浓度。
3.4 氨氮浓度监测在处理过程中,需要定期监测废水中的氨氮浓度。
可以使用适当的检测方法,如纳氏反应、电极法等,来确定氨氮的浓度。
监测结果可以用于调整处理过程中的操作参数,以达到更好的处理效果。
4. 处理效果评估处理高浓度氨氮废水的最终目标是将其转化为低浓度的氨氮废水,从而满足相关的排放标准。
处理效果的评估可以通过监测废水中氨氮的浓度来确定。
另外,还可以对处理后的废水进行其他指标的检测,如悬浮物浓度、pH 值等,以评估处理效果的综合情况。
5. 结论针对高浓度氨氮废水的处理,我们可以采用氨氧化反应的方法,通过硝化和反硝化反应将废水中的氨氮转化为低浓度的氨氮。
氨氮过高处理方法
![氨氮过高处理方法](https://img.taocdn.com/s3/m/2ddb6c3330b765ce0508763231126edb6e1a7645.png)
氨氮过高处理方法氨氮是水体中的一种常见污染物,主要来源于农业、工业和城市生活污水等。
当水体中氨氮浓度过高时,会对水生生物产生毒害作用,破坏水生态平衡,甚至威胁人类健康。
因此,寻求有效的氨氮过高处理方法至关重要。
一、物理处理方法1. 吹脱法:利用氨氮在水中的溶解度随pH值升高而降低的特性,通过向废水中通入空气或蒸汽,使废水中氨氮由液相转移至气相,从而达到去除氨氮的目的。
吹脱法适用于处理高浓度氨氮废水,但能耗较高,且易产生二次污染。
2. 膜分离技术:包括反渗透、纳滤、超滤等,通过膜的选择性透过性,将氨氮与水分子分离。
膜分离技术具有高效、节能、无二次污染等优点,但膜材料成本较高,且易受污染和堵塞。
二、化学处理方法1. 折点氯化法:将氯气或次氯酸钠通入废水中,使氨氮氧化为氮气逸出。
折点氯化法处理效果稳定,适用于处理低浓度氨氮废水,但药剂费用较高,且可能产生有毒副产物。
2. 离子交换法:利用离子交换树脂上的可交换离子与废水中的氨氮进行交换,从而达到去除氨氮的目的。
离子交换法具有处理效果好、可回收氨氮等优点,但树脂再生费用较高,且易受其他离子干扰。
三、生物处理方法1. 传统生物硝化反硝化技术:通过硝化细菌将氨氮氧化为硝酸盐,再通过反硝化细菌将硝酸盐还原为氮气逸出。
传统生物硝化反硝化技术具有成本低、无二次污染等优点,但处理周期较长,且易受温度、pH值等环境因素影响。
2. 新型生物脱氮技术:包括短程硝化反硝化、厌氧氨氧化等,通过优化微生物种群结构和反应条件,提高氨氮去除效率。
新型生物脱氮技术具有处理效果好、节能等优点,但对操作和管理要求较高。
四、复合处理方法为了克服单一处理方法的局限性,实际工程中常采用多种方法组合使用,形成复合处理方法。
例如,可以先采用物理或化学方法预处理废水,降低氨氮浓度和毒性,再采用生物方法进行深度处理。
复合处理方法可以充分发挥各种方法的优势,提高氨氮去除效率和处理效果稳定性。
五、实际应用案例1. 某化工厂废水处理:该化工厂废水氨氮浓度高达500mg/L以上,采用吹脱法预处理后,氨氮浓度降至200mg/L以下;再采用A/O(厌氧/好氧)生物处理工艺进行深度处理,最终出水氨氮浓度稳定在10mg/L以下,达到国家排放标准。
高氨氮废水处理方法
![高氨氮废水处理方法](https://img.taocdn.com/s3/m/ae72d909effdc8d376eeaeaad1f34693daef10c2.png)
高氨氮废水处理方法
高氨氮废水处理方法可以采用以下几种方法:
1. 生物处理:利用生物菌群降解氨氮。
常用的生物处理方法有曝气法、厌氧法和序批式生物反应器法。
曝气法通过供氧促进氨氮的细菌降解;厌氧法则在无氧条件下降解氨氮;序批式生物反应器法则通过有氧、无氧和静止等不同阶段的操作进行处理。
2. 化学处理:可以使用化学药剂与氨氮发生反应,将其转化为不溶于水的物质沉淀或析出。
常用的化学处理方法有硫酸亚铁法、氯化法、碱法等。
3. 膜分离技术:利用膜过滤、膜生物反应器等膜分离技术将氨氮与其他物质分离。
常见的膜分离技术包括逆渗透、纳滤和超滤。
4. 离子交换:通过离子交换树脂将废水中的氨氮吸附、去除。
离子交换方法适用于氨氮浓度较高的废水处理。
5. 蒸发浓缩:将废水中的氨氮用蒸发浓缩的方式进行处理。
这种方法适用于氨氮含量较高、体积较小的废水。
需要根据具体情况选择合适的方法进行处理,也可以组合使用多种方法进行高氨氮废水的处理。
同时,注意控制处理过程中的氨氮浓度,以避免对环境造成进一
步污染。
氨氮去除办法
![氨氮去除办法](https://img.taocdn.com/s3/m/89c264fdaef8941ea76e05cd.png)
高浓度氨氮废水处理办法过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。
因此,废水脱氮处理受到人们的广泛关注。
目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。
消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。
高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1 物化法1.1 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。
最佳工艺条件为pH =11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
不同浓度氨氮废水的去除方法
![不同浓度氨氮废水的去除方法](https://img.taocdn.com/s3/m/668fa7e6de80d4d8d05a4fc6.png)
不同浓度氨氮废水的去除方法
废水中的氨氮常见厂超标行业:工业废水和生活污水两大类
那些废水中氨氮的去除方法常见有:吹脱法、吸附法、膜技术属于物理方法。
比较主要和常用的有化学方法和生物方法
1.高浓度氨氮废水去除方法
常见用以上的物理方法,主要是通过气液相平衡和传质速度理论,使污水中的氨氮以鸟粪石(磷酸铵镁)的形式沉淀出来,同时回收污水中的氮。
2.中低浓度氨氮废水去除方法
常见用以上的化学方法,主要是通过无机高分子化合物与废水中的氨氮产生反应,从而达到降下废水中氨氮浓度的目的,通常化学方法直接投加希洁氨氮去除剂,去除率达96%,五分钟完成反应过程。
高浓度氨氮废水处理方法与工艺
![高浓度氨氮废水处理方法与工艺](https://img.taocdn.com/s3/m/1de8fbe9d0f34693daef5ef7ba0d4a7302766c18.png)
高浓度氨氮废水处理方法与工艺1.生物法处理:生物法是指利用微生物来降解和转化高浓度氨氮废水中的氨氮。
其中最常用的方法是厌氧法和好氧法。
-厌氧法:通过控制氧化还原电位,使废水中的氨氮被厌氧菌转化为氨气和亚硝化氢。
-好氧法:利用好氧微生物通过硝化作用将废水中的氨氮转化为硝态氮。
生物法处理的优点是处理效果稳定,处理成本相对较低,适用于大规模处理。
但是需要一定的操作和维护,对水质和温度的要求较高。
2.物化法处理:物化法是利用物理和化学方法将废水中的氨氮转化为无害物质或使其沉淀。
常见的方法有蒸气扩散、氢氧化钠法和氯化铁法等。
-蒸气扩散:通过加热使氨氮气化,并通过扩散将氨气从废水中转移出去。
-氢氧化钠法:利用氢氧化钠与氨氮发生反应生成氨化钠,并沉淀除去。
-氯化铁法:将氯化铁添加到废水中,通过与氨氮发生化学反应生成氯化铵沉淀除去。
物化法处理的优点是处理过程简单,可在短时间内快速去除氨氮。
但是处理副产物比较多,处理成本较高。
3.其他辅助处理方法:除了上述传统的处理方法外,还有一些辅助处理方法可以提高高浓度氨氮废水处理的效果。
-膜分离法:利用半透膜来分离废水中的氨氮,可以有效提高氨氮的去除率。
-离子交换法:通过离子交换剂将废水中的氨氮吸附去除。
-活性炭吸附法:利用活性炭吸附废水中的氨氮。
这些辅助处理方法可以与生物法或物化法相结合,提高处理效果。
综上所述,针对高浓度氨氮废水的处理,可以采用生物法、物化法和其他辅助处理方法。
通过适当选择合适的处理方法和工艺,可以有效去除废水中的高浓度氨氮,保护水环境和人类健康。
高氨氮废水处理技术
![高氨氮废水处理技术](https://img.taocdn.com/s3/m/a79af4310b4c2e3f57276389.png)
氨氮废水处理技术高氨氮废水如何处理,我们着重介绍一下其处理方法:一、物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
氨氮的处理
![氨氮的处理](https://img.taocdn.com/s3/m/dc6f9ee8700abb68a982fb87.png)
物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
污水中氨氮的主要去除方法
![污水中氨氮的主要去除方法](https://img.taocdn.com/s3/m/8d129ecf9b89680203d825b6.png)
本文摘自再生资源回收-变宝网()污水中氨氮的主要去除方法近20年来,对氨氮污水处理方面开展了较多的研究。
其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。
一、生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。
因而,污水的生物脱氮包括硝化和反硝化两个阶段。
生物脱氮工艺流程见图1。
硝化反应是将氨氮转化为硝酸盐的过程,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。
反硝化过程中的电子供体是各种各样的有机底物(碳源)。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。
但缺点是占地面积大,低温时效率低。
2.传统生物法目前,国内外对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。
1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack 和Ettinger于1962年提出了前置反硝化工艺(pre-denitrification),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)UCT、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺。
污水氨氮去除方法
![污水氨氮去除方法](https://img.taocdn.com/s3/m/30962d3426284b73f242336c1eb91a37f0113259.png)
污水氨氮去除方法污水中的氨氮是一种常见的水质问题,它主要来自废水和农业农村非点源污染。
高浓度的氨氮不仅对人体健康有害,还会对水体生态环境产生严重影响。
因此,制定有效的氨氮去除方法是保护水资源的重要措施之一、以下是几种常见的氨氮去除方法:1.生物除氨法:对于低浓度的氨氮废水,可以利用生物除氨法进行处理。
生物除氨是利用氨氧化细菌和反硝化细菌对废水中氨氮进行降解和转化的过程。
其中,氨氧化细菌可将氨氮氧化为亚硝态氮,而反硝化细菌可将亚硝态氮还原为氮气排放。
生物除氨方法具有操作简便、效果稳定等优势,常常用于污水处理厂和生活污水处理。
2.高级氧化法:高级氧化法是一种利用触媒或特殊氧化剂将废水中的氨氮进行氧化的方法。
这种方法适用于高浓度氨氮废水的处理。
高级氧化法常用的技术包括臭氧氧化、过氧化氢氧化和二氧化氯氧化等。
这些氧化剂可以将废水中的氨氮直接氧化为无害的物质,达到氨氮去除的目的。
但是,高级氧化法操作复杂、消耗能量较多,在实际应用中受到一定限制。
3.离子交换法:离子交换是一种常见的废水处理技术,也可用于氨氮去除。
通过正、负离子交换树脂对废水进行处理,氨氮离子与树脂上的H+或OH-离子发生交换,从而实现了氨氮的去除。
离子交换法具有操作简单、处理效果好的特点,广泛应用于水处理领域。
4.膜分离技术:膜分离技术是一种通过半透膜将废水中的氨氮分离出来的方法。
常用的膜分离技术包括超滤、反渗透等。
这些技术可以将废水中的氨氮分离成浓缩的溶液,然后再进行处理或深度净化。
膜分离技术具有操作简便、高效率、节能等优点,但成本较高,适用于规模较大的废水处理厂。
除了上述的主要技术,还有其他一些辅助氨氮去除方法:如化学沉淀法、吸附法、蒸发结晶等。
这些方法在实际应用中常常与主要技术相结合,根据具体情况选取最适合的氨氮去除方法。
总结起来,氨氮去除是保护水环境的重要措施,选择合适的氨氮去除方法要考虑废水的性质、浓度和实际应用等因素。
为了实现氨氮有效去除,可能需要综合应用多种处理技术,以达到水质要求并尽量降低处理成本。
浅析几种氨氮去除方法的原理及相关特点
![浅析几种氨氮去除方法的原理及相关特点](https://img.taocdn.com/s3/m/4f265f6fe3bd960590c69ec3d5bbfd0a7856d55d.png)
浅析几种氨氮去除方法的原理及相关特点氨氮是指水体中存在的一种与氨相关的氮形态,主要来自于废水、农业污水、养殖废水等。
高浓度的氨氮对水体的生态环境和人体健康都有着一定的影响,因此需要采取有效的方法去除氨氮。
目前常用来去除氨氮的方法主要有生物法、化学法和物理法。
下面将对这几种方法的原理及相关特点进行浅析。
1.生物法生物法是利用生物作用将氨氮转化为无害物质的方法。
典型的生物法主要有厌氧氨氧化(Anammox)、硝化—反硝化法、植物修复等。
(1)厌氧氨氧化:厌氧氨氧化利用厌氧微生物将氨氮直接氧化成氮气和氧化亚氮的方法。
厌氧氨氧化过程能直接将氨氮转化为氮气,不需要用到氧气,能够节约能源,并且产生的污泥量较小。
但是这种方法目前仍处于研究阶段,技术还不够成熟。
(2)硝化—反硝化:硝化是指将氨氮氧化成亚硝酸盐和硝酸盐,反硝化则是将硝酸盐还原成氮气的过程。
硝化—反硝化法通过硝化细菌和反硝化细菌的作用,将氨氮转化为无害的氮气释放到大气中。
这种方法能够去除氨氮效果显著,但操作条件较为严苛,并且处理过程中产生大量化学物质。
(3)植物修复:植物修复法是利用植物吸附、吸收和在其体内转化氨氮的方法。
通过植物根系的吸收和微生物的作用,将水体中的氨氮转化为无机氮物质。
这种方法简单易行,成本低,还能够美化环境,但处理效果相对较慢。
2.化学法化学法是通过化学反应将氨氮转化为无害物质的方法。
典型的化学法有氧化法和盐酸法。
(1)氧化法:氧化法是利用化学氧化剂将氨氮氧化为无害物质的方法。
常用的氧化剂有高锰酸钾、氯化亚铁等。
氧化法操作简单,处理效果好,但会产生大量的副产物,对环境有一定的污染。
(2)盐酸法:盐酸法是利用盐酸与氨氮反应生成氯化铵的方法。
这种方法操作简单方便,但产生的氯化物需要进行后续处理,处理成本相对较高。
3.物理法物理法主要利用物理过程将氨氮从水体中去除,常用的物理法有吸附法和膜分离法。
(1)吸附法:吸附法是通过一种或多种吸附剂将氨氮吸附到表面,从而将其从水体中去除的方法。
治理高浓度氨氮废水的四种办法
![治理高浓度氨氮废水的四种办法](https://img.taocdn.com/s3/m/50047e79ed630b1c58eeb541.png)
治理高浓度氨氮废水的四种办法高浓度氨氮废水一、怎么来的?高浓度氨氮废水主要来自填埋场渗滤液、味精生产、煤化工、有色金属冶炼等行业,氨氮含量达1000~10000 mg/L。
二、怎么处理?高氨氮废水成分复杂,毒性高,不能采用生物法和土壤灌溉法处理。
主要处理技术如下。
1、磷酸铵镁沉淀法a、原理在弱碱条件下,高浓度氨氮废水中加入Mg2+和PO43-以鸟粪(磷酸铵镁)的形式沉淀氨氮和磷,同时回收废水中的氮和磷。
反应过程如下:Mg2 NH4 HPO 42-6H2O MgNH4PO4 6H2O H (KSP=2.5 ×10-13 ~ 25 ℃)理论上,每去除1 g NH 4+-N,会形成17.5 g MgNH4O4_6H_2o 沉淀物。
影响反应的主要因素是:适宜的镁盐、磷酸盐、适宜的pH值。
以MgCl_2_6H_2O和Na_2HPO_4~(12)H_2O为沉淀剂,磷酸铵镁为碱性盐。
在pH>9.5的溶液中,结晶发生溶解。
因此,控制反应的酸碱度是非常重要的。
c、特点目前,MAP法广泛应用于垃圾渗滤液的预处理,不受温度的影响,操作简单,投资少,设计成本低,可用于不同浓度氨氮废水的处理。
操作成本主要是添加镁盐和磷酸盐。
如果企业能找到廉价的沉淀剂,如镁或磷废水,用于废物和综合利用,则可以大大降低处理成本。
如果单独加入沉淀剂,沉淀后废水中残留的镁、磷不仅会增加处理成本,还会引入磷污染物,容易造成二次污染。
但由于废水中含有有机物和重金属的可能性,磷酸铵镁沉淀可用作复合肥,其应用价值有待开发。
因此,要在生产中广泛应用,必须解决两个关键问题:廉价的沉淀剂磷铵镁沉淀物的净化以满足复合肥的应用标准及其推广应用2、吹脱法/汽提法a、原理吹脱工艺已广泛应用于化肥厂废水、填埋场渗滤液、石油化工、炼油厂等含氨氮废水中。
采用吹脱法去除水中氨氮.去除氨氮的目的是让气体流入水中,使气液相充分接触,使水中溶解的游离氨通过气液界面进入气相。
污水处理氨氮高怎么办?
![污水处理氨氮高怎么办?](https://img.taocdn.com/s3/m/40f26574a98271fe900ef910.png)
污水氨氮高怎么办污水氨氮高怎么办?氨氮对水生生物的危害主要是指非离子氨即氨气的危害,非离子氨进入水生生物体内后,对酶水解反应和膜稳定性产生明显影响,表现出呼吸困难、不摄食、抵抗力下降、惊厥、昏迷等现象,甚至导致水生生物大批死亡。
污水氨氮高怎么办?下面我们一起来看看吧,希望对大家有所帮助。
1、微生物法脱硝:采用微生物法将氨氮转为亚硝酸盐,再转为硝酸盐,然后反硝化脱硝,排氮气到大气。
2、吹脱法:采用将废水中的非离子氨吹脱到大气,由于受到了《恶臭污染物排放标准》(GB 14554-93)对氨的相关排放限值的限制,造成风机数量多,且能耗很高,导致的结果是设备投资很高和运营成本很高。
3、吸附法:是一种或者几种物质(称为吸附物)的浓度在另一种物质(称为吸附剂)表面上自动发生变化的过程,其实质是无食从液相或气相到固体表面的一种传质现象。
COD剂氨氮去除剂去磷剂除臭剂管道清洗除臭剂COD 剂 氨氮去除剂 去磷剂 除臭剂 管道清洗除臭剂 4、.化学法:是在污水中直接投加一种可以降低氨氮的浓度的药剂——氨氮去除剂;氨氮去除剂是一种含有特殊架状结构的高分子无机化合物,对氨氮的去除率达90%以上,无2次污染。
污水氨氮高怎么办?详情请咨询南京永禾环保材料有限公司。
南京永禾环保工程有限公司是以承接水处理工程项目为主,并开发经营水处理相关产品,为用户提供综合技术服务的高科技工程公司。
环境工程行业中颇具发展,公司实力雄厚,现有从事化工、水处理、环境工程专业和土建、电器、自动控制等专业的高中级工程技术人员20余人。
技术可广泛应用于锅炉水处理、电子、医药、饮料行业的纯水制备:苦碱水、海水淡化以及浓水提取、分离等各个领域。
优秀的设计,成熟的技术,优秀的人才,设计、制造、检测等方面有强劲的实力。
实业是基础,锐意进取;技术是向导,勇攀高峰。
本公司将以不懈的努力,精益求精,以更优秀技术和产品服务与用户。
废水中氨氮的去除
![废水中氨氮的去除](https://img.taocdn.com/s3/m/cdf8dd16e3bd960590c69ec3d5bbfd0a7956d501.png)
废水中氨氮的去除废水中氨氮的去除废水中氨氮的去除一直是环境保护领域的重要课题之一。
氨氮是指水体中以氨的形式存在的氮,主要来自于工业生产废水、农业养殖废水等。
氨氮的排放对环境造成严重影响,会导致水体富营养化、酸碱平衡破坏、生态系统紊乱等问题。
因此,对废水中的氨氮进行有效去除是非常必要的。
目前,常用的废水中氨氮去除方法主要包括物理法、化学法和生物法。
物理法主要是利用吸附、萃取、蒸发和膜分离等技术手段将氨氮从废水中分离出来。
化学法则是通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
而生物法则是利用微生物的作用将废水中的氨氮转化成无害的氮气,从而达到去除的目的。
物理法中比较常用的方法是吸附。
吸附是指通过固体材料对氨氮的接触和吸附,将其从废水中分离出来。
常用的吸附剂有活性炭、氧化铁等。
活性炭吸附剂有较大的比表面积,能够有效地吸附氨氮。
氧化铁则是一种常见的吸附剂,它能够与氨氮形成络合物,从而实现氨氮的去除。
此外,萃取、蒸发和膜分离等技术也可以用于废水中氨氮的去除,但相比吸附而言,其成本较高。
化学法中,常用的方法是氨氮的沉淀。
氨氮的沉淀是指通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
常用的化学药剂有氢氧化钙、氯化铁等。
氢氧化钙是一种碱性物质,能够与氨氮发生反应,形成氨氮的沉淀物。
氯化铁则是一种常见的混凝剂,能够与氨氮形成沉淀,并与其一同被沉淀下来。
此外,还可以通过氧化、氮化等化学反应将氨氮转化成不可溶于水的化合物,从而实现氨氮的去除。
生物法中,常用的方法是利用微生物将废水中的氨氮转化成无害的氮气。
这类方法主要包括硝化和反硝化。
硝化是指通过一系列的微生物反应,将废水中的氨氮转化成硝态氮。
硝态氮不仅不具有毒性,而且还可以作为植物的肥料,有助于环境的改善。
反硝化是指通过一系列的微生物反应,将硝态氮还原成氮气。
这样即实现了氨氮向氮气的转化,达到了废水中氨氮的去除目的。
高浓度氨氮废水处理方法
![高浓度氨氮废水处理方法](https://img.taocdn.com/s3/m/57636544a88271fe910ef12d2af90242a895abc7.png)
通过对不同行业氨氮废水的处理方法进行介绍,总结了氨氮浓度1000~5000 mg/L废水的物化法和生物法去除效果,并对各处理工艺的原理、研究现状、所需条件、存在问题等进行介绍。
氮是造成水体富营养化和环境污染的重要污染物质,氨氮污染主要产生于化工废水、化肥废水、焦化废水、味精废水、垃圾渗滤液、养殖废水等。
一般而言,对生活污水和食品加工厂废水等低浓度氨氮废水,主要采用生化法处理,对大多数中等浓度氨氮的工业废水,根据废水实际情况和处理要求,可选择物理方法或生物硝化法处理。
1、物理法1)吹脱法吹脱法是目前国内用于处理高浓度氨氮废水较多的方法,吹脱出的氨可以回收利用。
吹脱法适合处理高浓度氨氮废水,主要缺点是温度影响比较大,在北方寒冷季节效率会大大降低。
但须注意国内对吹脱出的氨有效利用不高,仅仅是将氨从水体转移至空气中,氨的污染问题并未得到妥善解决。
2)沉淀法化学沉淀法是通过向含氨氮废水中加入含Mg2+和PO43-离子的药剂,与废水中的NH4+反应生成MgNH4PO4·6H2O复合盐(俗称鸟粪石),从而将氨氮从废水中去除。
该方法在去除废水中氨氮的同时,得到了一种许多农作物所需的复合肥料MgNH4PO4·6H2O,而且同时也可去除废水中的磷,是一种变废为宝、经济可行的高浓度氨氮废水处理技术。
温度对化学沉淀法处理高浓度氨氮废水的影响并不显著,而pH值的影响却很明显,一般要求反应的pH值控制在8~10之间,氨氮去除率可达到93%以上。
3)吸附法沸石是一类以硅酸盐为主,具有阳离子交换性和较大吸附能力的矿物,其结构中含有碱金属或碱土金属离子,如Na+、Ca2+、Mg2+等。
这些离子极易与周围水溶液中的阳离子发生交换作用,交换后的沸石晶格骨架结构不被破坏,并可再生,从而使沸石具有离子交换树脂的特性。
沸石作为极性吸附剂也是一种理想的生物载体。
当废水浓度为200 mg/L,对氨氮的对数吸附等温线符合Freundlich 方程,直线的斜率在0.1~0.5之间,可以作为高浓度氨氮废水的吸附剂使用。
氨氮的去除
![氨氮的去除](https://img.taocdn.com/s3/m/eab5c823ed630b1c59eeb568.png)
氨氮的去除根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
去除氨氮的主要方法有:物理法、化学法、生物法。
物理法有反渗透、蒸馏、土壤灌溉等处理技术;化学法有离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法有藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
coupled plasma-atomic emission
spectrometry(ICP—AES),and
microscopy(SEM).For
the 1 00mL 1 000 mg‘L~NH4+-N solution, 5.0 g modified clinoptilolite is 77.8%.
obvious effect.
Key
Words:ammonia-nitrogen
wastewater,orthogonal experiment,Na—P zeolite,
magnesium hydrogen phosphate
lV
一———————————————————————————————————————————一
wastewater with Na2C03
as
used
to
dispose
ammonium-nitrogen
adjusting
agent.To wastewater with initial concentration
of NH4+1 000 mg‘L~.the ratio of elimination for NH4+-N by 2.5 g
摘要
环使用性能,同时大大降低了处理成本。 三、在改性沸石及化学法研究去除氨氮废水的基础上,以高浓度氨氮模拟 废水为处理对象,研究了两者组合工艺去除氨氮的效果,氨氮去除效果明显。 关键词:氨氮废水,正交试验,Na.P型分子筛,磷酸氢镁
Abstract
With
ammonia the development of industry technology,the emssion problem of
are
heating under 1 00℃in 3 h wastewater.high
repeatedly used to dispose ammonium-nitrogen
efficient
circulate and cost reduction is realized.
3.On the basis of the modified zeolite
an
health and aquatic organisms.It also leads to the increasingly serious risk to human mass multiplication of algae and eutrophication in water system.Therefore,it is very important
.nitrogen wastewater becomes more and more serious.High—concentration NH4+-N of wastewater turned into nitrate nitrogen and nitrite nitrogen has imposed
hydrothermal
reaction.The
adsorption
capacity
of
modified
clinoptilolite for ammonia—nitrogen was measured.The modification processes of clinoptilolite were optimized through orthogonal experiment with 5x6 factors.It is found that the temperature of hydrothermal treatment was the most significant impact
In this paper,the formation and harm of the concentrated NH4+-N wastewater were discussed firstly.Then current methods were used to deal with the pollution of
(ICP.AES)和扫描电镜(SEM)对改性前后的沸石进行了表征。结果表明:用
碱熔法处理的沸石转变为低硅铝比的Na.P型分子筛,它对氨氮废水中NH4+-N 的去除效果要比天然斜发沸石好,且是个快速吸附平衡过程。当改性沸石投加
量为5 g,对100 mL浓度为1000 mg・Lo氨氮溶液,氨氮去除率可达77.8%,改
ammonia—nitrogen,and the methods
were
advantages related
and
disadvantages of different treatment
clinoptilolite wastewater.
detailedly
and
reviewed.Modified ammonia-nitrogen
第一章绪论
第一章绪论
第一节氨氮废水综述
我国水资源比较短缺,人均水资源占有量为2400.2500 m3,仅为世界人均 占有量的1/4,排在世界的第110位[1】。同时水污染情况也异常严重,七大水系 近一半河段污染严重,80%的河流都遭受不同程度的污染,主要湖泊的水质下 降[21,这使我国缺水形势更为严峻。目前,水资源污染问题已经成为我国社会、 经济长稳发展的瓶颈。而氨氮在废水污染物中占很大的比例,2010年我国废水 中氨氮污染物的排放量高达120.3万吨[31。『F是废水中氨氮排放数量大、来源较 广泛,对环境危害大,氨氮废水的排放控制标准也更加严格。因此对水体中氨 氮去除的研究有至关重要的意义。
for the property of
modified
clinoptilolite
in
the
removal
of
ammonia—nitrogen.In the modification processes the Na-P zeolite with lower Si/A1 molar ratio Primary
and
the chemical method to remove process shows is
an
ammonia-nitrogen
in
concentrated
NH4+-N
wastewater,combined
the result
researched to remove ammonium-nitrogen wastewater,and
性沸石吸附NH4+-N的过程较好的符合Langmuir吸附等温模式,偏向于单分子 层的吸附过程。文章还对改性沸石的再生问题及其对金属离子cu2+的吸附作了 初步研究。 二、通过磷酸盐复分解法制备磷酸氢镁,然后探讨了以磷酸氢镁(MHP) 为吸附剂,Na2C03为pH调节剂来处理高浓度氨氮废水的过程。结果表明:对
a
isothermal
adsorption model,and it
monomolecular layer adsorption.
hydrogen it
2.Magnesium
phosphate(MHP)is
is
prepared the
by
double
decomposition method.Then
MHP
is 92.5%.
Moreover,The
analysis with XRD,TG-DTA is researched
on
the decomposition of
the magnesium ammonium
phosphate(MAP).The residues of MAP decomposed by
and
MgHP04‘3H20
have been studied to deal with
as
The main work in the thesis iS
follows:
1.The Chinese natural clinoptilolite was modified through fusing with sodium hydroxide and
to
remove ammonia.nitrogen in wastewater.Due
to
increasingly stringent
control of NH4+一N wastewater,processing attracting more attention.
of ammonia-nitrogen wastewater is
南开大学 硕士学位论文 高浓度氨氮废水中氨氮的去除 姓名:丁真贞 申请学位级别:硕士 专业:无机化学 指导教师:黄唯平 2012-05
摘要
随着工业的发展,氨氮废水的排放量同趋增多。在过高浓度氨氮废水中, 氨氮可被微生物转化为毒害较大的硝态氮,亚硝态氮等,对人体及水中生物产 生一定的毒害作用,同时造成水中微生物及藻类的大量繁殖,形成水体富营养 化污染,因此对水体中氨氮的去除有至关重要的实际意义。现在由于氨氮废水 的控制越来越严格,高浓度氨氮废水的处理研究日益引起关注。 文章通过参阅大量资料文献,在探讨高浓度氨氮废水的形成、分布及对人 体危害的基础上,分析比较了目前国内外使用的各种去除氨氮的方法,并对不 同处理方法的优缺点进行了对比。主要探讨了将天然沸石通过熔融一水热法改性 和以MgHP04"3H20为吸附剂的化学法去除氨氮的方法。 本论文主要研究以下几个方面: 一、采用氢氧化钠碱熔水热法处理缙云斜发沸石,并以其对氨氮废水进行 处理,采用正交实验研究了碱熔法处理斜发沸石过程中的各个影响因素,确定 了碱熔水热法改性沸石的最佳条件。试验表明:处理沸石的水热温度对氨氮去除 效果影响最显著。用粉末X射线衍射(XRD)、电感耦合等离子体发射光谱法