丹佛斯EVR系列电磁阀样本

合集下载

样本 丹佛斯 电磁阀

样本 丹佛斯 电磁阀
冷凝温度 tc = 40 °C 阀门压降 ∆p = 0.8 bar 热气温度 th = 65 °C 制冷剂过冷度 tsub = 4 K
DKRCC.PD.BB0.B3.41 / 520H7191
参数表
订货 (续)
电磁阀,型号 EVR 2 − 40 NC/NO
阀体,常闭型(NC)
型号 EVR 2 EVR 3 EVR 6 EVR 10 EVR 15
EVR 20 EVR 22 EVR 25 EVR 32 EVR 40
连接尺寸 可选线圈
型号
喇叭口1)
产品编号 无线圈阀体
钎焊 ODF
[in.] [mm] [in./mm]
[in.]
[mm] 带手动操作
a.c.
1/4
6 032F8056 032F1201 032F1202

a.c./ d.c. 1/4
28
EVR 22
a.c.
1 3/8
35
1) 阀体不包含喇叭口螺母。阀体螺栓:
– 1/4 in. 或 6 mm,产品编号 011L1101 – 3/8 in. 或 10 mm,产品编号 011L1135 – 1/2 in. 或 12 mm,产品编号 011L1103 – 5/8 in. 或 16 mm,产品编号 011L1167

d.c.
7/8
22



032F1274
a.c.
1 3/8 35

032F3267 032F3267

a.c./ d.c. 1 1/8



032F2200
a.c./ d.c. — 28


丹佛斯EVR系列电磁阀样本

丹佛斯EVR系列电磁阀样本

丹佛斯EVR系列电磁阀样本Data sheetSolenoid valveTypes EVR 2 - EVR 40 NC/NOEVR is a direct or servo operated solenoid valve for liquid, suction, and hot gas lines with fluorinated refrigerants.EVR valves are supplied complete or as separate components, i.e. valve body, coil and flanges, if required, can be ordered separately.y Complete range of solenoid valves for refrigeration, freezing and air conditioning planty Supplied in versions normally closed (NC) and normally open (NO) with de-energized coil y Wide choice of coils for AC and DC y Suitable for all fluorinated refrigerants, including flammable refrigerants y Designed for media temperatures up to 105 °Cy MOPD up to 25 bar with 12 W coil y Flare connections up to 5/8 in y Solder connections up to 2 1/8 iny Extended ends on solder versions make the installation easy. It is not necessary to dismantle the valve when soldering in y Available in flare, solder and flange connection versions FeaturesDet norske Veritas, DNVPressure Equipment Directive (PED) 97/23/EC Low Voltage Directive (LVD) 2006/95/ECPolski Rejestr Statków, Polen Maritime Register of Shipping, MRS Versions with UL approval can be supplied to order.ApprovalsData sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOTechnical data1) MOPD (Max. Opening Pressure Differential) for media in gas form is approx. 1 bar greater.2)Min. diff. pressure 0.07 bar is needed to stay open.RefrigerantsR22/R407C, R404A/R507, R410A, R134a, R407A, R23, R32, R290, R600, and R600a. For other refrigerants, contact Danfoss.Special note for R32, R290, R600, and R600a : Use only for system in compliance withstandard EN13463-1. Ignition risk is evaluated inaccordance with standard EN13463-1.Only EVR 2 - EVR 20 with solder connections andwithout manual stem can be applied in systemswith R32, R290, R600, and R600a as the workingfluid. For countries where safety standards are not an indispensable part of the safety system Danfoss recommends the installer to seek third partyapproval for systems containing R32, R290, R600, Note, please follow specific selection criteria stated in the datasheet for these particular refrigerants.Temperature of medium-40 –105 °C with 10 W or 12 W coil.Max. 130 °C during defrosting.Ambient temperature and enclosure for coil See separate data sheet for coils and ATEX coils.Capacity The capacity of the valve depends on the flow direction, see K v values from the table.The K v value is the water flow in [m 3/h] at a pressure drop across valve of 1 bar, ρ = 1000 kg/m 3.See extended capacity tables later in this datasheet.Table of contentsTechnical data...................................................................................................................... .......................................................2Rated capacity [kW] .................................................................................................................................................................3Ordering .............................................................. .........................................................................................................................4C apacity,Liquid .................................................................................................................. .......................................................7Capacity,Suction ............................................................................................................... ......................................................11Capacity, Hot gas ....................................................................................................................... .............................................19Design .............................................................. .. (40)Function.............................................................................................................. .......................................................................42Material specifications ................................................................................................... ......................................................43Dimensions and weights .. (45) Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NORated liquid and suction vapour capacity is based on evaporating temperature t e = -10 °C, liquid temperature ahead of valve t l = 25 °C, pr essure drop in valve ?p = 0.15 bar.Rated hot gas capacity is based on condensing temperature t c = 40 °C, pressure drop across valve ?p = 0.8 bar, hot gas temperature t h = 65 °C,and subcooling of refrigerant ?tsub = 4 K.Rated capacity [kW]Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOOrdering (continued)EVR solder connections, Normally Closed (NC) - separate valve bodiesData sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOThe normal range of coils can be used for the NO valves, with the exception of the double frequency versions of 110 V, 50/60 Hz and 220 V, 50/60 Hz.Ordering (continued)EVR solder connections, Normally Open (NO) - separate valve bodiesValve bodies are supplied without flare nuts. Separate flare nuts:– 1/4 in or 6 mm, code no. 011L1101 – 3/8 in or 10 mm, code no. 011L1135 – 1/2 in or 12 mm, code no. 011L1103 – 5/8 in or 16 mm, code no. 011L1167OrderingEVR flare connections, Normally Closed (NC) - separate valve bodiesSee separate data sheet for coils.The normal range of coils can be used for the NO valves, with the exception of the double frequency versions of 110 V, 50/60 Hz and 220 V, 50/60 Hz.Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NO Ordering (continued)Separate valve bodies, normally closed (NC)See separate data sheet for coils.Flange setsAccessoriesEVR 15 without manual operation, code no. 032F1224? in weld flange set, code no. 027N1115+ coil with terminal box, 220 V, 50 Hz, code no. 018F6701See separate data sheet for coils.ExampleCapacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator.When the corrected capacity is known,the selection can be made from the table.R22/R407CCorrection factors based on liquid temperature t lLiquidCapacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead ofWhen the corrected capacity is known,the selection can be made from the table.Correction factors based on liquid temperature t lR404A/R507Liquid (continued)Capacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead ofWhen the corrected capacity is known,the selection can be made from the table. Correction factors based on liquid temperature t lR290Liquid (continued)Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOCapacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator.When the corrected capacity is known,the selection can be made from the table.Correction factors based on liquid temperature t lR600Capacity Liquid (continued)Data sheetSolenoid valve, types EVR 2 ? EVR 40 NC/NOR22/R407CCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known, the selection can be made from the table.Correction factors for evaporating temperature tlCapacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ?p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity SuctionData sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOCapacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ?p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Correction factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R134aCapacity Suction(continued)Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOCorrection factors based on evaporating temperature t lCorrection factors When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R404A/R507Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ?p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOCorrection factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R32Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ?p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOCorrection factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R290Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ?p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve,the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOCorrection factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R600Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ?p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NOCorrection factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R600aCapacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ?p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Data sheet Solenoid valve, types EVR 2 ? EVR 40 NC/NO Hot gas defrostingWith hot gas defrosting it is not normally possible to select a valve from condensing temperature t c and evaporating temperature t e .This is because the pressure in the evaporator as a rule quickly rises to a value near that of the condensing pressure. It remains at this value until the defrosting is finished.In most cases therefore, the valve will be selected from condensing temperature t c and pressure drop ?p across the valve, as shown in the example for heat recovery.Heat recovery The following is given: y Refrigerant = R22/R407Cy Evaporating temperature t e = -30 °C y Condensingtemperature t c = 40 °Cy Hot gas temperature ahead of valve t h = 85 °Cy Heat recovery condenser yield Q h = 8 kWThe capacity table for R22/R407C with t c = 40 °C gives the capacity for an EVR 10 as 8.9 kW, when pressure drop ?p is 0.2 bar.The required capacity is calculated as :Q table = f evaporator x f hot_temperature x Q hThe correction factor for t e = -30 °C is given in the table as 0.95.The correction for hot gas temperature t h = 85 °C has been calculated as 4% which corresponds to a factor of 1.04.Q h must be corrected with factors found: With ?p = 0.2 baris Q h = 8.71 x 0.95 x 1.04 = 8.6 kW.With ?p = 0.1 bar, Q h becomes only 6.19 x 0.95 x 1.04 = 6.1 kW.An EVR 6 would also be able to give the required capacity, but with ?p at approx. 1 bar. The EVR 6 is therefore too small.The EVR 15 is so large that it is doubtful whether the necessary ?p of approx. 0.1 bar could be obtained.An EVR 15 would therefore be too large.Result: An EVR 10 is the correct valve for the given conditions.Capacity Suction (continued)Data sheetSolenoid valve, types EVR 2 ? EVR 40 NC/NOR22/R407CAn increase in hot gas temperature t h of 10 K, based on t h = t c +25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Correction factorsWhen sizing valves, the table value mustbe multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teCapacity Hot gas。

丹佛斯PVG 100比例阀中文样本

丹佛斯PVG 100比例阀中文样本

修订内容 更改代码 新的封底 添加4页: 应用安全章节 大幅修订 大幅修订
版本号 CD CF DA DB EA
样本修订
PVG产品的样本修订
名称 PVG 32 农机模块-公制油口 PVG 100 比例阀 PVG 120 比例阀 PVBZ 基本模块 PVSK 模块,集成了分流和P口切断功能 PVED-CC 电控模块 PVED-CX 电控模块,系列 4 PVE 系列 4 PVPV / PVPVM 泵侧模块 PVHC 电控模块,用于PVG32和PVG100 PVGI 过渡模块 PVSP/M 优先模块 PVBM “Meter-in” “Meter-out” 模块 类型 产品样本 维修手册 产品样本 产品样本 产品样本 产品样本 产品样本 产品样本 产品样本 产品样本 产品样本 产品样本 样册 代码 11051935 11048807 520L0356 520L0721 520L0556 520L0665 11070179 520L0553 520L0222 11064912 520L0405 520L0291 L1117392
PVG 100 功能
PVG 100 阀组带开芯 PVPF .............................................................................................................................................9 PVG 100 阀组带闭芯 PVPV / PVPVP / PVPVM ....................................................................................................... 11 PVG 100 闭芯转向优先模块 PVPVP ................................................................................................................. 12 PVG 100 闭芯模块 PVPVM ................................................................................................................................... 12 PVG 100 工作模块 PVB ........................................................................................................................................... 12 PVG 100 回油模块 ................................................................................................................................................... 12 负载敏感控制................................................................................................................................................................... 14 远程压力补偿控制 ......................................................................................................................................................... 15 远程压力补偿系统特性: ........................................................................................................................................ 15 典型实例:远程压力补偿系统........................................................................................................................... 15 PVG 100 主阀芯,带压力补偿控制......................................................................................................................... 16 压力补偿系统特性 ................................................................................................................................................... 16 典型实例:压力补偿系统 .................................................................................................................................... 16 PVMR, 摩擦定位 .............................................................................................................................................................. 17 PVMF, 机械浮动位置锁定. ......................................................................................................................................... 17 PVBS, 流量控制主阀芯 (标准)................................................................................................................................. 18 PVBS, 流量控制主阀芯 (线性特性) ............................................................................................................................. 18 安全建立 ............................................................................................................................................................................ 19 FMEA (故障模式及影响分析) IEC EN 61508 ................................................................................................... 19 故障模式及影响分析 ISO 12100-1 / 14121..................................................................................................... 19 实例:控制系统. ........................................................................................................................................................... 20 PVG 100 – LS卸荷或先导油切断可选 ............................................................................................................... 22

丹佛斯制冷空调配件 (2)

丹佛斯制冷空调配件 (2)

装配说明� ���
目录� ��
EVR2 - 40 预防措施 (15)
当测试压力时 (16)
线圈 (17)
正确的产品 (18)
注释
Af0_0006
装配说明� ���
应。

如果不对应,则可能会烧毁线圈。

始终确
保阀门与线圈相匹配。

当更换 EVR 20 NC 中的线圈时(NC = 常闭),
请注意:
- 使用交流线圈的阀体有一个方形衔铁。

衔铁。

- 使用直流线圈的阀体有一个圆形衔铁。

衔铁。

安装错误的线圈会导致较小的MOPD M OPD 。

请查看顶
部螺母上的数据。

应尽可能始终选择单频线圈,
因为单频线圈发热量要低于双频线圈。

对于阀门在大多数工作时间内必须保持闭合
(未通电)的系统,应使用 NC (常闭)电磁
阀。

对于阀门在大多数工作时间内必须保持开
启(未通电)的系统,应使用 NO (常开)电
磁阀。

不能使用 NC (常闭)电磁阀来替换NO
NO (常开)电磁阀,反之亦然。

每个可夹式线圈上有两个标签(请参见图
解)。

粘贴式标签粘在线圈的一侧,另一个打孔式标签
在线圈安装到位前贴在衔铁上。

衔铁上。

上。

Af0_0015
Af0_0020
(“以前的”线圈型号)(新型“可夹式”线圈)“可夹式”线圈)可夹式”线圈)式”线圈)”线圈)线圈)。

丹佛斯-自动控制产品介绍

丹佛斯-自动控制产品介绍

38
精选完整ppt课件
调节范围
39
精选完整ppt课件
ACB 插式压力控制器
40
精选完整ppt课件
ACB,即插式压力控制器
ACB 即插式压力控制器是一种小型圆盘式压力控 制器用于制冷和空调系统中。 ACB 型配有标准的 6 安培接触系统,可以自动 回复或手动回复. ACB强度高,可靠,紧凑,轻巧,防护等级高, 可以直接安装在制冷系统需要压力调节的地方.
另一种是组合式由导阀操纵的电磁阀(电磁主阀 PML)
30
精选完整ppt课件
PML电磁阀
31
精选完整ppt课件
32
精选完整ppt课件
VHV/STF 4通换向阀
33
精选完整ppt课件
34
精选完整ppt课件
电磁阀的选择:
1、它所适用的流体介质
2、基本的流动配置,例如,两通,三通,常开,常闭等
3、流体的温度和压降
MP54为固定压差设定器型,带有一个固定释放时间间隔的时间 延时继电器
MP55和MP55A为可调性压差器,而且有时间继电器盒不带时 间继电器两种类型
49
精选完整ppt课件
特点及技术参数
调节范围宽,可用于冷冻,冷藏和空气调节系统 适用于所有的常用氟化物制冷剂 接触压差小 允许电压波动 +10~-15% 最大工作压力 PB=170bar 温度补偿 时间继电器为温度补偿型 补偿范围:-
安装于制冷系统高压侧之间的旁通管路上, 高压侧直接注入到吸气管中
65
精选完整ppt课件
66
精选完整ppt课件
CPCE 能量调节阀
67
精选完整ppt课件
68
精选完整ppt课件

丹佛斯阀门执行器资料

丹佛斯阀门执行器资料

VD.AA.O1.41 C Danfoss 03/2005
37
行程
(mm)
30
末端开关
(2 个)
转换开关,交流电压,最大 250V,1A
行程速度
(s/mm)
15(4 - AMV / AME 633)
弹簧复位的
-
0.5 至 1
-
0.5 至 1
大约速度 (s/mm 行程)
驱动力
(N)
1200
断电响应
阀杆保持 原位
安全复位功能, 阀杆伸长
阀杆保持 原位
安全复位功能, 阀杆伸长
AMV(E)410, 413 是带有同步电机和齿轮的 驱动器。
AMV(E)610, 613, 633 是带有液压泵和电磁 阀的电动液压驱动器。
驱动器可与下列阀门连接使用(见页 37)
二通阀: VFG 2(21), VFG 25, VFU 2(NC), VFGS 2(蒸汽), DN15-250
组合阀: AFQM(流量控制器组合阀), DN 40-125
×
三点控制信号
15
2
AMV 633
×
230V~
4
2
AMV - H 613 2)
×
15
2
AME 610
-
15
2
AME 613 AME 633 AME - H 613 2)
× × ×
(0 4)- 20mA d.c. (0 2)- 10V d.c. / 230V~
15 4 15
2 2 2
1) 对于 DN 150 - 250 的阀门,使用带 Y 60 的驱动器时能得到较大的 Kvs 值 2) 带机械调节和安全功能的型号不是依据DIN 32 730检验的

ASCO电磁阀样本

ASCO电磁阀样本

ATEX 防爆技术信息
如何通过ATEX,EN-IEC 60079-0,EN 61241-0或EN 13463-1标准来识别应用在爆炸性环境中的设备?
特定的防爆标识符合EN / IEC
保护类型 电气设备, 气体环境: "d": 隔爆型 EN 60079-1 "e": 增安型 EN 60079-7 "i": 本质安全型 EN 60079-11 (ia/ib/ic) "m":浇封型 EN 60079-18 (ma/mb/mc) "n": 无火花型EN 60079-15 (nA/..) 电气设备, 粉尘环境: "tD": 外壳防护型 EN 61241-1 "mD": 浇封防护型 EN 61241-18 (maD/mbD) "iD": 本质安全型防护 EN 61241-11 无电气设备: "c": 通过自身构造防护 EN 13463-5
类别
(矿井)
爆炸环境描述 长时间内连续出现 间歇性出现 偶尔出现
出现 (甲烷, 粉尘) 出现风险 (甲烷,粉尘)
粉尘组别 (符合第五版本, IEC 60079-0, 2007 (EN 60079-0, 2009)(2) ) Group III: 电气设备用于爆炸性粉尘环境
类别
爆பைடு நூலகம்环境描述
长时间连续出现
可能出现爆炸潜在爆炸性环境定义 不同区域的分类有两个目标(依照 ATEX 1999/92/EC): - 区域内的设备类别使用于气体,薄雾,蒸汽或粉尘 - 区域内危险的地方应避免火源,选择对应的正确的电气或非电气设备。区域的划分是根据爆炸性气体或粉尘发生爆炸情况

丹佛斯内部培训资料

丹佛斯内部培训资料
● STC系列手动截止阀 产品
● 阀体材质: 低温碳钢
● 采用特氟龙阀板和O 型密封圈,实现更高 的安全性
● 尺寸:DN 15至DN 150
● 温度范围:50℃/+露
● 抛光不锈钢阀杆配合 和双重特制耐低温复 合O型圈可最大限度 降低外漏的可能
止推轴承式设计, 防止阀门关闭时通 常出现的过大径向 应力,保护阀芯和 阀座不会因为径向 应力的存在受到破 坏。
120~6 00 45~
10~30
60~20 0
100~3 00
60~10 0
制冷 Pump Down,在融霜开始前尽量减少蒸发器液体量,其时间取决 于蒸发器大小 等待回气电磁阀完全关闭。 使蒸发器中的液体沉降到底部 根据具体情况设定除霜时间
让压力平稳
开启两步开启电磁阀,使蒸发器压力下降
开启供液管电磁阀,静态制冷 开启风扇,重新回到制冷阶段,完成一个除霜循环
热氨融霜与蒸汽加热十分相似,运行中必须通过相应的管路和控制系统提供 足够高的蒸气压力,使蒸发器中充满足够的制冷剂蒸气。制冷剂蒸气冷凝为 液体后又要及时排出,以便新的蒸气不断进入,在蒸发器中冷凝除霜。
特点:
热气除霜系统对制冷区域温度的影响较小 利用热气,不需要辅助能源,节能效果好 快速有效 不影响蒸发器的热交换情况 结构上增加相应管路和阀门 需要选择合适的控制部件
液位控制
机械向电动发展
机械控制方案
低压循环桶/分离器/蒸发器
电磁阀 供液主阀
kch
浮球导阀SV4 导压管
机械式液位控制特点
优点
不足
可以连续调解
比液位开关调节的价格贵
适用的冷量范围大
一旦安装无法改变液位位置
可用在高压和低压侧安装

丹佛斯 TD 膨胀阀 样本

丹佛斯  TD 膨胀阀 样本
Made by Danfoss in China
TDEX
-25/+10 ℃ -15/+50 ℃ 068H4112 BP15 MOP 100
PB 28bar/MWP 400psig
8 TR 28 kW R 22
288
1.
4
RC.1A.A5.02
A/S01-99
DANFOSS ABBN185.13
!" R22
!"#$%#&'( !"#$ !"#$%&'() ANSI/ARI 750 - 87
!"#
TDE 3 - 7.5 TDE 8 - 19 TDEB TDEB 20 - 40 !"#$ !"#$
!"#$% !" !" !"#$% !%&'()*+,-# / TDE !"
!"#$%&'()* !"#$
!"#$%&'()*+,4K !"#$%&'()* 4K 4K ! TDE !"#$%&'()*+,-. !"#$ ! !"#$%&'()* 8K !"# !
!
!"# !
$%
!" TDE
TDEB
Refrigeration and Air Conditioning Controls
!"#$%& TDE/TDEB
2004
9
RC.1A.A5.02
A/S01-99
RC.1A.A5.02

安装指导---EVRA 系列电磁阀

安装指导---EVRA 系列电磁阀

MAKING MODERN LIVING POSSIBLE
安装指导
EVRA系列电磁阀
产品特点丹佛斯EVRA系列是一种直接或伺服动作的电磁阀;EVRAT系列则为辅助开启式伺服
电磁阀。

得益于EVRAT系列电磁阀开启时无需压差的特殊设计,可为客户提供更为
高效稳定的系统运行。

丹佛斯EVRA系列电磁阀可为您带来:
◈可应用于氨或氟化制冷剂的液体、吸气或热气管路上
◈满足大部分开启压差为零的系统要求
◈适用高压冷媒二氧化碳系统
◈国际品质全球认证
主要技术参数:
◈制冷剂:适用于所有常见的非易燃制冷剂,包括氨和非腐蚀性气/液体
◈温度范围:-40/+105℃ (-40/+221℉)
◈最大工作压力:42 bar g (609 psi g)。

丹佛斯电磁阀

丹佛斯电磁阀

Data sheetSolenoid valves type EVRA 3 ® 40IntroductionEVRA is a direct or servo operated solenoid valve for liquid, suction and hot gas lines with ammonia or fluorinated refrigerants.EVRA valves are supplied complete or asseparate components, i.e. valve body, coil and flanges can be ordered separately.ApprovalsDnV, Det norske Veritas, Norway DSRK, Deutsche Schiffs-Revision und -Klassifikation, Germany P Polski Rejestr Statków, Poland W FIMKO, FinlandMRS, Maritime Register of ShippingTechnical dataRefrigerantsR 717 (NH 3) R 22, R 134a, R 404A and other fluorinated refrigerantsTemperature of medium-40 ® +105°C with 10 W or 12 W coil.Max. 130°C during defrosting.Ambient temperature and enclosure for coilSee "Coils for solenoid valves", RD.3J.B2.04.1)The k vvalue is the water flow in m 3/h at a pressure drop across valve of 1 bar, r = 1000 kg/m 3.2)MOPD for media in gas form is approx. 1 bar greater.Opening differential pressure Max. working Typewith standard coil (D p bar)Temperature pressurek v -value Max. (= MOPD) liquid 2)of medium PBMin.10 W a.c.12 W a.c.20 W d.c.°C barm 3/h EVRA 30.00212514–40 ® 105280.23EVRA 100.05212518–40 ® 10528 1.5EVRA 150.05212518–40 ® 10528 2.7EVRA 200.05212513–40 ® 10528 4.5EVRA 250.2212514–40 ® 1052810.0EVRA 320.2212514–40 ® 1052816.0EVRA 400.2212514–40 ® 1052825.0Data sheet Solenoid valves, type EVRA 3 ® 40Technical data (continued)1)Rated liquid and suction vapour capacity is based on evaporating temperature t e = -10°C, liquid temperature ahead of valve t l = +25°C,and pressure drop across valve D p = 0.15 bar.Rated capacity 1) [kW]TypeLiquidSuction vapourHot gasR717R22R134a R404AR717R22R134a R404AR717R22R134a R404A EVRA321.8 4.6 4.3 3.2 6.5 2.1 1.7 1.7EVRA10142.030.227.821.19.0 3.4 2.5 3.142.613.911.011.3EVRA15256.054.450.138.016.1 6.2 4.4 5.576.724.919.820.3EVRA20426.090.683.563.326.910.37.39.2128.041.532.933.9EVRA25947.0201.0186.0141.059.722.816.320.4284.092.373.275.3EVRA321515.0322.0297.0225.095.536.526.132.6454.0148.0117.0120.0EVRA402368.0503.0464.0351.0149.057.040.851.0710.0231.0183.0188.0CoilsSee "Coils for solenoid valves", RD.3J.B2.02.AccessoriesStrainer FA for direct mounting, see "FA".ExampleEVRA 15 complete valve with terminal box,220 V, 50 Hz, code no. 032F6218+ 3/4 in. weld flange set, code no. 027N1120.ExampleEVRA 15 valve body with manual operation,code no. 032F6215+ 3/4 in. weld flange set, code no. 027N1120+ coil with terminal box, 220 V, 50 Hz,code no. 018Z6701(see "Coils for solenoid valves").Flange set3/8027N11121/2027N11155/816027L1117027L11163/4027N11207/822027L1123027L11223/4027N12207/822027L1223027L12221027N122511/828027L1229027L12281027N122511/4027N1130Connection in.mmin.mmin.Solder Weld Code no.Valve typeEVRA 3,10 and 15EVRA 20and 25Separate valve bodiesCode no.TypeConnectionRequired Steel GGG-40.3GG-25GGG-40.3coil typeValve house with necessary flange gasket and bolts;Weld connection (without coil)(without coil and flanges)Valves with manual operation EVRA 10 a.c. / d.c.-032F6210--EVRA 15Se table a.c. / d.c.-032F6215--EVRA 20Flange set a.c.-032F6220--EVRA 20 d.c.-032F6221--EVRA 25 a.c. / d.c.-032F6225--EVRA 3211/4 in. a.c. / d.c.-042H1121042H1126EVRA 4011/2 in. a.c. / d.c.-042H1123042H1128Valves without manual operation EVRA 3Se table a.c. / d.c.032F3050---EVRA 10Flange set a.c. / d.c.-032F6211--EVRA 25 a.c. / d.c.-032F6226--EVRA 3211/4 in. a.c. / d.c.--042H1122042H1127EVRA 4011/2 in.a.c. / d.c.--042H1124042H1129Ordering Complete valves without flangesCode no. 1)TypeConnectionSteel GGG-40.3Steel GGG-40.310 W coil with 1 m cable10 W coil with terminal boxValves without manual operation EVRA 3Se table Flange set032F3102-032F3013-EVRA 10-032F6207-032F6208Valves with manual operation EVRA 10-032F6212-032F6213EVRA 15Se table Flange set -032F6217-032F6218EVRA 20-032F6222-032F62231)Valve body with gaskets, bolts and 10 W a.c. coil. Please specify code no., voltage and frequency. Voltage and frequency can also be given in the form of an appendix number, see table "Appendix numbers", under EVR.Rated hot gas capacity is based on condensing tempera-ture t c = +40°C,pressure drop across valve D p = 0.8 bar,hot gas temperature t h = +65°C,and subcooling of refrigerant D t sub = 4 K.Data sheet Solenoid valves, type EVRA 3 ® 40Capacity Liquid capacity Q l kWR 717 (NH 3)EVRA 317.825.130.835.639.8EVRA 10116.0164.0201.0232.0259.0EVRA 15209.0295.0362.0418.0467.0EVRA 20348.0492.0603.0696.0778.0EVRA 25773.01093.01340.01547.01729.0EVRA 321237.01749.02144.02475.02766.0EVRA 401933.02734.03349.03867.04322.0TypeLiquid capacity Q e kW at pressure drop across valve D p bar0.10.20.30.40.5R 22EVRA 3 3.8 5.3 6.67.68.5EVRA 1024.734.942.749.355.1EVRA 1544.462.876.988.899.2EVRA 2073.9105.0128.0148.0165.0EVRA 25165.0232.0285.0329.0368.0EVRA 32263.0372.0455.0526.0588.0EVRA 40411.0581.0712.0822.0919.0R 134aEVRA 3 3.5 4.9 6.07.07.8EVRA 1022.732.239.445.550.8EVRA 1540.957.970.981.891.5EVRA 2068.296.5118.0136.0153.0EVRA 25152.0214.0263.0303.0339.0EVRA 32243.0343.0420.0485.0542.0EVRA 40379.0536.0656.0758.0847.0R 404AEVRA 3 2.6 3.7 4.6 5.3 5.9EVRA 1017.224.329.834.438.5EVRA 1531.043.853.762.069.3EVRA 2051.773.089.5103.0116.0EVRA 25115.0162.0199.0230.0257.0EVRA 32184.0260.0318.0367.0411.0EVRA 40287.0406.0497.0574.0642.0Capacities are based on liquid temperature t l = +25°C ahead of valve, evaporating temperature t e = -10°C, and superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator.When the corrected capacity is known, the selection can be made from the table.t l °C -100+10+20+25+30+40+50R 717 (NH 3)0.840.880.920.97 1.0 1.03 1.09 1.16R 22, R 134a 0.760.810.880.96 1.0 1.05 1.16 1.31R 404A0.700.760.840.941.01.071.241.47Data sheet Solenoid valves, type EVRA 3 ® 40Capacity (continued)Suction vapour capacity Q e kWTypeSuction vapour capacity Q e kW at evaporating temperature t e °C –40–30–20–10+10R 717 (NH 3)0.1 3.4 4.5 5.97.38.910.6EVRA 100.15 4.0 5.47.09.010.913.00.2 4.5 6.17.910.012.615.00.1 6.18.110.713.216.019.1EVRA 150.157.29.712.516.119.623.40.28.011.014.218.022.627.00.110.213.517.821.926.631.9EVRA 200.1512.116.120.926.932.639.00.213.418.323.729.937.745.10.122.630.039.548.759.270.8EVRA 250.1526.735.946.359.772.586.70.229.840.552.766.483.7100.00.136.247.863.277.994.7113.0EVRA 320.1542.757.474.195.5116.0139.00.247.764.884.3106.0134.0160.00.156.574.898.8122.0148.0177.0EVRA 400.1566.889.8116.0149.0181.0217.00.274.5101.0132.0166.0209.0251.0R 220.1 1.4 1.8 2.3 2.8 3.4 4.0EVRA 100.15 1.6 2.1 2.7 3.4 4.1 4.90.2 1.8 2.4 3.1 3.8 4.8 5.60.1 2.5 3.2 4.1 5.0 6.17.2EVRA 150.15 2.9 3.8 4.8 6.27.48.80.2 3.3 4.3 5.5 6.88.610.20.1 4.1 5.3 6.88.410.112.0EVRA 200.15 4.9 6.48.110.312.314.70.2 5.57.29.211.414.316.90.19.111.815.218.622.426.6EVRA 250.1510.914.217.922.827.432.60.212.216.120.425.331.737.60.114.618.924.329.835.842.6EVRA 320.1517.422.728.836.543.852.20.219.625.732.640.550.760.20.122.829.538.146.556.066.5EVRA 400.1527.235.445.057.068.681.50.230.540.251.063.379.294.0Capacities are based on liquid temperature t l = +25°C ahead of evaporator.The table values refer to theevaporator capacity and are given as a function of evaporatingtemperature t e and pressure drop D p across valve.Capacities are based on dry,saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, thecapacities are reduced by 4% for each 10 K superheat.Pressure drop across valve D p bart l °C -100+10+20+25+30+40+50R 717 (NH 3)0.840.880.920.97 1.0 1.03 1.09 1.16R 220.760.810.880.961.01.051.161.31Correction factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known, the selection can be made from the table.Data sheet Solenoid valves, type EVRA 3 ® 40Capacity (continued)Suction vapour capacity Q e kWR 134a0.10.87 1.2 1.6 2.1 2.6 3.2EVRA 100.150.99 1.4 1.9 2.4 3.2 3.90.2 1.1 1.6 2.1 2.8 3.5 4.50.1 1.6 2.1 2.8 3.8 4.7 5.7EVRA 150.15 1.8 2.5 3.4 4.4 5.77.00.2 2.0 2.8 3.8 5.0 6.38.10.1 2.6 3.6 4.7 6.37.89.5EVRA 200.15 3.0 4.2 5.67.39.511.70.2 3.3 4.7 6.48.310.513.50.1 5.87.910.513.917.221.1EVRA 250.15 6.69.312.516.321.125.90.27.310.414.118.523.429.90.19.312.616.822.227.733.8EVRA 320.1510.614.920.026.133.841.40.211.716.622.629.637.447.80.114.519.826.334.843.352.8EVRA 400.1516.523.331.340.852.864.80.218.326.035.346.358.574.8R 404A0.1 1.2 1.5 2.0 2.5 3.1 3.7EVRA 100.15 1.4 1.8 2.4 3.1 3.8 4.60.2 1.6 2.1 2.7 3.4 4.3 5.30.1 2.1 2.7 3.6 4.5 5.5 6.6EVRA 150.15 2.5 3.3 4.3 5.5 6.88.20.2 2.8 3.7 4.9 6.17.89.50.1 3.5 4.6 6.07.59.211.1EVRA 200.15 4.1 5.57.19.211.313.60.2 4.6 6.28.110.213.015.80.17.710.113.316.620.424.6EVRA 250.159.112.115.820.425.030.30.210.313.818.022.728.835.00.112.316.221.326.632.639.4EVRA 320.1514.619.425.332.640.048.50.216.522.028.836.346.156.00.119.325.333.341.551.061.5EVRA 400.1522.930.339.551.062.575.60.225.834.545.056.872.187.5Capacities are based on liquid temperature t l = +25°C ahead of evaporator.The table values refer to theevaporator capacity and are given as a function of evaporatingtemperature t e and pressure drop D p across valve.Capacities are based on dry,saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, thecapacities are reduced by 4% for each 10 K superheat.Correction factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known, the selection can be made from the table.TypeSuction vapour capacity Q e kW at evaporating temperature t e °C –40–30–20–10+10Pressure drop across valve D p bart l °C -100+10+20+25+30+40+50R 134a 0.760.810.880.96 1.0 1.05 1.16 1.31R 404A0.700.760.840.941.01.071.241.47Data sheet Solenoid valves, type EVRA 3 ® 40Capacity (continued)R 717 (NH 3)Hot gas capacity Q h kW+20+30+40+50+600.1 1.8 2.1 2.3 2.5 2.60.2 2.6 2.9 3.2 3.5 3.7EVRA 30.4 3.8 4.2 4.6 4.9 5.30.8 5.1 6.0 6.57.17.61.67.48.39.19.910.90.112.013.414.716.017.20.217.119.020.922.724.4EVRA 100.424.527.129.732.234.70.834.039.042.646.149.51.648.553.859.164.371.30.121.724.126.428.831.00.230.834.237.540.844.0EVRA 150.444.148.853.558.062.40.861.270.376.783.089.11.687.496.9106.0116.0128.00.136.140.144.048.051.70.251.457.062.668.073.2EVRA 200.473.581.389.196.7104.00.8102.0117.0128.0138.0148.01.6146.0161.0177.0193.0214.00.180.289.198.0107.0115.00.2114.0127.0139.0151.0163.0EVRA 250.4163.0181.0198.0215.0231.00.8227.0260.0284.0307.0330.01.6324.0358.0394.0429.0475.00.1128.0143.0157.0171.0184.00.2183.0203.0223.0242.0260.0EVRA 320.4261.0289.0317.0344.0370.00.8362.0416.0455.0492.0528.01.6518.0574.0631.0688.0761.00.1201.0223.0244.0267.0287.00.2286.0317.0348.0378.0407.0EVRA 400.4408.0452.0495.0537.0578.00.8566.0650.0710.0769.0825.01.6809.0897.0986.01074.01188.0TypeD p bar Hot gas capacity Q e kWEvaporating temp. t e = -10°C. Hot gas temp. t h = t c + 25°C. Subcooling D t sub = 4 K.Correction factorWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Pressure drop across valveCondensing temperature t c °Ct e °C-40-30-20-100+10R 717 (NH 3)0.890.910.961.01.061.10An increase in hot gas temperature t h of 10 K, based on t h = t c +25°C,reduces valve capacity approx. 2%and vice versa.A change in evaporatingtemperature t e changes valvecapacity; see correction factor table below.Data sheet Solenoid valves, type EVRA 3 ® 40Capacity (continued)R 22Hot gas capacity Q h kW+20+30+40+50+600.10.680.720.760.780.790.20.97 1.0 1.1 1.1 1.1EVRA 30.4 1.4 1.5 1.5 1.6 1.60.8 1.9 2.0 2.1 2.3 2.31.6 2.7 2.9 3.0 3.1 3.20.1 4.4 4.7 4.9 5.1 5.20.2 6.3 6.77.07.27.3EVRA 100.49.09.610.010.310.40.812.413.213.914.714.91.617.518.619.620.220.50.18.08.58.99.29.30.211.412.112.613.013.2EVRA 150.416.317.218.018.518.70.822.323.124.926.526.81.631.533.535.236.436.90.113.314.114.815.315.50.219.020.121.021.722.0EVRA 200.427.128.730.030.931.20.837.138.441.544.244.61.652.555.958.660.661.50.129.631.432.934.034.40.242.144.646.748.248.8EVRA 250.460.263.866.668.669.40.882.587.992.398.299.21.6117.0124.0130.0135.0137.00.147.450.252.654.455.00.267.471.474.777.178.1EVRA 320.496.3102.0107.0110.0111.00.8132.0140.0148.0157.0159.01.6187.0199.0209.0216.0219.00.174.078.582.385.086.00.2105.0112.0117.0121.0122.0EVRA 400.4151.0159.0167.0172.0174.00.8206.0222.0231.0246.0248.01.6291.0310.0326.0337.0342.0TypeD p bar Hot gas capacity Q e kWEvaporating temp. t e = -10°C. Hot gas temp. t h = t c + 25°C. Subcooling D t sub = 4 K.Correction factorWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Pressure drop across valveCondensing temperature t c °Ct e °C -40-30-20-100+10R 220.900.940.971.01.031.05An increase in hot gas temperature t h of 10 K, based on t h = t c +25°C,reduces valve capacity approx. 2%and vice versa.A change in evaporatingtemperature t e changes valvecapacity; see correction factor table below.Data sheet Solenoid valves, type EVRA 3 ® 40Capacity (continued)R 134aHot gas capacity Q h kW+20+30+40+50+600.10.540.570.60.610.60.20.770.820.850.860.85EVRA 30.4 1.1 1.2 1.2 1.2 1.20.8 1.5 1.6 1.7 1.8 1.81.6 2.2 2.3 2.4 2.5 2.40.1 3.5 3.7 3.9 4.0 3.90.2 5.0 5.3 5.5 5.6 5.6EVRA 100.47.07.77.98.07.90.89.910.511.011.611.41.614.315.115.716.015.90.1 6.4 6.77.07.17.10.29.19.610.010.110.0EVRA 150.412.613.814.214.414.30.817.919.019.820.820.51.625.727.228.228.828.60.110.611.211.711.811.80.215.116.016.616.816.7EVRA 200.421.022.923.724.023.80.829.831.633.034.734.21.642.845.347.147.947.60.123.624.925.926.426.20.233.635.536.837.437.1EVRA 250.446.651.052.753.452.90.866.270.273.277.076.01.695.2101.0105.0107.0106.00.137.639.841.442.141.80.253.856.858.959.859.4EVRA 320.474.781.684.385.484.60.8106.0112.0117.0123.0122.01.6152.0161.0167.0170.0169.00.158.862.364.765.865.30.284.188.892.193.592.8EVRA 400.4117.0127.0132.0134.0132.00.8166.0176.0183.0192.0190.01.6238.0252.0262.0266.0265.0TypeD p bar Hot gas capacity Q e kWEvaporating temp. t e = -10°C. Hot gas temp. t h = t c + 25°C. Subcooling D t sub = 4 K.Correction factorWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Pressure drop across valveCondensing temperature t c °Ct e °C -40-30-20-100+10R 134a0.880.920.981.01.041.08An increase in hot gas temperature t h of 10 K, based on t h = t c +25°C,reduces valve capacity approx. 2%and vice versa.A change in evaporatingtemperature t e changes valvecapacity; see correction factor table below.Data sheet Solenoid valves, type EVRA 3 ® 40Capacity (continued)R 404AHot gas capacity Q h kW+20+30+40+50+600.10.620.630.620.590.540.20.870.890.880.830.76EVRA 30.4 1.2 1.3 1.3 1.2 1.10.8 1.7 1.7 1.7 1.7 1.51.6 2.4 2.5 2.4 2.3 2.10.1 4.0 4.1 4.0 3.8 3.50.2 5.7 5.8 5.7 5.5 5.0EVRA 100.48.18.28.27.87.00.811.111.411.311.110.11.615.716.015.815.213.90.17.37.47.3 6.9 6.30.210.210.410.39.88.9EVRA 150.414.614.814.714.012.70.820.120.420.320.018.11.628.328.828.427.425.00.112.112.312.111.510.50.217.117.317.216.314.9EVRA 200.424.424.724.523.321.10.833.434.033.933.330.21.647.148.047.445.641.60.126.827.426.925.623.30.237.938.438.236.333.0EVRA 250.454.254.954.551.747.00.874.275.675.374.067.21.6105.0107.0105.0101.092.50.143.043.843.040.937.30.260.661.461.158.152.8EVRA 320.486.787.887.282.775.20.8119.0121.0120.0118.0107.01.6167.0171.0168.0162.0148.00.167.068.567.364.058.30.294.896.095.590.882.5EVRA 400.4136.0137.0136.0129.0117.00.8186.0189.0188.0185.0168.01.6262.0266.0263.0253.0231.0TypeD p bar Hot gas capacity Q e kWEvaporating temp. t e = -10°C. Hot gas temp. t h = t c + 25°C. Subcooling D t sub = 4 K.Correction factorWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Pressure drop across valveCondensing temperature t c °Ct e °C -40-30-20-100+10R 404A0.860.880.931.01.031.07An increase in hot gas temperature t h of 10 K, based on t h = t c +25°C,reduces valve capacity approx. 2%and vice versa.A change in evaporatingtemperature t e changes valvecapacity; see correction factor table below.Data sheet Solenoid valves, type EVRA 3 ® 40Capacity (continued)Hot gas capacity G h kg/sHot gas capacity G h kg/s at pressure drop across valve D p bar TypeHot gastemperaturet h°CCondensingtemperaturet c°C0.512345678+250.0030.0050.0060.0070.0070.0070.0070.0070.007 EVRA 3+350.0040.0050.0070.0090.0090.010.010.010.01+450.0050.0060.0090.010.0110.0120.0130.0130.013+250.0220.030.040.0450.0480.0480.0480.0480.048 EVRA 10+350.0260.0360.0480.0560.0610.0640.0650.0650.065+450.0300.0410.0560.0660.0740.0790.0830.0850.086+250.0400.0540.0720.0810.0860.0870.0870.0870.087 EVRA 15+350.0460.0640.0860.10.1090.1150.1170.1170.117+450.0530.0740.1010.120.1330.1420.1490.1530.155+250.0660.090.120.120.1440.1450.1450.1450.145 EVRA 20+90+350.0770.1070.1440.1670.1820.1910.1950.1950.195+450.0890.1240.1690.1990.2110.2370.2480.2550.258+250.1430.1970.260.2960.3130.3160.3160.3160.316 EVRA 25+350.1680.2320.3130.3640.3970.4170.4250.4250.425+450.1940.2690.3680.4340.4820.516 1.540.5550.561+250.2330.3220.4240.4830.5110.516EVRA 32+350.2740.3790.5110.5940.6480.6810.694+450.3160.4390.6010.7090.7870.8420.8820.9060.916+250.3620.5030.6630.7550.7980.806EVRA 40+350.4290.5920.7980.929 1.013 1.064 1.084+450.4950.6860.939 1.107 1.23 1.316 1.378 1.416 1.431R 717 (NH3)+250.0080.0110.0140.0160.0170.0170.0170.0170.017 EVRA 3+350.0090.0120.0170.0190.0210.0220.0220.0220.022+450.0100.0140.0190.0220.0250.0260.0270.0280.028+250.0510.0690.0920.1040.1090.1110.1110.1110.111 EVRA 10+350.0580.080.1080.1250.1360.1420.1440.1440.144+450.0660.0920.1250.1460.1620.1720.1790.1830.183+250.0910.1250.1650.1870.1970.1990.1990.1990.199 EVRA 15+350.1050.1440.1940.2250.2440.2560.2580.2580.258+450.1190.1650.2240.2630.2910.310.3220.3290.330+250.1520.2080.2750.3110.3280.3320.3320.3320.332 EVRA 20+90+350.1740.2410.3230.3750.4070.4250.4310.4310.431+450.1930.2750.3740.4390.4850.5160.5370.5480.55+250.3310.4530.5990.6770.7150.7220.7220.7220.722 EVRA 25+350.380.5240.7040.8160.8860.9250.9380.9380.938+450.4310.5980.8140.956 1.056 1.125 1.169 1.192 1.197+250.5390.7390.976 1.106 1.168 1.179EVRA 32+350.6190.856 1.15 1.331 1.446 1.509 1.531+450.7040.978 1.329 1.562 1.723 1.837 1.909 1.947 1.955+250.843 1.155 1.525 1.728 1.825 1.843EVRA 40+350.968 1.338 1.798 2.08 2.26 2.358 2.393+45 1.1 1.528 2.078 2.44 2.693 2.87 2.383 3.043 3.055R 22An increase in hot gas temperature t h of 10K reduces valve capacity approx. 2% and vice versa.Capacity (continued)Hot gas capacity G h kg/sHot gas capacity G h kg/s at pressure drop across valve D p bar TypeHot gastemperaturet h°CCondensingtemperaturet c°C0.512345678+250.0070.0090.0110.0120.012EVRA 3+350.0090.0110.0140.0160.0160.0160.016+450.010.0120.0180.020.0210.0210.0210.0210.021+250.0480.060.0740.0770.077EVRA 10+350.0550.0710.0920.1030.1040.104+450.060.0840.1110.1270.1340.1350.1350.1350.135+250.0810.1080.1340.140.14EVRA 15+350.0940.1290.1660.1920.1870.1870.187+450.1080.1510.20.2280.2410.2440.2440.2440.244+250.1340.180.2230.2330.233EVRA 20+60+350.1570.2150.2760.3070.3120.3120.312+450.1810.2520.3330.3810.4030.4070.4070.4070.407+250.2920.3910.4860.5060.506EVRA 25+350.3410.4670.6020.6680.6790.6790.679+450.3930.5490.7250.830.8760.8850.8850.8850.885+250.4780.6380.793 1.8260.826EVRA 32+350.5560.7630.994 1.091 1.108 1.108 1.108+450.6410.897 1.197 1.354 1.432 1.446 1.446 1.446 1.446+250.7470.998 1.24 1.291 1.291EVRA 40+350.87 1.192 1.553 1.704 1.731 1.731 1.731+45 1.002 1.402 1.87 2.117 2.237 2.259 2.259 2.259R 134a+250.010.0130.0180.0210.0220.0230.0230.0230.023 EVRA 3+350.0110.0150.020.0240.0270.0280.0290.0290.03+450.0120.0170.0230.0280.0320.0340.0350.0360.037+250.0630.0870.1160.1340.1450.1480.1490.1490.149 EVRA 10+350.0720.10.1340.1580.1740.1840.190.190.192+450.0810.1120.1530.1820.2030.2280.2280.2370.239+250.1130.1570.210.2420.260.2670.2690.2690.269 EVRA 15+350.1290.180.2420.2850.3130.3320.3410.3420.346+450.1460.2020.2750.3270.3650.3930.4110.4240.431+250.1890.2620.350.4030.4330.4450.4490.4490.449 EVRA 20+60+350.2150.30.4040.4740.5210.5520.5690.570.576+450.2430.3370.4590.5450.6090.6560.6840.7070.719+250.4110.570.7630.8780.9420.9690.9780.9780.978 EVRA 25+350.4680.6530.881 1.032 1.136 1.203 1.239 1.241 1.253+450.5290.734 1.0 1.188 1.326 1.43 1.49 1.539 1.566+250.6720.931 1.245 1.432 1.539 1.581 1.581 1.581 1.581 EVRA 32+350.765 1.069 1.436 1.686 1.854 1.964 2.022 2.025 2.025+450.862 1.198 1.632 1.939 1.836 2.34 2.433 2.513 2.557+25 1.05 1.454 1.946 2.238 2.406 2.471 2.471 2.471 2.471 EVRA 40+35 1.195 1.657 2.245 2.635 2.897 3.068 3.161 3.166 3.166+45 1.348 1.873 2.55 3.03 3.384 3.65 3.801 3.926 3.995R 404AAn increase in hot gas temperature t h of 10K reduces valve capacity approx. 2% and vice versa.Design FunctionEVRA solenoid valves are designed on two different principles:1.Direct operation2.Servo operation1. Direct operationEVRA 3 is direct operated. The valve opens direct for full flow when the armature (16) moves up into the magnetic field of the coil. This means that the valve operates with a min. differential pressure of 0 bar.The teflon valve plate (18) is fitted direct on the armature (16).Inlet pressure acts from above on the armature and the valve plate. Thus, inlet pressure, spring force and the weight of the armature act to close the valve when the coil is currentless.2. Servo operationEVRA 10 ® 20 are servo operated with a "floating" diaphragm (80). The pilot orifice (29) of stainless steel is placed in the centre of the diaphragm. The teflon pilot valve plate (18) is fitted direct to the armature (16).When the coil is currentless, the main orifice and pilot orifice are closed. The pilot orifice and main orifice are held closed by the weight of the armature, the armature spring force and the differential pressure between inlet and outlet sides.When current is applied to the coil the armature is drawn up into the magnetic field and opens the pilot orifice. This relieves the pressure above the diaphragm, i.e. the space above the diaphragm becomes connected to the outlet side of the valve.The differential pressure between inlet and outlet sides then presses the diaphragm away from the main orifice and opens it for full flow. Thereforea certain minimum differential pressure is necessary to open the valve and keep it open. For EVRA 10 ® 20 valves this differential pressure is 0.05 bar.When current is switched off, the pilot orifice closes. Via the equalization holes (73) in the diaphragm, the pressure above the diaphragm then rises to the same value as the inlet pressure and the diaphragm closes the main orifice.EVRA 25, 32 and 40 are servo operated piston valves. The valves are closed with currentless coil.The servo piston (80) with main valve plate (84) closes against the valve seat (83) by means of the differential pressure between inlet and outlet side of the valve, the force of the compression spring (76) and possibly the piston weight. When current to the coil is switched on, the pilot orifice (29) opens. This relieves the pressure on the piston spring side of the valve. The differen-tial pressure will then open the valve.The minimum differential pressure needed for full opening of the valves is 0.07 bar.4.Coil 16.Armature18.Valve plate / Pilot valve plate 20.Earth terminal24.Connection for flexible steelhose28.Gasket29.Pilot orifice30.O-ring31.Piston ring36.DIN plug40.Terminal box43.Valve cover44.O-ring45.Valve cover gasket48.Flange gasket49.Valve body51.Cover / Threaded plug52.Lock button and top nut53.Manual operation spindle 59.Strainer73.Equalization hole74.Main channel75.Pilot channelpression spring80.Diaphragm/Servo piston82.Support washer83.Valve seat84.Main valve plate EVRA 3EVRA 10, 15 and 20 EVRA 25EVRA 32 and 40Dimensions and weightsEVRA 3 ® 20Coil with terminal boxWeight of coil10 W: approx. 0.3 kg12 and 20 W: approx. 0.5 kg Weight of flange setFor EVRA 3, 10 and 15: 0.6 kgFor EVRA 20: 0.9 kgEVRA 10 ® 20Coil with terminal boxEVRA 10Coil with terminal boxEVRA 3Coil with cableEVRA 3 ® 20Coil with DIN plugsmmmm mm mm mm mm mmmmmm mm kg 1) With coil, without flangesEVRA 38419124658068 1.2EVRA 102210081130688068 1.7EVRA 1510081130688068 1.8EVRA 20110771558596682.77585B 1max.Weight 1)L 5 max.12 W 20 W 10 W B H 1H 2H 3H 4L L 1TypeDimensions and weights (continued)Weight of coil10 W: approx. 0.3 kg12 and 20 W: approx. 0.5 kgWeight of flange set For EVRA 25: 0.9 kgEVRA 25Coil with terminal boxEVRA 32 and 40Coil with terminal boxEVRA 25Coil with terminal boxEVRA 25, 32 and 40Coil with DIN plugsEVRA 25, 32 and 40Coil with cable EVRA 32 and 40Coil with terminal boxmmmm mmmm mm mm mmmmmm mm kg EVRA 254614178162929568 3.0EVRA 32471155318075858068 4.0EVRA 40471155320080684.0B 1max.Weight 1)L 5 max.12 W 20 W 10 W B H 1H 2H 3H 4L L 1Type1) With coil, without flanges。

丹弗斯商业制冷及空调系统配件(132P)中文版

丹弗斯商业制冷及空调系统配件(132P)中文版

068Z3369 068Z3370 068Z3408 068Z3409
068Z3401 068Z3410 068Z3404 068Z3411
1)参见喇叭口连接 喇叭口连接
连接铜管的ODF
in.
mm
1/4
6
3/8
10
1/2
12
示例: 选择TE2热力膨胀阀的主要部件是: - 一个感温元件 - 流口组件 - 喇叭口螺母
流口编号
产品代码
0X
068-2089
00
068-2090
01
068-2091
02
068-2092
03
068-2093
04
068-2094
05
068-2095
06
068-2096
N系列:-40~+10℃
名义制冷量(TR)
流口编号 R22
R407C R134a R404A R22 R507
0X
0.15
0.16
通常T2和TE2是可更换流口组件的。
对于相同的阀型号和制冷剂,配套的流口组件可适 用于各种型号的阀体和蒸发温度。感温元件的充注 物取决于蒸发温度范围。可提供T2(内平衡膨胀 阀)和TE2(外平衡膨胀阀)。带分液器的系统必须 采用外平衡膨胀阀。
双接触感温包能迅速感受蒸发器内的温度的变化, 且安装方便快捷。T2,TE2型膨胀阀可承受热气除霜 带来的影响。
内平衡式
1.5 1.5
TES2 TES2
外平衡式
1.5 1.5
3⁄8 10
½
3⁄8 10
½
12
068Z3414 068Z3416 068Z3429 068Z3418 068Z3420 068Z3435 068Z3423 068Z3436 068Z3425 068Z3427

4WRPEH新样本

4WRPEH新样本

3 4
1
2
Bosch Rexroth AG,RHale Waihona Puke 29121,版本:2014-01
带电气位置反馈和集成电子元件的直动式方向控制阀 | 4WRPEH 5/12
技术数据 (有关这些参数之外的应用,请务必向我们咨询!)
一般信息 设计 操作 连接类型 安装位置 环境温度范围 含 UV 防护的存储温度范围 运输温度 正弦试验符合 DIN EN 60068-2-6 噪音测试符合 DIN EN 60068-2-64 运输冲击符合 DIN EN 60068-2-27 重量 最大相对湿度(无冷凝) 最高线圈表面温度 MTTFd 值,符合 EN ISO 13849
连接电缆: 建议: – 对于长度不超过 20 m 的电缆,请使用型号为 LiYCY 7 x 0.75 mm2 的电缆
– 对于长度不超过 40 m 的电缆,请使用类型为 LiYCY 7 x 1.0 mm2 的电缆
仅在供电侧将屏蔽连接到 PE。
最大 18 V
LVDT
0 ... ±10 V
参考 0 V
LVDT 信号 4...20 mA(外部负载为 200 ...500 Ω)
4 ...20 mA 输出
电流环 IF-C 反馈 参见插脚分配(符合 CE 的安装)
出厂时已校准,请参见阀特性曲线
CE 符合 EMC 指令 2004/108/EC 经检测符合 EN 61000-6-2 和 EN 61000-6-3
ISO 12922
有关液压油的重要信息! ▶▶ 可能有对阀技术数据的相关限制(温度,压力范围,使用寿命,维护时间
间隔等)! ▶▶ 使用的液压油的闪点必须比最大线圈表面温度高出 40 K。 ▶▶ 矿物油和相关碳氢化合物:

丹佛斯-AKS41-ICAD-EKC347电动阀使用说明书

丹佛斯-AKS41-ICAD-EKC347电动阀使用说明书

丹佛斯-AKS41-ICAD-EKC347电动阀使用说明书丹佛斯 AKS41 ICAD EKC347电动阀使用说明书本系统采用Danfoss的一套组合(AKS41液位传感器+(ICM+ICAD封闭式电动阀)+EKC347控制器)进行供液控制。

EKC347控制器可以根据AKS41液位传感器提供的4~20mA液位信号来精确控制ICM封闭式电动阀的开度。

以下分别给出AKS41液位传感器、ICAD电动阀马达(电动阀)、EKC347控制器的中文操作指南,如果与英文操作指南有冲突,以英文为准。

一、AKS41液位传感器、ICAD电动阀马达、EKC347控制器的初始设定AKS41液位传感器、ICAD电动阀马达、EKC347控制器必须进行初始设定。

1.1、液位控制器EKC347的设定设定●上电几秒,待显示0.00后,才允许开始设定;●同时按住两按钮,进入液位设定状态,显示值会不断闪动,按上下键调定设定值,设定完后再同时按住两键进行确认;●接着上步操作,按住上面的按键不放几秒钟后,可找到其它设置项r06、r12等进行设置;●待所有参数均设定完毕后,放开所有按键,一段时间后,显示自动恢复到原始画面。

注意:显示r12等设定项后,同时按住两键进入参数设定状态,通过按上下两键调定具体设定值,参数值设定完毕后,务必再次同时按住两键进行确认。

LED显示:当前实际液位值,按一下“下按键”,则LED显示为电动阀开度。

具体设定值参见以下表格:1.2、电动阀ICAD马达初始设定●按住中间的○按键几秒钟后,按▲▼键找到i10项,按下○键进入密码输入状态,再通过▲▼键找到密码值(密码为11),然后再按一下○键进行确认;●输入密码后便可以对参数进行设定了,按▲▼键找到需要设定的项,然后按○键,进入参数设定状态,通过按▲▼键设定参数值,参数设定完后,再按一下○键进行确认;设定完后电动阀会进行自动调节,发出嗡嗡的震动,且显示100%,说明设定正确。

丹佛斯300选型样本

丹佛斯300选型样本
防腐蚀
具 有防腐 蚀性 的背 部散热 通道 组件 和散热 片 可以作 为选 件订 购,用 于一 些恶 劣的环 境,例如靠近海边的含盐空气中。
控制端子
专 门开发 的笼 式弹 簧夹紧 端子 增强 了可靠 性,而且便于调试和维护。
50℃ 运行环境温度
变频 器能在 高达 50℃ 的环境 温度 下达到 最 大的输出。
三种控制面板选件:图形面板、数字面板、盖板。
6
VLT®AutomationDrive FC302通过控制面板就地 控制,可以直接插入或用电缆连接。
VLT®AutomationDrive FC302可以从外部经过USB电缆 或总 线通讯进行试运行和监视。有专用软件可以提供: 向导 (Wizards)、数据传输工具、VLT设定软件MCT10 和语 言改变器。
背部通道式散热
革新化的设计减少了污物进入变频器的危险, 从而确保变频器的长寿命。采用管道式散热套件后,
额定的热量能被带至控制室以外,或建筑物外部。 减少了额外的空调元器件及其带来的能量损耗。
智能专用散热器套件可将D1和D2规格变频器 安装在Rittal 机柜内,这样,冷风
可带走85%的多余热量,而无需触 及电子元器件。
轴 )、 定位 和电 子凸轮 控制 为其 特 征 。而 且, 其可 编程性 能使 用户 执 行 各种 应用 功能 ,比如 监视 和智 能 故障处理等。
5
荣获国际奖的控制面板
图形显示面板
● 国际字母和符号 ● 显示栏和图形 ● 简便的概览 ● 27种语言选择
(包括简体中文和繁体中 文)
其它优点
● 运行中可插拨 ● 上传和下载 ● 安装在柜门 上时为
涂层控制板,确保恶劣环境下的安全可靠运行。
3

多种丹佛斯涡旋压缩机

多种丹佛斯涡旋压缩机

我司经营的制冷机组主要有主要产品:制冷配件、冷库配件、冰箱配件、空调配件、冷库工程、制冷压缩机经营品牌:阿斯帕拉,丹佛斯,卡士妥,百福马,三洋,美优乐,谷轮,泰康,东贝,富士豪等等。

水(风)冷全封闭涡旋式冷凝压缩机组采用天津Danfoss、百福马和美国Copeland全封闭涡旋压缩机为制冷主机,80%以上配件均为国际知名品牌,适用于10℃~-20℃的冷藏、冷藏库、制冰系统。

型号范围:在2HP-15HP,设备可以多机并联组合使用。

适用于多种制冷剂,如R22、R404、R507C等。

适用库温:+5至-20℃。

美优乐全封闭压缩机组丹佛斯/百福马全封压缩机美国谷轮全封闭压缩机济南冰雪制冷设备有限公司我公司可根据用户的需求,提供国内外不同品牌的制冷压缩机组,以满足不同的工艺要求。

欢迎来电来函咨询洽谈!济南冰雪制冷设备有限公司1、立式储液器型号:HL-1.2L~28L 接口:1/4″~1-3/8″品牌:HL 说明:丹佛斯涡旋压缩机储液器采用先进的自动焊接工艺,强度大,气密性好,进口配有旋转截止阀,耐腐蚀喷塑,可接受来图来样定做。

出厂价优惠销售2、卧式储液器型号:15L~60L,接口:5/8″~2-1/8″品牌:HL 说明:储液器采用先进的自动焊接工艺,强度大,气密性好,进口配有旋转截止阀,耐腐蚀喷塑,可接受来图来样定做。

出厂价优惠销售3、气液分离器型号:HA204、HA205、HA206、HA207、HA208、HA209、HA210、HA221、HA225、HA231接口:1/2″~3-1/8″品牌:HL 说明:气分需垂直安装,尽可能地靠近压缩机安装,进口连接蒸发器回气口,出口连接压缩机吸气口,内部为U型管独特设计,避免了液体进入压缩机形成液击,气分回油孔的设计和系统容量匹配以控制流入压缩机的液态制冷剂和油量,可接受来图来样定做。

出厂价优惠销售。

4、冷热交换型气液分离器型号:HAV2405、HAV2406、HAV2407、HAV2411、HAV2413、HAV2415 接口:1/2″~1-5/8″品牌:HL 说明:热交换管采用高效外螺纹管,具有最大的冷热交换量及超强的气液分离能力,可接受来图来样定做。

热氨融霜控制系统(20P)

热氨融霜控制系统(20P)

6.0 39.4 70.9 118.0 263.0 420.0 656.0
7.0 45.5 81.8 136.0 303.0 485.0 758.0
R134a
7.8 50.8 91.5 153.0 339.0 542.0 847.0
EVRA 3 EVRA/T 10 EVRA/T 15 EVRA/T 20 EVRA 25 EVRA 32 EVRA 40
20°C 73 96 156 262 555 790 1256
6
EVRA 选型 制冷量表
制冷量是根据阀前制冷剂的液 体温度 tl=+25℃, 蒸发温度te = −10℃, 过冷度 0 K.
供液管制冷量 Ql kW 型号 0.1
EVRA 3 EVRA/T 10 EVRA/T 15 EVRA/T 20 EVRA 25 EVRA 32 EVRA 40
5.9 38.5 69.3 116.0 257.0 411.0 642.0
修正因子 当我们进行供液电磁阀选择时,我们制冷系统的制冷量必须乘以制冷剂液体温度修正因子,修正因子的选择依
蒸发温度 Te -50°C -40°C -30°C -20°C -10°C 0°C
20.5
27
33
40
48
56
27
35
43
53
63
73
44
57
70
85
102
119
73
95
118
143
171
200
155
201
250
304
362
424
221
286
356
432
515
603
352

ID标识–范例阀门识别以及参考UL认证线圈

ID标识–范例阀门识别以及参考UL认证线圈

General-Purpose Valve consists of Body EVR 32 NC 032L1105 AND COIL BJ OR BX Max. Media temp 221 °F MOPD 550psi PS45.2 bar/SWP655psig
Danfoss A/S, 6430 Nordborg, Denmark
317R
110-120V 110V
60Hz 50Hz
15W 16W
从阀门上卸下时, 请务必将线圈电源 断开。 否则可能会损坏线圈且可能导 致人员损伤和烫伤。
卡嗒!
007
EVR•EVRH•EVRC•EVRP•EV2xx series
317R
See armature tube or label
标签
线圈打印
安装指南
电磁阀 型号 EVR 32 - EVR 40(032Lxxxx)
032R9604
NC 钎焊
注意: 管道设计
NO 钎焊
制冷剂 R22/R407C、R134a、R404A/R507、 R410A、R407A、R407F、R125、 R152A、R448A、R449A、R452A 和 R450A。 要查看获得认证的制冷剂完整列表,请访问 并搜索各个代码, 制冷剂作为技术参数的一部分列于其中。 注意,请遵循这些特定制冷剂参数表中规定的具体选择标准。
© Danfoss | DCS (az) | 2017.07
DKRCC.PI.BB0.1C.41 | 2
最大工作压力 EVR 钎焊: 45.2 bar.
Bar
45.2 bar
3 -40 0 °C
最大工作压力单位为 bar,相应介质温度单位为 °C。

EV225B型二位二通伺服式电磁阀-Danfoss

EV225B型二位二通伺服式电磁阀-Danfoss

MAKING MODERN LIVING POSSIBLE技术手册EV225B 型二位二通伺服式 电磁阀y专为 160 °C 或 185 °C 的蒸汽应用而设计y流量范围:0.9 – 6.0 m3/hy压差:0.2 – 10 bary介质温度 0 – 185 °Cy环境温度:最高 40 °Cy线圈防护等级:最高 IP65y螺纹连接:从 G 1/4至 G 1y DN 6– 25EV225B是一款用于蒸汽应用的二位二通伺服式电磁阀。

设计上采用 PTFE 膜片,确保与受污染的蒸汽接触使用时功能高度可靠。

阀体采用防脱锌黄铜制成,阀座采用不锈钢制成。

即使在具有高度腐蚀性的蒸汽介质中,也能确保长期的使用寿命。

y防脱锌 NC(常闭)y EV225B 搭配 BQ 线圈:交流电,最高 185 °Cy EV225B 搭配 BN 线圈:直流电,最高 160 °Cy EV225B 搭配 BB 线圈:交流电,最高 160 °C直流电,最高 140 °Cy通过 ISO 228/1 或 UL 认证的版本,搭配适用于北美地区的 NPT(EVSIS/UL)特性和版本:防脱锌黄铜阀体,NC防脱锌黄铜阀体, NC 和 BQ卡夹式线圈防脱锌黄铜阀体, NC 和 BN卡夹式线圈NC技术参数,尺寸和重量:尺寸安装角线圈类型 BQ a.c.蒸汽线圈,最高 185 °C线圈类型 BB a.c.蒸汽线圈,最高 160 °C类型 BB d.c.蒸汽线圈,最高 140 °C线圈类型 BN d.c.蒸汽线圈,最高 160 °C功能 NC线圈电压断开(关闭):电压断开时,垫片(2)在铁芯弹簧(4)作用下向下压紧先导流口(3)。

压力通过平衡口(5)在膜片上(6)累积。

当膜片/活塞受到的压力等于入口压力时,膜片/活塞关闭主流口(7)。

只要线圈电压断开,阀门将保持关闭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EVR is a direct or servo operated solenoid valve for liquid, suction, and hot gas lines with fluorinated refrigerants.EVR valves are supplied complete or as separate components, i.e. valve body, coil and flanges, if required, can be ordered separately.y Complete range of solenoid valvesfor refrigeration, freezing and air conditioning planty Supplied in versions normally closed (NC) and normally open (NO) with de-energized coily Wide choice of coils for AC and DCy Suitable for all fluorinated refrigerants, including flammable refrigerantsy Designed for media temperatures up to 105 °C y MOPD up to 25 bar with 12 W coily Flare connections up to 5/8iny Solder connections up to 2 1/8iny Extended ends on solder versions make the installation easy. It is not necessary to dismantle the valve when soldering iny Available in flare, solder and flange connection versionsFeaturesDet norske Veritas, DNVPressure Equipment Directive (PED) 97/23/EC Low Voltage Directive (LVD) 2006/95/EC Polski Rejestr Statków, Polen Maritime Register of Shipping, MRS Versions with UL approvalcan be supplied to order.ApprovalsData sheet Solenoid valve, types EVR 2 − EVR 40 NC/NOTechnical data1) MOPD (Max. Opening Pressure Differential) for media in gas form is approx. 1 bar greater.2)Min. diff. pressure 0.07 bar is needed to stay open.RefrigerantsR22/R407C, R404A/R507, R410A, R134a, R407A, R23, R32, R290, R600, and R600a. For other refrigerants, contact Danfoss.Special note for R32, R290, R600, and R600a : Use only for system in compliance withstandard EN13463-1. Ignition risk is evaluated inaccordance with standard EN13463-1.Only EVR 2 - EVR 20 with solder connections andwithout manual stem can be applied in systemswith R32, R290, R600, and R600a as the workingfluid. For countries where safety standards are not an indispensable part of the safety system Danfoss recommends the installer to seek third partyapproval for systems containing R32, R290, R600, Note, please follow specific selection criteria stated in the datasheet for these particular refrigerants.Temperature of medium-40 – 105 °C with 10 W or 12 W coil.Max. 130 °C during defrosting.Ambient temperature and enclosure for coil See separate data sheet for coils and ATEX coils.Capacity The capacity of the valve depends on the flow direction, see K v values from the table.The K v value is the water flow in [m 3/h] at a pressure drop across valve of 1 bar, ρ = 1000 kg/m 3.See extended capacity tables later in this datasheet.Table of contentsTechnical data.............................................................................................................................................................................2Rated capacity [kW] .................................................................................................................................................................3Ordering .......................................................................................................................................................................................4Capacity, Liquid .........................................................................................................................................................................7Capacity, Suction .....................................................................................................................................................................11Capacity, Hot gas ....................................................................................................................................................................19Design ........................................................................................................................................................................................40Function.....................................................................................................................................................................................42Material specifications .........................................................................................................................................................43Dimensions and weights .. (45)Data sheet Solenoid valve, types EVR 2 − EVR 40 NC/NORated liquid and suction vapour capacity is based on evaporating temperature t e = -10 °C, liquid temperature ahead of valve t l = 25 °C, pressure drop in valve ∆p = 0.15 bar.Rated hot gas capacity is based on condensing temperature t c = 40 °C, pressure drop across valve ∆p = 0.8 bar, hot gas temperature t h = 65 °C,and subcooling of refrigerant ∆tsub = 4 K.Rated capacity [kW]Data sheet Solenoid valve, types EVR 2 − EVR 40 NC/NOOrdering (continued)EVR solder connections, Normally Closed (NC) - separate valve bodiesData sheet Solenoid valve, types EVR 2 − EVR 40 NC/NOThe normal range of coils can be used for the NO valves, with the exception of the double frequency versions of 110 V,50/60 Hz and 220 V, 50/60 Hz.Ordering (continued)EVR solder connections, Normally Open (NO) - separate valve bodiesValve bodies are supplied without flare nuts. Separate flare nuts:– 1/4 in or 6 mm, code no. 011L1101 – 3/8 in or 10 mm, code no. 011L1135 – 1/2 in or 12 mm, code no. 011L1103 – 5/8 in or 16 mm, code no. 011L1167OrderingEVR flare connections, Normally Closed (NC) - separate valve bodiesSee separate data sheet for coils.The normal range of coils can be used for the NO valves, with the exception of the double frequency versions of 110 V, 50/60 Hz and 220 V, 50/60 Hz.Data sheet Solenoid valve, types EVR 2 − EVR 40 NC/NO Ordering (continued)Separate valve bodies, normally closed (NC)See separate data sheet for coils.Flange setsAccessoriesEVR 15 without manual operation, code no. 032F1224½ in weld flange set, code no. 027N1115+ coil with terminal box, 220 V, 50 Hz, code no. 018F6701See separate data sheet for coils.ExampleCapacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator.When the corrected capacity is known,the selection can be made from the table.R22/R407CCorrection factors based on liquid temperature t lLiquidCapacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator.When the corrected capacity is known,the selection can be made from the table.Correction factors based on liquid temperature t lR404A/R507Liquid (continued)Capacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator.When the corrected capacity is known,the selection can be made from the table.Correction factors based on liquid temperature t lR290Liquid (continued)Data sheet Solenoid valve, types EVR 2 − EVR 40 NC/NOCapacities are based on:– liquid temperaturet l = 25 °C ahead of valve, – evaporating temperature t e = -10 °C, superheat 0 K.Correction factorsWhen sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator.When the corrected capacity is known,the selection can be made from the table.Correction factors based on liquid temperature t lR600Capacity Liquid (continued)R22/R407CCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known, the selection can be made from the table.Correction factors for evaporating temperature tlCapacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ∆p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity SuctionCapacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ∆p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Correction factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R134aCapacity Suction(continued)Correction factors based on evaporating temperature t lCorrection factors When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R404A/R507Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ∆p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Correction factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R32Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ∆p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Correction factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R290Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ∆p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Correction factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R600Capacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ∆p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Correction factors based on evaporating temperature t lCorrection factorsWhen sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve.When the corrected capacity is known,the selection can be made from the table.R600aCapacities are based on liquid temperature t l = 25 °C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function ofevaporating temperature t e and pressure drop ∆p across valve.Capacities are based on dry, saturated vapour ahead of valve.During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 10 K superheat.Capacity Suction(continued)Hot gas defrostingWith hot gas defrosting it is not normally possible to select a valve from condensing temperature t c and evaporating temperature t e .This is because the pressure in the evaporator as a rule quickly rises to a value near that of the condensing pressure. It remains at this value until the defrosting is finished.In most cases therefore, the valve will be selected from condensing temperature t c and pressure drop ∆p across the valve, as shown in the example for heat recovery.Heat recoveryThe following is given: y Refrigerant = R22/R407Cy Evaporating temperature t e = -30 °C y Condensing temperature t c = 40 °Cy Hot gas temperature ahead of valve t h = 85 °Cy Heat recovery condenser yield Q h = 8 kWThe capacity table for R22/R407C with t c = 40 °C gives the capacity for an EVR 10 as 8.9 kW, when pressure drop ∆p is 0.2 bar.The required capacity is calculated as :Q table = f evaporator x f hot_temperature x Q hThe correction factor for t e = -30 °C is given in the table as 0.95.The correction for hot gas temperature t h = 85 °C has been calculated as 4% which corresponds to a factor of 1.04.Q h must be corrected with factors found: With ∆p = 0.2 baris Q h = 8.71 x 0.95 x 1.04 = 8.6 kW.With ∆p = 0.1 bar, Q h becomes only 6.19 x 0.95 x 1.04 = 6.1 kW.An EVR 6 would also be able to give the required capacity, but with ∆p at approx. 1 bar. The EVR 6 is therefore too small.The EVR 15 is so large that it is doubtful whether the necessary ∆p of approx. 0.1 bar could be obtained.An EVR 15 would therefore be too large.Result: An EVR 10 is the correct valve for the given conditions.Capacity Suction (continued)R22/R407CAn increase in hot gas temperature t h of 10 K, based on t h = t c +25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Correction factorsWhen sizing valves, the table value mustbe multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teCapacity Hot gasAn increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR22/R407C (continued)Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature t eR134aAn increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature t eR134a (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR404A/R507An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR404A/R507 (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR32An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR32 (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR290An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR290 (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR600An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR600 (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR600aAn increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)Correction factorsWhen sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e .Correction factors for evaporating temperature teR600a (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Capacity Hot gas(continued)R22/R407CCapacity Hot gas (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.R134aCapacity Hot gas (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.R404A/R507Capacity Hot gas (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.R32Capacity Hot gas (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.R290Capacity Hot gas (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.R600Capacity Hot gas (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.R600aCapacity Hot gas (continued)An increase in hot gas temperature t h of 10 K, based on t h = t c 25 °C, reduces valve capacity approx. 2% and vice versa.A change in evaporating temperature t e changes valve capacity; see correction factor table below.Design4. Coil16. Armature 18. V alve plate/Pilot valve plate 20. Earth terminal 24. C onnection for flexiblesteel hose 28. Gasket 29. Pilot orifice 30. O-ring 36. DIN plug 37. D IN socket (to DIN 43650) 40. P rotective cap/Terminal box 43. Valve cover 44. O-ring45. Valve cover gasket 49. Valve body73. Equalization hole 80. D iaphragm/Servo piston 83. Valve seat90. Mounting holeNote :The drawings are only representative.4. Coil16. Armature 18. V alve plate/ Pilot valve plate 20. Earth terminal 28. Gasket 29. Pilot orifice 30. O-ring 31. Piston ring 36. DIN plug 37. D IN socket (to DIN 43650) 40. P rotective cap/ Terminal box 43. Valve cover 44. O-ring45. Valve cover gasket 49. Valve body 51. Threaded plug 53. M anual operation spindle 73. Equalization hole 74. Main channel 75. Pilot channel76. Compression spring 80. D iaphragm / Servo piston 83. Valve seat84. Main valve plateEVR 32 and EVR 40 (NC)EVR 25 (NC)Design (continued)Note :The drawings are only representative.Function EVR solenoid valves are designedon two different principles:1. Direct operation2. Servo operation1. Direct operationEVR 2 – EVR 3 are direct operated. The valves open directly for full flow when the armature (16) moves up into the magnetic field of the coil. This means that the valves operate with a min differential pressure of 0 bar.The valve plate (18) is fitted directly on the armature (16).Inlet pressure acts from above on the armature and the valve plate. Thus, inlet pressure and spring force act to close the valve when the coil is currentless.2. Servo operationEVR 6 – EVR 22 are servo operated with a "floating" diaphragm (80). The pilot orifice (29) of stainless steel is placed in the centre of the diaphragm. The pilot valve plate (18) is fitted directly to the armature (16). When the coil is currentless, the main orifice and pilot orifice are closed. The pilot orifice and main orifice are held closed by the armature spring force and the differential pressure between inlet andoutlet sides.When current is applied to the coil the armature is drawn up into the magnetic field and opens the pilot orifice. This relieves the pressure above the diaphragm, i.e. the space above the diaphragm becomes connected to the outlet side of the valve. The differential pressure between inlet and outlet sides then presses the diaphragm away from the main orifice and opens it for full flow. Therefore a certain minimum differential pressure is necessary to open the valve and keep it open. For EVR 6 – EVR 22 valves this differential pressure is 0.05 bar.When current is switched off, the pilot orifice closes. Via the equalization holes (73) in the diaphragm, the pressure above the diaphragm then rises to the same value as the inlet pressure and the diaphragm closes the main orifice.EVR 25, EVR 32 and EVR 40 are servo operated piston valves. The valves are closed with currentless coil. The servo piston (80) with main valve plate (84) closes against the valve seat (83) by means of the differential pressure between inlet and outlet side of the valve and the force of the compression spring (76). When current to the coil is switched on, the pilot orifice (29) opens. This relieves the pressure on the piston spring side of the valve. The differential pressure will then open the valve. The minimum differential pressure needed for full opening of the valves is 0.2 bar. EVR (NO) has the opposite function to EVR (NC), i.e. it is open with de-energised coil.EVR (NO) is available with servo operation only.Material specifications EVR 2 – EVR 25Note:The drawings are only representative.Material specifications (continued)EVR 32 – EVR 40Note :The drawing is only representative.With DIN plugs coilWith cable connection coilNet weight of coil 10 W: approx. 0.3 kg12 and 20 W: approx. 0.5 kgWith terminal box coilDimensions [mm] and weights [kg]EVR 2 – EVR 6 NC/NO, solder connection For 3D models, visit /products/categories/Note :The drawings are only representative.。

相关文档
最新文档