高三第一次月考试卷

合集下载

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考历史试题(含答案)

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考历史试题(含答案)

姓名:座号:保密★启用前塘沽一中2025届高三毕业班第一次月考历史本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试用时60分钟。

第Ⅰ卷1至5页,第Ⅱ卷6至8页。

答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共15题,每题3分,共45分。

在每题给出的四个选项中,只有一项是最符合题目要求的。

1.据学者考证,春秋末年,陈国司徒辕颇向封疆内所有的田地征取赋纳。

辕颇遭到拥有一定数量田地的国人驱逐,逃亡到郑国。

这一考证可以说明A.官僚政治的腐朽B.贵族与农民阶级矛盾尖锐C.土地制度的变动D.诸侯权威遭到卿大夫挑战2.汉文帝时,对孝悌、力田、三老等基层教化乡官进行嘉奖并赐帛慰问;“诏诸侯王、公卿、郡守举贤良能直言极谏者”,要求被举荐之人品德高尚,且尤其强调孝道;对于违背孝道的行为要处以刑罚。

据此可知,当时A.政府比较重视基层治理B.国家治理凸显儒家价值取向C.官员选拔制度逐步完善D.儒家思想得到统治者的尊崇3.下图为北魏前期、后期中枢机构长官籍贯数量分布情况柱状图。

图示中官员籍贯数量的变化推动了A.政权政治中心的转移B.南北经济格局的变化C.华夏认同观念的形成D.鲜卑族的封建化进程4.学者张显清说:“晚明社会的时代特点,概括起来讲,就是中国传统封建社会高度成熟,并开始起步由传统的封建社会向新的近代社会转型,晚明恰是转型的起点。

”下列选项中,可以对材料中“转型的起点”解释的是①开设工场,使用自由雇佣劳动②致力于维护朝贡体制③思想界出现了反对专制的倾向④兴起一批工商业市镇A.①③B.①④C.②④D.③④5.1902年,顺天乡试借河南贡院举行,山西乡试则与陕西乡试在西安合闱。

江西省部分高中学校2024-2025学年高三上学期开学第一次月考试题 语文含答案

江西省部分高中学校2024-2025学年高三上学期开学第一次月考试题 语文含答案

高三语文试卷(答案在最后)考生注意:1.本试卷共150分,考试时间150分钟。

2.请将各题答案填写在答题卡上3.本试卷主要考试内容:高考全部内容。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:根据第四次中国城乡老年人生活状况抽样调查数据,2015年中国空巢老人占老年人口的比重为51.3%,其中农村地区略高,为51.7%。

《2020中国农村养老现状国情调研报告》统计,大约有50%的农村老人处于空巢状态。

专家预测,到2030年,中国空巢老人比例将高达90%,预计将有超过2亿老年人成为空巢老人,农村地区空巢老人数量显著高于城市。

2020年第七次全国人口普查数据显示,中国留守老年人数量超过1亿。

老龄化与数字化相伴而生,相向而行。

信息化、数字化、智能化为人口老龄化社会发展提供支持和帮助。

将信息技术运用到养老产业、医疗领域,大力发展智慧养老,完善养老服务体系,提供全面的智慧养老解决方案,同时要看到老年人面临的“数字鸿沟”。

人口老龄化为经济发展带来斯的增长点。

老年人的健康、养老、医疗需求及对于休闲娱乐、文化教育的需求都会给经济发展带来新的活力。

虽然老年人口的增多会增加社会保障支出,但是老年人并不是“负担”,而是一座“金矿”;不是“人口负债”,而是“人口红利”。

数字经济时代,消费升级,互联网市场下沉,依托数字技术开拓老年人消费市场,发展银发产业,既有利于社会的和谐发展,又有利于社会经济高质量发展。

老年人的消费结构与其他消货群体有显著区别。

首先,饮食方面,老年人更加注重健康饮食,对保健食品和营养品有较大的消费需求;其次,医养护理方面,随着年龄的增加,老年人的身体机能逐步下降,对医疗保健、日常护理服务的需求增加;再次,随着社会的进步及消费观念的改变,老年人在满足物质需求的基础上,更加注重社交、尊重等精神层面的需求,包括体育健身、文化旅游、休闲服务、社交活动等;最后,老年人对家居用品和辅助器具的需求也与年轻人有显著区别,例如老花镜、助听器、按摩椅等。

2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷(含答案)

2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷(含答案)

2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|x 2−x−2≤0},B ={x|2x−3<0},则A ∩B =( )A. [−2,1]B. [−1,32)C. (−∞,32)D. (−∞,−1]2.下列函数中,既为偶函数,又在(0,+∞)上为增函数的是( )A. y =x 2+1xB. y =2−x 2C. y =x 2+log 2|x|D. y =2|x|−x 23.已知函数f(x)为定义在R 上的奇函数,对于任意的x 1,x 2∈(0,+∞),且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,f(−1)=0,则xf(x)<0的解集为( )A. (−1,0)∪(1,+∞)B. (−1,0)∪[1,+∞)C. (−1,0)∪(0,1]D. (−1,0)∪(0,1)4.设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是( )A. 62 B. 2 105 C. 1 D. 35.函数f(x)=3|x|⋅cos2x x的部分图象大致是( )A. B.C. D.6.已知随机变量X ~N(1,σ2).若P(1≤X ≤3)=0.3,设事件A =“X <1”,事件B =“|X|>1”,则P(A|B)=( )A. 38B. 35C. 58D. 277.已知函数f(x)={|log 3x|,x >03x ,x ≤0,若函数g(x)=[f(x)]2−(m +2)f(x)+2m 恰好有5个不同的零点,则实数m 的取值范围是( )A. (0,1]B. (0,1)C. [1,+∞)D. (1,+∞)8.已知f(x)是定义在R 上的函数,且满足f(3x−2)为偶函数,f(2x−1)为奇函数,则下列说法正确的( )①函数f(x)的图象关于直线x =1对称;②函数f(x)的图象关于点(−1,0)中心对称;③函数f(x)的周期为4;④f(2023)=0.A. ①②③B. ①②④C. ②③④D. ①③④二、多选题:本题共3小题,共18分。

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考数学试卷

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考数学试卷

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考数学试卷一、单选题1.已知集合{}R 13P x x =∈≤≤,{}2R 4Q x x =∈≥,则()R P Q =U ð( )A .{}2x x >B .{}23x x -<≤C .{}12x x ≤<D .{}21x x x ≤-≥或2.设x ∈R ,则“1x <”是“ln 0x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.函数y =2sin 2x x 的图象可能是A .B .C .D .4.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B C D .15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时6.已知()1e ,1x -∈,记ln ln 1ln ,,e 2⎛⎫=== ⎪⎝⎭xx a x b c ,则,,a b c 的大小关系是( )A .a c b <<B .a b c <<C .c b a <<D .b c a <<7.等差数列 a n 的前n 项和为n S ,其中77S =,又2,1b ,2b ,3b ,8成等比数列,则2352b a a +的值是( ) A .4B .4-C .4或4-D .28.已知函数()sin()f x A x B ωϕ=++(0,0,)2A πωϕ>><的部分图象如图所示,则下列正确个数有( )①()f x 关于点π(,3)6对称;②()f x 关于直线π3x =对称; ③()f x 在区间π5π[,]26上单调递减;④()f x 在区间5ππ(,)1212-上的值域为(1,3). A .1个B .2个C .3个D .4个9.如图,在ABC V 中,π3BAC ∠=,2AD DB =u u ur u u u r ,P 为CD 上一点,且满足13AP mAC AB =+u u u r u u u r u u u r,若4AB AC ⋅=u u u r u u u r,则AP u u u r 的最小值为( )A .2B .3 CD .32二、填空题10.已知i 是虚数单位,化简113i12i+-的结果为. 11.8⎛⎫的展开式中22x y 的系数为. 12.已知13a <<,则131a a a +--的最小值是. 13.甲罐中有4个红球、2个白球和2个黑球,乙罐中有4个红球、3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.以1A 表示由甲罐取出的球是红球的事件,以M 表示由乙罐取出的球是红球的事件,则()1P M A =;()P M =. 14.在梯形ABCD 中,AB CD ∥,且3AB C D =,M ,N 分别为线段DC 和AB 的中点,若AB a u u u r r=,AD b u u u r r =,用a r ,b r 表示MN =u u u u r .若MN BC ⊥u u u u r u u u r,则DAB ∠余弦值的最小值为.15.函数(){}2min 2,,2f x x x x =-+,其中{}min ,,x y z 表示x ,y ,z 中的最小者.若函数22()2()9y f x bf x b =-+-有12个零点,则b 的取值范围是.三、解答题16.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos tan b C c B C +=. (1)求角C ;(2)若4b a =,ABC V 的面积为①求c②求()cos 2A C -.17.已知函数()4tan sin cos ππ23f x x x x ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的定义域与最小正周期;(2)讨论()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的单调性.(3)若()065f x =,0π5π,122x ⎡⎤∈⎢⎥⎣⎦,求0sin2x 的值.18.在四棱锥P ABCD -中,PD ⊥平面ABCD ,//AB DC ,AB AD ⊥,112CD AD AB ===,45PAD ∠=o ,E 是PA 的中点,G 在线段AB 上,且满足CG BD ⊥.(1)求证://DE 平面PBC ;(2)求平面GPC 与平面PBC 夹角的余弦值.(3)在线段PA 上是否存在点H ,使得GH 与平面PGCAH 的长;若不存在,请说明理由.19.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,*n ∈N .数列{}n b 满足()()111n n nb n b n n +-+=+,*n ∈N ,且11b =.(1)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 和{}n b 的通项公式;(2)若21n n d a -=数列{}n d 的前n 项和为n M ,对任意的*n ∈N ,都有22n3n n M S a >+,求实数a 的取值范围; (3)记11m m c a -=,{}m c 的前m 项和记为m T,是否存在m ,*N t ∈,使得111m m t T t T t c +-=-+成立?若存在,求出m ,t 的值;若不存在,请说明理由.20.已知函数()2e cos222xf x x x x =+++-.()()2ln 2g x a x x a x =+-+,其中R a ∈.(1)求()f x 在0x =处的切线方程,并判断()f x 零点个数. (2)讨论函数()g x 的单调性;(3)求证:()()ln 21f x x ≥+;。

湖南师范大学附属中学2025届高三上学期第一次月考数学试题及答案

湖南师范大学附属中学2025届高三上学期第一次月考数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ()A.{}32xx −≤≤∣ B.{32}x x −≤<∣C.{12}x x <≤∣ D.{12}x x <<∣2.若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于()A.B.54C.D.3.已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上投影向量为()A.()6,3− B.()4,2− C.()2,1− D.()5,04.记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A.21B.19C.12D.425.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D.820人6.已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( )A.π6 B.π4C.π3D.2π37.已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.B.C.(D.(8.已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1−∞∪ C.[)1,+∞ D.()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF ⊥平面PMN10.已知函数()5π24f x x=+,则()A.()f x 的一个对称中心为3π,08B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则()A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +−的展开式中2x y 的系数为______.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ,求CD 的长.16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围.17.已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18.在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张1.9 1.982.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式:()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ()A.{}32xx −≤≤∣ B.{32}x x −≤<∣C.{12}x x <≤∣ D.{12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2.若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于()A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3.已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A.()6,3− B.()4,2− C.()2,1− D.()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A.21 B.19C.12D.42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A.136人B.272人C.328人D.820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6.已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 64αβαβ⋅+⋅=,解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7.已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.B.C.(D.(【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+,即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8.已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1−∞∪ C.[)1,+∞ D.()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF ⊥平面PMN【答案】BD【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10.已知函数()5π24f x x=+,则()A.()f x 的一个对称中心为3π,08B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确. 故选:BD11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=,即()()21f x g x +−=①,用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②,由①+②得()()222f x f x ++−=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−,所以()()()()82422f x f x f x f x +=−+=−−= ,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +−的展开式中2x y 的系数为______.【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>.构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e ,所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零,综上所述,()0f x >的解集为()()1,01,−∪+∞.故答案为:()()1,01,−∪+∞14.已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】 【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ∠=∈ ,由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为: 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C =(2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++,解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,−∞−+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值; (2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−.函数()g x 的导函数()()1e xg x k x −=−′①若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. ②若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.③若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(+∞)上单调递增,所以()min ()1ekg x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−.综上所述,k 的取值范围为(](),10,∞∞−−∪+.17.已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− ,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18.在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥,所以当232ι=时,线段PQ .【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=.直线()21:111a DM y x a −−=−−,即()10x a y a −++=.由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=.所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,22224224,11r r a b ab r r −−∴+==−−代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=,220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛. 参考公式:()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t +(2)433774n n P =+⋅− (3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,a b 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新,12345678959t ++++++++=新,则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新,可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−,所以数列47n P − 是首项为928−,公比为34−的等比数列,故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−.【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减,最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

辽宁省实验中学2024~2025学年高三上学期10月月考英语试题含答案

辽宁省实验中学2024~2025学年高三上学期10月月考英语试题含答案

辽宁省实验中学25届高三上学期第一次月考英语科试卷考试时间:120分钟试卷满分:150分命题人:校对人:第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What will the speakers do with the phone?A. Have it updated.B. Have it charged.C. Have it checked.2. What kind of T-shirts does the woman prefer?A. Short.B. Loose.C. Tight.3. Who is the woman probably?A. A language teacherB. A writer.C. A musician4. What does the man have with his coffee?A. Low-fat milk.B. Goat’s milkC. Cream5. What are the speakers probably going to do next?A. Put up a tentB. Fish in the lakeC. Get food at a store.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6. Where does the conversation probably take place?A. In a library.B. At a print shop.C. In a classroom.7. What did the woman do last night?A. She worked on a presentation.B. She watched a show.C. She shared a story.听第7段材料,回答第8至10题。

宁夏回族自治区银川一中2024-2025学年高三上学期第一次月考试题-数学(含答案)

宁夏回族自治区银川一中2024-2025学年高三上学期第一次月考试题-数学(含答案)

银川一中2025届高三年级第一次月考数 学 试 卷命题教师:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题(共8小题,满分40分,每小题5分)1.命题p :x ∀∈R ,2210x mx -+>的否定是A .x ∀∈R ,2210x mx -+≤B .x ∃∈R ,2210x mx -+<C .x ∃∈R ,2210x mx -+>D .x ∃∈R ,2210x mx -+≤2.已知函数21(1),()2(1).x x f x x x x -+<⎧=⎨-≥⎩则((1))f f -的值为A .﹣2B .﹣1C .0D .33.“3a > ”是“函数2()(2)2f x a x x =-- 在(1,+)∞上单调递增”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知2081.5.12,,log 42a b c -⎛⎫ ⎝⎭=⎪==,则,,a b c 的大小关系为A .c<a<bB .c b a<<C .b a c <<D .b<c<a 5.在同一个坐标系中,函数()log a f x x =,()x g x a -=,()a h x x =的图象可能是A .B .C .D .6.函数()f x ax x =的图象经过点(1,1)-,则关于x 的不等式29()(40)f x f x +-<解集为 A .(,1)(4,)-∞-+∞ B .(1,4)-C .(,4)(1,)∞∞--⋃+D .(4,1)-7.中国宋代数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个边长分别为a,b,c的三角形,其面积S 可由公式S =1=)2p a b c ++(,这个公式也被称为海伦-秦九韶公式,现有一个三角形的三边长满足14,6a b c +==,则 此三角形面积的最大值为A .6B .C .12D .8.定义在R 上的偶函数()f x 满足()()1f x f x +=-,当[]0,1x ∈时,()21f x x =-+,设函数()()11132x g x x -⎛⎫=-<< ⎪⎝⎭,则函数()f x 与()g x 的图象所有交点的横坐标之和为A .2B .4C .6D .8二.多项选择题(共3小题,满分18分,每小题6分)9.下列运算正确的是A=B .()326a a =C .42log 32log 3=D .2lg5lg2log 5÷=10. 已知函数()y f x =是定义域为R 上的奇函数,满足(2)()f x f x +=-,下列说法正确的有A .函数()y f x =的周期为4B .(0)0f =C .(2024)1f =D .(1)(1)f x f x -=+11.已知函数()24,0,31,0,x x x x f x x -⎧-≥=⎨-<⎩其中()()()f a f b f c λ===,且a b c <<,则A .()232f f -=-⎡⎤⎣⎦B .函数()()()g x f x f λ=-有2个零点C .314log ,45a b c ⎛⎫++∈+ ⎪⎝⎭D .()34log 5,0abc ∈-三、填空题(共3小题,满分15分,每小题5分)12.已知集合A ={}01x x ≤≤,B ={}13x a x -≤≤,若A B 中有且只有一个元素,则实数a 的值为 .13.已知函数()()231m f x m m x +=+-是幂函数,且该函数是偶函数,则f 的值是 .14.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为 .(精确到0.01)四、解答题(共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.16.(15分)已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=. (1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.17.(15分)已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值; (2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.18.(17分)已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得)(1)2(x f x mf -≥成立,求m 的取值范围; (3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 19.(17分)银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈2025届高三第一次月考试卷答案一、单选题1. D 2. C 3. A 4. B5. C 6. B 7. B 8. B二、多选题9. BD 10. ABD 11. ACD.三、填空题12.2. 13.4 14.1.56.四、解答题15.已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.【详解】(1)令2461x y z k ===>,则2log x k =,4log y k =,6log z k =,11log 2log 4log 8k k k x y ∴+=+=,1log 6k z=.1k > ,log 8log 6k k ∴>,111x y z∴+>.(2)6log 4z = ,64z ∴=,则244x y ==,2x ∴=,1y =,4664log 4log 256z ∴==.3462566<< ,63log 2564∴<<,342y z x ∴<<.16.已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=.(1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.【详解】(1)()()1212111442x x f x f x m m +=+=++,即()()()()2112242444x x x x m m m m +++=++()()121212242444444x x x x x x m m m +⋅++=+⇒+()()()12122224444442x x x x m m m m ⇒=++=+---,()()()()()121222442024420x x x x m m m m ⇒---+=⇒-++-=,12444x x +≥== ,当且仅当1244x x =,即12x x =取等号,又0m >,124420,2x x m m ∴++->∴=.(2)由()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,得 ()10n n n a f f f n n -⎫⎫⎛⎛=+++ ⎪ ⎪⎝⎝⎭⎭,又当121x x =+时,()()1212f x f x +=所以两式相加可得 ()()1112002n n n n n a f f f f f f n n n n ⎡⎤⎡-⎤⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,所以 14n n a +=17.已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值;(2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.【详解】(1)因为2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=,所以()(e)ln e 3f a -=+=,解得2a =;(2)由(1)可得22ln(),0()23,0x x f x x x x +-<⎧=⎨-++≥⎩,当0x <时()2ln()f x x =+-,函数()f x 在(),0∞-上单调递减,且()R f x ∈;当0x ≥时()22()2314f x x x x =-++=--+,则()f x 在[]0,1上单调递增,在()1,∞+上单调递减,且()14f =,()03f =,即()(],4f x ∞∈-;所以()f x 的图象如下所示:因为函数()()=-g x f x k 在R 上恰有两个零点,即函数()y f x =与y k =在R 上恰有两个交点,由图可知3k <或4k =,即实数k 的取值范围为(){},34∞-⋃.18.已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得()()21mf x f x -…成立,求m 的取值范围;(3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 【详解】(1)由题意可得()()()()()11ln 1ln 1x g x g x x x ϕ=++-=++-.由1010x x +>⎧⎨->⎩,得11x -<<,故()1,1D =-.又()()2ln 1x x ϕ=-,且(]210,1x -∈,()x ϕ∴的值域为(],0-∞;(2)()()21mf x f x -…,即2e 1e x x m -…,则211e e x xm -…. 存在x D ∈,使得()()21mf x f x -…成立,2min 11ee x x m ⎛⎫∴- ⎪⎝⎭….而2211111e e e24x x x ⎛⎫-=-- ⎪⎝⎭,∴当11e 2x =,即ln2x D =∈时,211e ex x -取得最小值14-,故14m -…;(3)设()()1ey h x f x ==+的对称中心为(),a b ,则函数()()t x h x a b =+-是奇函数,即()1e e x a t x b +=-+是奇函数,则()()110e e e e x a x a t x t x b b -++-+=-+-=++恒成立,()()()()1122e e 2e 2e e e e 0e e e e x a x a x a x a a x a x ab +-+-+++-++++-+++∴=++恒成立,所以()()1122e e 2e 2e e e e 0x a x a x a x a a b +-+-+++++-+++=恒成立,所以22(12e)(e e )2(e e e )0x a x a a b b b +-+-++--=,因为上式对任意实数x 恒成立,所以2212e 0e e e 0a b b b -=⎧⎨--=⎩,得12e 1b a ⎧=⎪⎨⎪=⎩,所以函数()1e y f x =+图象的对称中心为11,2e ⎛⎫ ⎪⎝⎭.19.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈【答案】(1)11.3n n a -=,0.50.5n b n =+,N n *∈(2)采用甲方案获得的扣除本息后的净获利更多【详解】(1)对于甲方案,1年后,利润为1(万元).2年后,利润为111(10.3) 1.3+=⨯,3年后,利润为211.3(10.3) 1.3+=⨯(万元),……故n 年后,利润为11.3n -(万元),因此11.3n n a -=,N n *∈对于乙方案,1年后,利润为1(万元).2年后,利润为10.5+,3年后,利润为0.50.510.521++=+⨯(万元),……故n 年后,利润为()10.51n +⨯-(万元),因此()10.510.50.5n b n n =+⨯-=+,N n *∈(2)甲方案十年共获利109(1.3)11(130%)(130%)42.631.31-+++⋯++==-(万元),10年后,到期时银行贷款本息为1010(10.1)25.94+=(万元),故甲方案的净收益为42.6325.9416.7-≈(万元),乙方案十年共获利1 1.5(190.5)32.5++⋯++⨯=(万元),贷款本息为119101111(110%)(110%)(110%)17.530.1⋅-+++⋯++++=≈(万元),故乙方案的净收益为32.517.5315-=(万元),由16.715>,故采用甲方案获得的扣除本息后的净获利更多。

2024-2025学年海南省北京师大万宁附中高三(上)第一次月考数学试卷(含答案)

2024-2025学年海南省北京师大万宁附中高三(上)第一次月考数学试卷(含答案)

2024-2025学年海南省北京师大万宁附中高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合M ={x|x 2+x−2≤0},Q ={x ∈N||x|≤2},则M ∩Q =( )A. {0,1}B. {−2,−1,0,1}C. [−2,1]D. [0,1]2.设{a n }是首项大于零的等比数列,则“a 1<a 2”是“数列{a n }是递增数列”的( )A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件3.设a ,b ,c 为实数,且a <b <0,则下列不等式正确的是( )A. 1a <1bB. ac 2<bc 2C. b a >a bD. a 2>ab >b 24.已知函数f(x)=e x (2x−1)x−1,则f(x)的大致图象为( )A. B.C. D.5.若正实数x ,y 满足xy +3x =3,则12x +y 的最小值为( )A. 7B. 8C. 9D. 106.设函数f(x)=log 2|x|−x −2,则不等式f(x−2)≥f(2x +2)的解集为( )A. [−4,0]B. [−4,0)C. [−4,−1)∪(−1,0]D. [−4,−1)∪(−1,0)7.已知函数f(x)={x 2−ax +5,(x ≤1)a x ,(x >1)满足对任意实数x 1≠x 2,都有f(x 2)−f(x 1)x 2−x 1<0成立,则a 的取值范围是( )A. 0<a ≤3B. a ≥2C. a >0D. 2≤a ≤38.如图,圆锥的高SO = 3,底面直径AB =2,C 是圆O 上一点,且AC =1,若SA 与BC 所成角为θ,则sin 2θ2−cos 2θ2=( )A. 134B. −34C. 58D. − 134二、多选题:本题共3小题,共18分。

福建省福州市闽侯县第一中学2024-2025学年高三上学期第一次月考思想政治试题(含答案)

福建省福州市闽侯县第一中学2024-2025学年高三上学期第一次月考思想政治试题(含答案)

2024-2025学年闽侯一中第一学期第一次月考高中三年政治科试卷考试日期:10月09日完卷时间:75分钟满分:100分一、选择题(本大题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.王某与赵某于2018年结婚。

2019年,王某创作的画作《草》售出获益2万元。

2020年,赵某爷爷立下遗嘱,将他的两居室房屋指定赠与赵某。

2021年,王某与赵某感情破裂,遂向法院起诉申请离婚。

下列说法正确的是()①赵某可以通过遗嘱继承爷爷指定赠与的两居室房屋②王某创作的画作《草》售出获益2万元属于共同财产③法院判决离婚后三十日届满,双方当事人应当亲自到婚姻登记机关申请发放离婚证④夫妻双方感情确已破裂且调解无效的,人民法院应当判决离婚,无需双方都同意A.①②B.①③C.②④D.③④2.甲、乙、丙是居住在同一栋楼里的居民。

一次,甲把生活垃圾放在楼梯间,导致乙不慎滑倒受伤;丙在小区遛狗(合法饲养)时,新栽的绿化树枝坠落导致狗受到惊吓撞倒甲,使甲受伤。

对此,下列分析正确的是()①甲因自身的过错致乙受伤,应承担过错侵权责任②乙依据相邻关系原则应该放弃对甲的行为追责③丙因不可抗力致人受伤,可免除或减轻侵权责任④丙赔偿甲后可依据过错推定原则向小区物业追偿A.①②B.①④C.②③D.③④3.王某向赵某借了50万元,并将自己唯一的机动车交予赵某作为质押。

王某又向钱某借了20万元,承诺半年后还款。

结果,半年后王某并没有还款。

钱某不满,在得知王某名下有机动车后,将王某诉至人民法院,要求将王某名下的机动车折价赔偿给他。

以下认识正确的是()①本案涉及债权关系,客体是王某名下的机动车②本案涉及担保物权,对应的是机动车的交换价值③王某将机动车交予赵某,赵某则拥有了该机动车的所有权④赵某实际占有王某作为担保物的机动车,享有质权,可依法优先受偿A.①②B.①③C.②④D.③④4.2023年12月,高一学生小河参加某市绘画比赛,其作品《韵》荣获金奖,并在市文化宫展出。

2024-2025学年福建省福州市高新一中高三(上)第一次月考数学试卷(含答案)

2024-2025学年福建省福州市高新一中高三(上)第一次月考数学试卷(含答案)

2024-2025学年福建省福州市高新一中高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x ∈Z|x(x−3)<0},B ={−1,2,3},则A ∩B =( )A. {2}B. {2,3}C. {−1,1,2,3}D. ⌀2.已知α∈(π2,π),sinα=35,则tan (α+π4)=( )A. −17B. 7C. 17D. −73.“lna >lnb ”是“ a >b ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数f(x)=xcosxe |x|−1的图象大致为( )A. B.C. D.5.实数x ,y 满足2x +y =−1,x >0,则x−yx 的最小值为( )A. 1B. 2C. 3D. 46.已知函数f(x)=log 0.5(x 2−ax +3a)在(2,+∞)上单调递减,则实数a 的取值范围( )A. (−∞,4]B. [4,+∞)C. [−4,4]D. (−4,4]7.已知定义域为R 的函数f(x),其导函数为f′(x),且满足f′(x)−f(x)<0,f(0)=1,则( )A. ef(−1)<1B. f(1)>eC. f(12)<eD. f(1)>e f(12)8.已知f(x)={|ln (−x)|,x <0x 2−4x +5,x ≥1,若方程f(x)=m(m ∈R)有四个不同的实数根x 1,x 2,x 3,x 4,则x 1⋅x 2⋅x 3⋅x 4的取值范围是( )A. (3,4)B. (2,4)C. [0,4)D. [3,4)二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.下列选项中,与sin5π6的值相等的是( )A. cos2π3B. cos18°cos42°−sin18°sin42°C. 2sin15°sin75°D. tan30°+tan15°1−tan30∘tan15∘10.已知a>0,b>0,a+2b=1,下列结论正确的是( )A. 1a +2b的最小值为9 B. a2+b2的最小值为15C. log2a+log2b的最小值为−3D. 2a+4b的最小值为2211.设函数f(x)与其导函数f′(x)的定义域均为R,且f′(x+2)为偶函数,f(1+x)−f(1−x)=0,则( )A. f′(1+x)=f′(1−x)B. f′(3)=0C. f′(2025)=0D. f(2+x)+f(2−x)=2f(2)三、填空题:本题共3小题,每小题5分,共15分。

江西省吉安市青原区2025届高三上学期第一次月考数学试题

江西省吉安市青原区2025届高三上学期第一次月考数学试题

江西省吉安市青原区2025届高三上学期第一次月考数学试题一、单选题1.已知集合{}{}220,05A x x x B x x =∈--≤=≤≤Z∣∣,则A B =I ( ) A .{}0,1 B .{}0,1,2 C .[)0,2 D .[]0,22.已知数列{}n a 为等比数列,则“10a <,1q >”是“{}n a 为递减数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知定义在R 上的函数()f x 满足()()()2f x f x f x +=-=-,当01x <≤时,()()2log 1f x x =+.若()()1f a f a +>,则实数a 的取值范围是( )A .534,422k k ⎛⎫-+-+ ⎪⎝⎭,Z k ∈B .()14,4k k -+,Z k ∈C .114,422k k ⎛⎫-++ ⎪⎝⎭,Z k ∈D .314,422k k ⎛⎫-++ ⎪⎝⎭,Z k ∈4.若曲线()ln 2y x a =+的一条切线为e 2y x b =-(e 为自然对数的底数),其中,a b 为正实数,则11e a b+的取值范围是( ) A .[)2,eB .(]e,4C .[)4,+∞D .[)e,+∞5.已知函数()2293af x x x x =---在区间()(),3,1,-∞-+∞上都单调递增,则实数a 的取值范围是( ) A .04a <≤ B .08a <≤ C .012a <≤D .0a <≤166.函数3214,0,()3cos ,0,x ax a x f x ax x x ⎧+-+>⎪=⎨⎪+≤⎩在R 上单调,则a 的取值范围是( )A .[1,3)B .(1,3]C .[]1,3D .(1,3)7.已知定义在R 上的奇函数()f x 满足:()()6f x f x =-,且当03x ≤≤时,0.5log (1),01()(2),13a x x f x x x x ++≤≤⎧=⎨-<≤⎩(a 为常数),则()()20222024f f +的值为( )A .−2B .1-C .0D .18.已知函数()e x f x x=,若函数()()()22e e g x f x af x a =+--⎡⎤⎣⎦恰有5个不同的零点,则实数a 的取值范围是( ) A .(),2e -∞-B .(),e -∞-C .2,e ⎛⎫-∞- ⎪⎝⎭D .1,e⎛⎫-∞- ⎪⎝⎭二、多选题9.下列函数为奇函数的是( )A .()e e e e x xx x f x --+=-B .()1lg1x h x x -=+C .()122xg x ⎛⎫=-+ ⎪⎝⎭D .())lnm x x =10.对于函数()33f x x x =-,下列结论中正确的是( )A .()f x 是奇函数B .()f x 在区间(),1∞--和()1,+∞上单调递增C .在=1x -处取得极大值2D .函数()f x 的值域是[]22-,11.函数()ln x f x x=与()e x xg x =之间的关系非常密切,是高中阶段常见的函数,则关于函数()f x 、()g x ,以下说法正确的为( )A .函数()f x 的极大值点为e 1,e ⎛⎫⎪⎝⎭B .函数()g x 在0x =处的切线与函数()f x 在1x =处的切线平行C .若直线y a =与函数()g x 交于点()11,A x y ,()22,B x y ,与函数()f x 交于点()22,B x y ,()33,C x y ,则2132x x x =D .若()()0f m g n =<,则mn 的最小值为1e-三、填空题12.数()f x 在R 上可导,若()23f '=,则()()232limx f x f x x∆→+∆--∆=∆.13.函数1(0,1)x y a a a -=>≠的图像恒过定点A ,若点A 在直线10mx ny +-=上,且,m n 为正数,则11m n+的最小值为. 14.已知0a >,1x ,2x 分别是函数()e xf x x a =-与()ln xg x a x=--的零点,则1212e a x x x -的最大值为.四、解答题15.已知函数()22f x x ax a =-++.(1)若()211f -=,求a 的值; (2)当4a =时,()24001f x x x +-<-的解集为M ,求M .16.已知21()21x x m f x ⋅-=+是定义在R 上的奇函数.(1)求实数m 的值;(2)若不等式()2(3)0f x f a x -++>恒成立,求实数a 的取值范围.17.设函数()f x 的定义域是()0,+∞,且对任意的正实数x 、y 都有()()()f xy f x f y =+恒成立,已知()164f =,且01x <<时()0f x <. (1)求()1f 与()2f 的值;(2)求证:对任意的正数1x 、2x ,()()121f x x f x +>; (3)解不等式()()111282f x f x +>-. 18.函数()()()211ln 02f x ax a x x a =-++≥. (1)讨论函数()f x 的单调性;(2)当0a =时,方程()f x mx =在区间21,e ⎡⎤⎣⎦内有唯一实数解,求实数m 的取值范围.19.已知函数()ln f x b x x =-的最大值为1e,2()2g x x ax =++的图像关于y 轴对称.(1)求实数a ,b 的值.(2)设()()()F x g x f x =+,则是否存在区间[,](1,)m n ⊆+∞,使得函数()F x 在区间[,]m n 上的值域为[(2),(2)]k m k n ++?若存在,求实数k 的取值范围;若不存在,请说明理由.。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

湖南省常德市第一中学2024-2025学年高三上学期第一次月考地理试题

湖南省常德市第一中学2024-2025学年高三上学期第一次月考地理试题

常德市一中2025届高三第一次月水平检测地理(时量:75分钟满分:100分命题人:审题:高三地理备课组)一、选择题(本题包括20小题,每小题2.5分,共50分。

每小题只有一个选项符合题意)在北京工作的王先生打算利用五一假期乘飞机前往圣赫勒拿岛旅游观光。

下图为圣赫勒拿岛等高线(单位:m)示意图。

据此回答1-2题。

1.估算圣赫勒拿岛的面积,正确的是()A.60km² B.120km² C.500km² D.1000km²2.飞机从北京沿最短航线飞往圣赫勒拿岛,则()A.由东半球飞至西半球 B.飞越了太平洋C.先向东北飞再向西南飞 D.飞越了非洲大陆南美洲栗鼠是一种生活在安第斯山脉海拔500米以上的鼠类动物,主要以植物为食,体长约20厘米,重约200克,多居住在树洞、灌木丛或岩缝里。

南美洲栗鼠拥有世界上最浓密的毛皮,每3个月就换一次毛。

下图示意某科研团队观测的南美洲栗鼠地面活动个体数量的平均变化状况。

完成3-4题。

3.南美洲栗鼠的地面活动规律可反映出其喜欢的环境是()A.炎热潮湿 B.凉爽干燥C.炎热干燥 D.酷寒大风4.化石显示南美洲栗鼠从没有迁移到别的大陆,主要原因可能有()①南美洲栗鼠在当地没有天敌②南美洲栗鼠在当地食物充足③南美洲与其他大陆隔绝④南美洲环境适宜A.①② B.③④ C.②④ D.①③下图为某区域某月海平面等压线图。

读图,完成5-6题。

5.图示区域()A.地处亚洲南部、印度洋海域B.位于板块生长边界,多火山C.岛屿众多,受海水侵蚀形成D.受赤道低压和东南信风交替控制6.图示季节()A.海水温度较低,密度较大B.热带气旋频发,引发海啸C.西部地区盛行东南风D.海水大致自西向东流2024年6月7日,深中通道这项集“桥、岛、隧、水下互通”于一体的超级工程,正式进入收尾工作阶段,6月底具备通车条件,通车后中山、珠海、江门及粤西等地区通往深圳、粤东地区的过江时间从以前的2小时缩短为20分钟左右,极大缩短珠江东西两岸的时空距离,缓减虎门大桥等过江通道交通压力。

2024-2025学年天津一中高三(上)第一次月考生物学试卷(含答案)

2024-2025学年天津一中高三(上)第一次月考生物学试卷(含答案)

2024-2025学年天津一中高三(上)第一次月考生物试卷一、单选题:本大题共18小题,共54分。

1.无机盐具有维持生物体生命活动的重要作用。

下列相关叙述错误的是( )A. Na+缺乏会引起神经、肌肉细胞的兴奋性升高B. Mg2+是叶绿素的重要组成成分C. H2PO4作为原料参与磷脂的合成D. HCO−3具有维持人血浆酸碱平衡的作用2.下列关于人体脂质的叙述,错误的是( )A. 脂肪与糖原两者所含元素种类相同B. 脂肪水解的终产物为甘油和脂肪酸C. 胆固醇既参与形成细胞膜,又参与血液中脂质的运输D. 维生素D是能有效促进肠道对钙和磷等微量元素的吸收3.苹果果实采摘后成熟过程中,部分物质的含量变化及细胞呼吸强度的变化曲线如图所示。

下列相关叙述正确的是( )A. 若要验证苹果组织中的果糖是还原糖,可选用双缩脲试剂B. 苹果果实细胞中的果糖和有机酸,主要储存在细胞质基质中C. 图中有机酸和果糖含量变化的原因,可能是有机酸经呼吸作用直接转化为果糖D. 苹果果实细胞内自由水与结合水比值的最大值,可能出现在采摘后第30天左右4.下列关于细胞内蛋白质和DNA的叙述,错误的是( )A. 两者都含有C、H、O、N四种元素B. DNA的合成需要相应蛋白质的参与C. 两者分别由氨基酸和核糖核苷酸连接而成D. 两者经高温处理都会发生变性5.浆细胞合成抗体分子时,先合成的一段肽链(信号肽)与细胞质中的信号识别颗粒(SRP)结合,肽链合成暂时停止。

待SRP与内质网上SRP受体结合后,核糖体附着到内质网膜上,将已合成的多肽链经由SRP受体内的通道送入内质网腔,继续翻译直至完成整个多肽链的合成,并分泌到细胞外。

下列相关叙述错误的是( )A. SRP与信号肽的识别与结合具有特异性B. SRP受体具有识别功能和运输功能C. 抗体分泌出细胞的过程需要消耗能量D. 胰岛素和性激素均通过此途径合成并分泌6.肌动蛋白是细胞骨架的主要成分之一。

宁夏回族自治区银川市银川一中2025届高三上学期第一次月考试题 语文(含答案)

宁夏回族自治区银川市银川一中2025届高三上学期第一次月考试题 语文(含答案)

银川一中2025届高三年级第一次月考语文试卷命题教师:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:习近平总书记指出:在几千年历史长河中,中国人民始终团结一心、同舟共济,建立了统一的多民族国家,发展了56个民族多元一体、交织交融的融洽民族关系,形成了守望相助的中华民族大家庭。

从古至今,各民族都为祖国大家庭的形成和发展贡献了力量。

形成了多元一体的中华民族大家庭是中华文明具有突出的统一性的重要历史表现。

“多元一体”中的“多元”和“一体”深刻反映了中华民族各民族内在的多样性和统一性之间辩证和谐的共同体关系,恰如其分地反映了中华文明起源和发展的模式。

目前我国有56个民族,各民族在漫长的历史进程中形成了各自的文化传统,此为“多元”。

不过,这些民族从来不是以相互隔绝、相互排斥状态出现的,各民族大杂居小聚居,相互嵌入,具有不可分割的内在联系,形成了共同体,此即“一体”,这就是中华民族。

在中华民族共同体中各民族之间你中有我、我中有你,谁也离不开谁,形成了强烈的共同体意识、共同价值追求和文化认同,56个民族这个“多元”在中华民族这个“一体”中得到充分体现。

鸦片战争以后,中国逐步沦为半殖民地半封建社会,国家蒙辱、人民蒙难、文明蒙尘,中国人民遭受了前所未有的劫难。

一部中国近代史就是各族人民团结起来救亡图存的历史。

在外来侵略寇急祸重的严峻形势下,我国各族人民手挽着手、肩并着肩,英勇奋斗,浴血奋战,打败了穷凶极恶的侵略者,捍卫了民族独立和自由,共同书写了中华民族保卫祖国、抵御外侮的壮丽史诗。

在中华民族和中华文明的危急时刻,各民族总是能够同仇敌忾、保家卫国,生动体现了中华文明突出的统一性。

(摘编自邢广程《深刻理解中华文明突出的统一性》)材料二:中华文明突出的统一性,决定了中华民族各民族文化会从多元走向一体。

2024-2025学年上海市四校联考高三(上)第一次月考语文试卷

2024-2025学年上海市四校联考高三(上)第一次月考语文试卷

2024-2025学年上海市四校联考高三(上)第一次月考语文试卷一、积累运用10分1.(5分)按要求填空。

(1)固知一死生为虚诞,。

(《兰亭集序》)(2),谣诼谓余以善淫。

(《•离骚》)(3)《陈情表》在结尾运用典故表达对晋武帝的报答与感激之情的句子是“,”。

2.(2分)在下面一段文字横线处填入语句,衔接最恰当的一项是()“理性经济人”,把利己看作人的天性,只追求个人利益的最大化,这是西方经济学的基本假设之一。

,,,,,,更倾向于暂时获得产品或服务,或与他人分享产品或服务。

使用但不占有,是分享经济最简洁的表述。

①反而更多地采取一种合作分享的思维方式②不再注重购买、拥有产品或服务③但在分享经济这一催化剂的作用下④人们不再把所有权看作获得产品的最佳方式⑤在新兴的互联网平台上⑥这个利己主义的假设发生了变化A.③⑥⑤①④②B.③⑥⑤④②①C.⑤⑥③①④②D.⑤⑥③④②①3.(3分)下面是某杂志社征订启事的片段,有一处画线部分语言表达不得体,请找出并修改。

【甲】敝刊设有“探索与争鸣”“书刊评介”“动态信息”等特色鲜明的栏目,内容新颖,报道及时,信息量大,可读性强。

现征订在即,【乙】希望读者踊跃订阅。

【丙】请在订单上写明手机号码,【丁】以便我们随时垂询。

【】处,修改:二、阅读70分(一)4.(17分)阅读以下材料,完成各题。

“无用的”知识罗素①在开始谋生之前,人们没有时间什么都去学习,无疑“有用的”知识是最有用的。

它建立了当代世界。

没有它,我们就没有机器、铁路、飞机。

现代知识已带来人们普遍健康状况的大大改善,与此同时也发现了如何使用毒气去毁灭大城市的方法。

同以往比起来,我们今日世界最明显的特点在于“有用的”知识。

②同样必须承认许多传统文化教育是愚蠢的。

儿童花很多年的功夫去学习拉丁文和希腊文法,而终究既不能也不想(除了小部分之外)去读希腊文或拉丁文著作。

从各方面考察,现代语言比拉丁文和希腊文更可取。

它们不仅更有用,而且能在更少的时间内给予更多的文化知识。

辽宁省实验中学2024-2025学年高三上学期10月月考生物试题(含答案)

辽宁省实验中学2024-2025学年高三上学期10月月考生物试题(含答案)

辽宁省实验中学2024—2025学年度上学期第一次月考高三生物学试卷考试时间75分钟试题满分100分命题人、校对人:高三生物组一、单选题(本题共15小题,每小题2分,共30分。

每小题只有一个选项符合题目要求)1.如图为不同化学元素组成的化合物示意图,下列说法正确的是()A.若①为某种化合物的基本单位,则①最可能是核苷酸B.若②广泛分布在动物细胞内,则其一定是糖原C.若③为生物大分子,则其彻底水解产物最多为4种D.若④为良好储能物质,则动物和植物细胞都可含有这种物质2.心房颤动(房颤)是常见心律失常的隐性遗传病,其致病机制是核孔复合物跨核运输障碍。

下列分析正确的是()A.核膜由两层磷脂分子组成,房颤与核孔信息交流异常有关B.tRNA在细胞核内合成,运出细胞核与核孔复合物无关C.房颤发生的根本原因可能是编码核孔复合物的基因发生突变所致D.心肌细胞中核孔复合物是蛋白质,运输mRNA等物质不消耗能量3.盐碱地中含大量的NaCl、Na2CO3等钠盐,会威胁海水稻的生存。

同时一些病原菌也会感染水稻植株,影响正常生长。

下图为海水稻抵抗逆境的生理过程示意图,相关叙述不正确的是()A.H2O可以通过自由扩散和协助扩散两种方式进入海水稻细胞B.海水稻细胞通过胞吐方式分泌抗菌蛋白抵御病原菌的侵染C.液泡通过NHX通道蛋白吸收Na+增大细胞液的浓度以适应高浓度环境D.H+以主动运输的方式从细胞质基质运入液泡或运出细胞4.近年来全球气候变化日益加剧,多重联合胁迫对作物生长发育及产量的不利影响日益严重。

研究者设计了如图所示实验,研究环境胁迫对苗期玉米净光合速率的影响。

下列叙述正确的是()A.25天最适条件培养目的是控制自变量B.双重胁迫比单一胁迫对胁迫期净光合速率的影响小C.双重胁迫有助于冷害对玉米造成伤害的恢复D.胁迫期双重胁迫光合作用合成的有机物最少5.核蛋白UHRF1在有丝分裂期催化驱动蛋白EG5泛素化,进而调控细胞周期转换与细胞增殖,如图所示。

天津市耀华中学2024-2025学年高三上学期第一次月考英语试卷(含答案)

天津市耀华中学2024-2025学年高三上学期第一次月考英语试卷(含答案)

天津市耀华中学2025届高三年级第一次月考英语试卷第Ⅰ卷(共115分)第一部分:听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What will the man do nextA. Get something to drink.B. Have a meeting.C. Make a phone call.2. What does the man advise the woman to doA. Take some exercise.B. Creates new ideas.C. See a doctor.3. How will the boy go home nowA. By bike.B. By bus.C. By underground.4. Why didn’t the woman buy the coatA. It di dn’t fit her.B. It would cost her too much.C. She didn’t like it very much.5. Where are the speakersA. At the man’s house.B. In a hospital.C. At a drugstore.第二节(共10小题;每小题1.5分,满分15分)听下面几段材料。

每段材料后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段材料前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段材料读两遍。

听下面一段对话,回答第6至第8小题。

6. What are the speakers mainly talking aboutA. The arrangement of a trip.B. The details of the matches.C. The plan for their holiday.7. What will the team do in ScotlandA. Go to the beach.B. Play five matches.C. Go to the mountains.8. How many matches will the team play in GreeceA. Two.B. Thee.C. Four.听下面一段对话,回答第9至第11小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

~2014学年第一学期丹阳中等专业学校综高部11 级《语文》月考试卷2014.10第一卷客观题(30分)(15分)、下列加点字读音全不相同的一组是()骨骸./亥.时蕹.菜/雍.正舷.梯/玄.武凝.重/怀疑.嘹.亮/潦.草豇.豆/内讧.拾.级/拾.掇烦躁./干燥.悄.无声息/悄.然偃.卧/衍.变油漆./亲戚.胳膊./博.士汆.烫/攒.射涌.动/俑.人易帜./炽.热畸.变/奇.怪、下列句子中没有错别字的一项是()我走的时候,我还不懂的怜惜曾经拥有过的事物。

把好好的饭捂酸了,用井拔凉水一和,呼呼下去就是两碗。

后来看见苏赛兰在投降书上拿笔写了半响,日本人点头把那份投降书取冰很危险:能使飞机过重,机翼周围的气流崎变,是飞机仪器失灵。

、下列词语的解释有错的一项是()面目全非.(不相似)怵.目(恐惧)目不暇.接(空闲)悄.无声息(慢慢地)羁.绊(约束)不可一世..(一时)不相.上下(互相)凛然..(宽广的样子)..(严肃的样子)天网恢恢趋之若鹜.(野鸭)冉冉..(慢慢地)头晕目眩.(昏花)、依次填入下列横线的词语,最准确的一项是()___吃。

②住一头,一吸,芯肉即入口中。

③冬笋的老根咬不动,切下来随手就进臭坛子里。

瞎噙扔 B.胡拿放乱抓摆 D.猛握撂、下列成语使用正确的一项是().这几天气温突然降低,又加上雨下个不停,所以大街上熙熙攘攘,显.在革命战争时期,有很多青年知识分子在党的教育下,走出了“象牙,投身到火热的斗争中去,走上了革命道路。

.我国西部地区如能用好政策,更新观念,大胆创新,那么迅速赶上沿D.您刚刚乔迁新居,房间宽敞明亮,只是略嫌单调,建议您挂幅油画,一定会使居室蓬荜生辉。

6、下列没有病句的一项是()A、与作家不同的是,摄影家们不是把自己对山川、草木、城市、乡野的感情倾注于笔下,而是直接聚焦于镜头。

B、观摩了这次关于农村经营承包合同法的庭审以后,对我们这些“村官”的法律水平有了很大提高。

C、一只早年间日日清脆嘹亮的鸣叫唤醒人们的大公鸡,是否也与一粒土一样归于沉寂。

D、北京以56票申奥成功,翻阅上百年的申奥史册,我们至今还极其罕见在第二轮就取得高的得票率。

7、下列修辞手法的解读不正确的一项是()A、我不知道世界上还有什么国家的人爱吃臭。

过去上海、南京、汉口都卖炸臭豆腐干。

(对比)B、雪也许是更大一棵树上的果实。

(比喻)C、它们眯着眼睛,脑袋转来转去。

(拟人)D、《落日》的标题“落日”(比喻)8.下列表达方式不同类的一项是()A、它偃卧在那里,翅零乱地散开,肢蜷曲在一起。

B、晚6时15分,象征英国管治结束的告别仪式在距离驻港英军总部不远的添马舰军营东面举行。

C、它们将短硬的喙像北方农妇在缸沿砺刀那样,在枝上反复擦拭。

D、日本代表团外相重光葵在前,臂上挂着手杖,一条真腿一条假腿,走起路来一窍一拐。

9.下列文学常识搭配有误的一项是()A、刘亮程---------现代------------《一个人的村庄》B、汪曾祺-----------近代-------------《受戒》C、苇岸--------------现代-------------《大地上的事情》D、克莱尔萨夫安------------美国记者10、下列对文章解读错误的一项是()A、《五味》中作者围绕酸、甜、苦、辣、咸、臭叙写全国各地特有的味道,也为我们呈现了一幕幕栩栩如生的民俗画卷,表达了无限的生活热情和雅致的韵味。

B、《落日》以时间为顺序,展示了盟军接受日本投降的整个过程,在文章中作者对日本充满了鄙视,并进行了无情的嘲讽。

C、《别了,“大不列颠尼亚”》按时间组织材料,采用了创造性的报道方式,真实再现了香港回归祖国的历史时刻。

D、《冰河英雄》按照事件的顺序,穿插相关回忆内容,刻画了一个热爱生命、沉着冷静、富有同情心的普通的平民英雄的形象。

二、现代文阅读。

(15分)(一)下雪时,我总想到夏天,因成熟而褪色的榆英被风从树梢吹散。

雪纷纷扬扬,给人间带来某种和谐感,这和谐感正来自于纷纭之中。

雪也许是更大的一棵树上的果实,被一场世界之外的大风刮落。

它们漂泊到大地各处,它们携带的纯洁,不久繁衍成春天动人的花朵。

写《自然与人生》的日本作家德富芦花,观察过落日。

他记录太阳由衔山到全然沉入地表,需要三分钟。

我观察过一次日出,日出比日落缓慢。

观看落日,大有守侍圣哲临终之感;观看日出,则像等待伟大英雄辉煌的诞生。

太阳从露出一丝红线,到伸缩着跳....上地表,用了约五分钟。

世界上的事物在速度上,衰落胜于崛起。

我看到一具熊蜂的尸体,它是自然死亡,还是因疾病或敌害而死,不得而知。

它偃卧..在那里,翅零乱地散开,肢蜷曲在一起。

它的尸身僵硬,很轻,最小的风能将它推动。

我见过胡蜂巢、土蜂巢、蜜蜂巢和别的蜂巢,但从没有见过熊蜂巢。

熊蜂是穴居者,它们将巢筑在房屋的立柱、檩条、横梁、椽子或枯死的树干上。

熊蜂从不集群活动,它们个个都是英雄,单枪匹马到处闯荡..。

熊蜂是昆虫世界当然的王,它们身着的黑黄斑纹,是在地上最怵目的图案,高贵而恐怖。

老人们告诉过孩子,它们能蜇死牛马。

麻雀在地面的时间比在树上的时间多。

它们只是在吃足食物后,才飞到树上。

它们将短硬的喙像北方农妇在缸沿砺刀那样,在枝上反复擦拭。

麻雀蹲在枝上啼鸣,如孩子骑在父亲的肩上高声喊叫,这声音蕴含着依赖、信任、幸福和安全感。

麻雀在树上就和孩子们在地上一样,它们的蹦跳就是孩子们的奔跑。

树木伸展的愿望,是给鸟儿送来一个个广场。

穿越田野的时候,我看到一只鹞子。

它静静地盘旋,长久浮在空中。

它好像看到了什么,径直俯冲下来,但还未触及地面又迅疾飞起。

我想像它看到一只野兔,因人类的扩张在平原上已近绝迹的野兔,梭罗在《瓦尔登湖》中预言过的野兔:“要是没有兔子和鹧鸪,一个田野还成什么田野呢?它们是最简单的土生土长的动物,与大自然同色彩、同性质,和树叶、土地是最亲密的联盟。

看到兔子和鹧鸪跑掉的时候,你不觉得它们是禽兽,它们是大自然的一部分,仿佛飒飒的树叶一样。

不管发生怎样的革命,兔子和鹧鸪一定可以永存,像土生土长的人一样。

不能维持一只兔子的生活的田野一定是贫瘠无比的。

”看到一只在田野上空徒劳盘旋的鹞子,我想起田野的往昔的繁荣。

在我的住所前面,有一块空地,它的形状像一只盘子,被四周的楼群围起。

它盛过田园般安详的雪,盛过赤道般热烈的雨,但它盛不住孩子们的欢乐。

孩子欢乐撤在里面,仿佛一颗颗珍珠滚.到我的窗前。

我注视着男孩和女孩在一起做游戏,这游戏是每个从他们身边匆匆走的大人都做过的。

大人告别了童年,就像游戏像玩具一样丢在了一边。

但游戏在孩子们手里,依然一代代传递。

11、下列对文中加点字的理解错误的一项是()A.“伸缩着跳”四字形象的刻画了日出时的景象,画面感很强,贴合前文的“等待伟大英雄的诞生”。

B.“偃卧”是仰面躺下的意思,这里形象的刻画熊蜂死亡的样子,表达了作者的谦卑以及对生命的敬畏之情。

C.“闯荡”一词使用拟人的手法写出了熊蜂的王者的风范以及勇敢无畏的精神。

D.“滚”字极有动态美,化实为虚,把孩子们的欢乐描写的有质感和画面感。

12、对下列句子分析不正确的一项是()A.“世界上的事物在速度上,衰落胜于崛起”写出了事物的崛起远比衰落艰难,衰落都是很容易的。

B.“看到一只在田野上空徒劳盘旋的鹞子,我想起田野的往昔的繁荣”揭示了土地的贫瘠,表达了作者对自然生态遭到破坏的痛惜之情。

C.“它们只是在吃足食物后,才飞到树上。

它们将短硬的喙像北方农妇在缸沿砺刀那样,在枝上反复擦拭”以人取喻,把鸟儿檫拭喙比作北方妇女在缸沿砺刀,借组这个比喻,作者赞美了为生活而辛勤劳动的人们和动物。

D.“大人告别了童年,就像游戏像玩具一样丢在了一边。

但游戏在孩子们手里,依然一代代传递”写出了大人对童年的不珍惜、随意。

表现了作者对童真的眷念和对大人不珍惜童年的叹息。

13、对选文的信息,归纳有误的一项是()A.这篇散文由许多片段组成,记录自然界或作者身边的种种事物,并记录了作者的哲理式感悟和评价。

B.文章所谓的“大地上的事情”都是一些往往被人群忽略的故事。

C.文章的描写方式,使我们仿佛有第一次看到这些事物的感觉。

D.文章每一段都将白描、比喻、议论、抒情融合在一起。

14.对本文思想评价有误的一项是()A.作者的笔下,流淌着一种博大之爱,他对自然万物都无比赞美,把自然万物都视为家人以及平等的伙伴。

B.作者反对人类无节制地向大自然索取,希望人们爱护动物,爱护一草一木。

C.作者在对自然的描写中都融入了自己美好的想象,在温暖的叙述中能让人看到内心的冲动、热情,也带给我们对自然的渴望、探求。

学校 班级 专业 考号 姓名 …………………………密…………………………………封………………………………线…………………………………………D.作者对死亡的描述,在详尽的描写尸身的样子的同时,即表现了熊蜂尸体的恐怖也包含了作者内心的悲凉之情。

15、对选文的写作方法分析不正确的一项是( )A.选文是有许多札记式的片段组成,看似无序,其实有内在的规律,分别是以空间、时间等为立足点。

B.在情理上,首先有着特别的章法,个性化的表达方式和流露心扉的语言;其次是用一条对大地的深情的感情线索把这些材料串联起来。

C.语言华丽亲切富有诗意。

D.选文运用了大量的比喻,新奇怪诞又非常贴切。

(二)在香港飘扬了一百五十多年的英国米字旗最后一次在这里降落后,接载查尔斯王子和离任港督彭定康回国的英国皇家游轮“不列颠尼亚”号驶离维多利亚港湾——这是英国撤离香港的最后时刻。

英国的告别仪式是30日下午在港岛半山上的港督府拉开序幕的。

在蒙蒙细雨中,末任港督告别了这个曾居住过二十五任港督的庭院。

4点30分,面色凝重的彭定康注视着港督旗帜在“日落余音”的号角声中降下旗杆。

根据传统,每一位港督离任时,都举行降旗仪式。

但这一次不同:永远都不会有另一面港督旗帜从这里升起。

4时40分,代表英国女王统治了香港五年的彭定康登上带有皇家标记的黑色“劳斯莱斯”,最后一次离开了港督府。

掩映在绿树丛中的港督府于1885年建成,在以后的近一个半世纪中,包括彭定康在内的许多港督曾对其进行过大规模改建、扩建和装修。

随着末代港督的离去,这座古典风格的白色建筑成为历史的陈迹。

晚6时15分,象征英国管治结束的告别仪式在距离驻港英军总部不远的添马舰军营东面举行。

停泊在港湾中的皇家游轮“不列颠尼亚”号和邻近大厦上悬挂的巨幅紫荆花图案,恰好构成这个“日落仪式”的背景。

此时,雨越下越大。

查尔斯王子在雨中宣读英国女王赠言说:“英国国旗就要降下,中国国旗将飘扬于香港上空。

一百五十多年的英国管治即将告终。

”7点45分,广场上灯光渐暗,开始了当天港岛上的第二次降旗仪式。

一百五十六年前,一个叫爱德华·贝尔彻的英国舰长带领士兵占领了港岛,在这里升起了英国国旗;今天,另一名英国海军士兵在“威尔士亲王”军营旁的这个地方降下了米字旗。

相关文档
最新文档