随机信号习题及答案

合集下载

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号与系统第五章习题部分答案

随机信号与系统第五章习题部分答案

第五章 习题5-1 设某信号为1000||()t x t e -=(1)试求x (t )的傅里叶变换X (j ω),并绘制X (j ω)曲线;(2)假设分别以采样频率为f s =5000Hz 和f s =1000Hz 对该信号进行采样,得到一组采样序列x k ,说明采样频率对序列x k 频率特性X (e j Ω)的影响。

解:(1)1000||622000()()10j t t j t X j x t e dt e e dt ωωωω∞∞----∞-∞===+⎰⎰. X (j ω)的曲线如下图所示:(2)设采样周期为T ,则采样输出为()()()()k k k x x t t kT x kT t kT δδ∞∞=-∞=-∞=-=-∑∑.由时域相乘等于频域卷积,有1122()()*[()]()*[()]22j k k X e X j t kT X j kT Tππδδππ∞∞Ω=-∞=-∞=Ω-=ΩΩ-∑∑F 121212()()()2k k X j k d X j jk T T T T Tπππωδωωπ∞∞∞-∞=-∞=-∞=⋅=Ω--=Ω-∑∑⎰. 即序列x k 频率特性X (e j Ω)是原信号频谱X (j ω)以2Tπ为周期进行延拓而成的,而采样频率1122s f T Tππ==⋅,所以采样频率越高,序列x k 频率特性的各周期越分散,越不容易发生频谱混叠。

5-2 假设平稳随机过程x (t )和y (t )满足下列离散差分方程11;k k k k k k k x ax e y ay x v ---=-=+式中,|a|<1;e k ,v k ~N (0,σ 2)分布,且二者互不相关。

试求随机序列y k 的功率谱。

解:对1k k k x ax e --=进行离散时间傅里叶变换(DTFT ),且记DTFT(x k )=X (e j Ω),DTFT(e k )=E (e j Ω),则有j j j ()(1)()X e ae E e ΩΩΩ--=式中,Ω=ωT s ,称为数字频率(rad ),ω为实际频率(rad/s ),T s 为采样周期(s )。

随机信号分析(第3版)习题及答案

随机信号分析(第3版)习题及答案

1. 有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===2. 设随机试验X求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

(北P181,T3) 解:(1)()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1F x y u x y u x y u x y u x y u x y u x y =+++-+-++-+--()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1f x y x y x y x y x y x y x y δδδδδδ=+++-+-++-+--(2) X 的分布律为()()00.070.180.150.4010.080.320.200.60P X P X ==++===++=Y 的分布律为()()()10.070.080.1500.180.320.5010.150.200.35P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为()()()()()()()()()()111,10.080001,00.400.320.72111,10.20P Z P XY P X Y P Z P XY P X P X Y P Z P XY P X Y =-==-===-======+===+======== (4)因为()()()00.4010.600.6010.1500.5010.350.20E X E Y =⨯+⨯==-⨯+⨯+⨯=()()10.0800.7210.200.12E XY =-⨯+⨯+⨯=则()()()()ov ,0.120.600.200C X Y E XY E X E Y =-=-⨯=X 与Y 的相关系数0XY ρ=,可见它们无关。

随机信号分析习题答案(部分)

随机信号分析习题答案(部分)

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f xd x k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

随机信号习题及答案

随机信号习题及答案
Y = 3 X + 1 的分布函数。
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:

随机信号分析课后习题答案

随机信号分析课后习题答案

随机信号分析课后习题答案随机信号分析课后习题答案随机信号分析是现代通信系统设计和信号处理领域中的重要基础知识。

通过对随机信号的分析,我们可以更好地理解和处理噪声、干扰等随机性因素对通信系统性能的影响。

下面是一些关于随机信号分析的课后习题及其答案,希望对大家的学习有所帮助。

1. 什么是随机信号?随机信号是在时间域上具有随机性质的信号。

与确定性信号不同,随机信号的每个样本值都是随机变量,其取值不是确定的。

随机信号可以用统计特性来描述,如均值、方差、功率谱密度等。

2. 什么是平稳随机信号?平稳随机信号是指在统计性质上不随时间变化的随机信号。

具体来说,平稳随机信号的均值和自相关函数不随时间变化。

平稳随机信号在实际应用中较为常见,因为它们具有一些方便的数学性质,可以简化信号处理的分析和设计。

3. 如何计算随机信号的均值?随机信号的均值可以通过对信号样本值的求平均来计算。

对于离散时间随机信号,均值可以表示为:E[x[n]] = (1/N) * Σ(x[n])其中,E[x[n]]表示信号x[n]的均值,N表示信号的样本数,Σ表示求和运算。

4. 如何计算随机信号的方差?随机信号的方差可以用均方差来表示。

对于离散时间随机信号,方差可以表示为:Var[x[n]] = E[(x[n] - E[x[n]])^2]其中,Var[x[n]]表示信号x[n]的方差,E[x[n]]表示信号的均值。

5. 什么是自相关函数?自相关函数是用来描述随机信号与其自身在不同时间延迟下的相似性的函数。

自相关函数可以用来分析信号的周期性、相关性等特性。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = E[x[n] * x[n-m]]其中,Rxx[m]表示信号x[n]的自相关函数,E[ ]表示期望运算。

6. 如何计算随机信号的自相关函数?随机信号的自相关函数可以通过对信号样本值的乘积进行求平均来计算。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = (1/N) * Σ(x[n] * x[n-m])其中,Rxx[m]表示信号x[n]的自相关函数,N表示信号的样本数,Σ表示求和运算。

随机信号分析(第3版)第三章 习题答案

随机信号分析(第3版)第三章 习题答案

⎧8δ (ω ) + 20(1 − ω /10), (2) S (ω ) = ⎨ 0, ⎩ 求它们的自相关函数和均方值。 解:(1)
(4) 否, R Y (0) = −1 在原点不是非负 (5)是 3.15 3.16 已 知 随 机 过 程 X (t ) 和 Y (t ) 独 立 且 各 自 平 稳 , 自 相 关 函 数 为 RX (τ ) = 2e − τ cos ω0τ 与 RY (τ ) = 9 + exp(−3τ 2 ) 。令随机过程 Z (t ) = AX (t )Y (t ) ,其中 A 是均值为 2,方差为 9 的随机变量,且与 X (t ) 和 Y (t ) 相互独立。求过程 Z (t ) 的 均值、方差和自相关函数。 解: (6) 是 (7) 是 (8) 是
2 2 3.14 对于两个零均值广义平稳随机过程 X ( t ) 和 Y ( t ) , 已知 σ X = 5 ,σY = 10 ,
问下述函数可否作为自相关函数,为什么? (1) RX (τ ) = 5u (τ ) exp ( −3τ ) ; (3) RY (τ ) = 9 (1 + 2τ 2 ) ; ⎡ sin ( 3τ ) ⎤ (5) RX (τ ) = 5 ⎢ ⎥ ; ⎣ 3τ ⎦ (6) RX (τ ) = 5 exp(− τ ) ; 解:根据平稳随机信号相关函数的性质, (1)否,非偶函数 (2)否,非偶函数 (3) 否, R Y (0) = 9 ≠ σ 2Y
3.6 给定随机过程 X ( t ) = A cos (ω 0t ) + B sin (ω 0t ) ,其中 ω 0 是常数, A 和 B 是 两个任意的不相关随机变量,它们均值为零,方差同为 σ 2 。证明 X ( t ) 是广义平 稳而不是严格平稳的。 3.6 证明:Q m X (t ) = E[X(t )] = E[ A cos(ω 0 t ) + B sin(ω 0 t) ] = 0

随机信号分析答案CH1习题答案

随机信号分析答案CH1习题答案

ρ XY =
σ X σY
C XY
→ C XY = ρ XY ⋅ σ X σ Y = 0.4 × 2 × 1 = 0.8
∴ 方差D [V ] = 4.8 D [W ] = 17.8
2 2 2 ⎤ E⎡ ⎣ X ⎦ = D [ X ] + mX = 4 + 1 = 5 2 2 2 ⎤ = D [Y ] + mY E⎡ Y = 1 + 2 =5 ⎣ ⎦

CVW = RVW − mV ⋅ mW = 22.2 − 3 × 7 = 1.2
ρVW =
σV σW
CVW
=
1.2 4.8 × 17.8
≈ 0.13
1.32 已知对随机变量 X 与 Y ,有 E [ X ] = 1 , E [Y ] = 3 ,
D [ X ] = 4 , D [Y ] = 16 , ρ XY = 0.5 , 又 设 U = 3 X + Y ,
= FX ( 0.7 ) − FX ( 0.3) = 0.7 2 − 0.32 = 0.4
k =1
(2) P {0.3 < X < 0.7} = P {0.3 < X ≤ 0.7} − P { X = 0.7}
0 ≤ x <1 else
(3) f X (x) =
dFX (x) ⎧2x =⎨ dx ⎩0
1 2 3 1 2 3
jv3X3 jvX1 jv2 X2 ⎡ ⎤ ⎤ ⎡ ⎤ X1, X2 , X3独立 E ⎡ e E e E e ⋅ ⋅ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= φ1(v)φ2 (2v)φ3 (3v)
jv( 2 X + X +4 X +10) ⎡ ⎤ φ ( v ) E e = (4) X ⎣ ⎦

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F(4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立; )()(x F x F =+也成立。

随机信号分析第3版习题及答案word资料18页

随机信号分析第3版习题及答案word资料18页
题2.18解:由定义得: 又因为

X(t1)
t1
2
8
8cos(1/ 2)
8cos1
X
X(t2)
,t
t2
,μ
2
,C
8cos(1/ 2)
8
8cos(1/ 2)
X(t3)
t3
2
8cos1
8cos(1/ 2)
8
密度和特征函数XYu,v。
题2.19
Cov(X,Y)33
DXDY2 510
是,
(X,Y)的概率密度函数为其特征函数为
(2)EY E(E(Y X)) Ea X a a/2 3a
2 2 4
8.设太空梭飞行中,宇宙粒子进入其仪器舱的数目N服从泊松分布。进舱后每个粒子造 成损坏的概率为p,彼此独立。求:造成损坏的粒子平均数目。(北P101,T10)
解:每个粒子是否造成损坏用Xi表示
N
造成损坏的粒子数YXi,于是
i1
可合理地认为N和Xi是独立的,于是
3.7解:
3.6两个统计独立的平稳随机过程X(t)和Y(t),其均值都为0,自相关函数分别为RX( ) e,RY( ) cos2,试求:
(1)Z(t) X(t) Y (t)的自相关函数;
(2)W(t) X (t) Y (t)的自相关函数;
3)互相关函数RZW( )。
3.9解:
3.7广义平稳随机过程Y(t)的自相关函数矩阵如下,试确定矩阵中带下划线的空白处 元素的值。
(3)X(v) E ejv X1 2X2 3X31(v)2(2v)3(3v)
(4)X(v) E ejv2X1 X2 4X310ejv101(2v)2(v)3(4v)
10.随机变量X具有下列特征函数,求其概率密度函数、均值、均方值与方差。

随机信号答案

随机信号答案

1.1已知高斯随机变量X的概率密度,求它的数学期望和方差。

解:根据数学期望与方差定义:令,,代入上式并整理与前面以一样同样变换,即令,整理后查数学手册的积分表,可得:令及,利用上式的积分结果,可得可见高斯变量的概率密度分布由它的数学期望和方差唯一决定。

1.2随即变量,其中为随机变量,、为常数且>0,求与的相关系数解:根据数学期望的定义,若,则先求协方差,再求相关系数将,代入,并由概率密度性质,消去,得到同理,将,代入,并由概率密度性质,消去则有有前两式联立,解得,可见,当与呈线性关系,且>0时,二者的相关系数即与是完全相关的。

1.5 随机变量和满足线性关系,为高斯变量,、为常数,求的概率密度。

解:设的数学期望和方差分别为和,的概率密度为因为和是严格单调函数关系,其反函数且即可得到得概率密度1.7已知二维随机变量的联合概率密度,求,之和的概率密度。

解:设;先求随机变量,的反函数及雅克比行列式,即;二维随机变量的联合概率密度为利用概率密度性质,的边缘概率密度为最后,用和代替和,得这就是两个随机变量之和的概率密度。

1.9随机变量,为相互独立的高斯变量,数学期望为零,方差为1。

求的概率密度。

解:已知数学期望为零、方差为1的高斯变量概率密度为先根据定义求,的特征函数由特征函数的性质,则可求得的概率密度:1.11求两个数学期望和方差不同且相互独立的高斯变量,之和的概率密度。

解:设,可得两个相互独立的随机变量之和的概率密度为将,的概率密度代入上式利用欧拉积分显然,也是高斯变量,且数学期望和方差分别为;习题:1.10 已知二维随机变量(X1,X2)的概率密度为,随机变量(X1,X2)与(Y1,Y2)随机变量的关系有下式唯一确定,证明证:因为,所以又和,和可得,,,所以习题1.17 已知高斯随机变量X的数学期望为0,方差为1,求的概率密度已知X~N(0,1),所以由得到2.1若随机过程为,<<,式中A为在(0,1)上分布的随机变量,求E[X(t)]及RX(t1,t2) 式中为在上均匀分布的随机变量,求及解:由于与之间有确定的时间函数关系,故二者的概率分布函数相等,即考虑到故有2.2设复随机过程为,式中,An(n=1,2,..N)是相互独立的实正态随机变量,其均值为0,方差为;求复随机过程Z(t)的均值、自相关函数和协方差函数。

随机信号处理习题答案

随机信号处理习题答案

随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V ,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数 )])([()]()([),(b Vt b Vs E t X s X E t s R X ++== ][22b btV bsV stV E +++= 2b st +=2.4 设有随机过程)sin()cos()(t B t A t X ωω+=,其中ω为常数,B A ,是相互独立且服从正态分布),0(2σN 的随机变量,求随机过程的均值和相关函数。

解 因B A ,独立,),0(~2σN A ,),0(~2σN B 所以,2][][,0][][σ====B D A D B E A E 均值 )]sin()cos([)]([)(t B t A E t X E t m X ωω+== 0][)sin(][)cos(=+=B E t A E t ωω 相关函数[]))sin()cos())(sin()cos(()]()([),(22112121t B t A t B t A E t X t X E t t R X ωωωω++==[]1221212212sin cos sin cos sin sin cos cos t t AB t t AB t t B t t A E ωωωωωωωω+++= ][sin sin ][cos cos 221221B E t t A E t t ωωωω+=)sin sin cos (cos 21212t t t t ωωωωσ+= )(cos 212t t -=ωσ2.5 已知随机过程)(t X 的均值函数)(t m X 和协方差函数)(),,(21t t t B X ϕ为普通函数,令)()()(t t X t Y ϕ+=,求随机过程)(t Y 均值和协方差函数。

随机信号分析基础课后练习题含答案

随机信号分析基础课后练习题含答案

随机信号分析基础课后练习题含答案第一部分随机变量和概率分布练习题1设离散随机变量X的概率分布函数为:X0 1 2 3 4P X0.05 0.15 0.35 0.30 0.15求E(X)和D(X)。

答案1根据概率分布函数的公式有:$$E(X)=\\sum_{i=1}^n x_i P_X(x_i) = 0 \\times 0.05 + 1\\times 0.15 + 2 \\times 0.35 + 3 \\times 0.30 + 4 \\times 0.15 = 2.25$$$$D(X)=\\sum_{i=1}^n (x_i-E(X))^2P_X(x_i) = 0.710625$$ 练习题2已知随机变量X的概率密度函数为:$$f_X(x) = \\begin{cases} \\frac{1}{3}e^{-\\frac{x}{3}} & x \\geq 0 \\\\ 0 & x < 0 \\end{cases}$$求E(X)和D(X)。

答案2根据概率分布函数的公式有:$$E(X)=\\int_{-\\infty}^{+\\infty}xf_X(x)dx =\\int_{0}^{+\\infty}x\\frac{1}{3}e^{-\\frac{x}{3}}dx=3$$ $$D(X)=E(X^2)-(E(X))^2=\\int_{-\\infty}^{+\\infty}x^2f_X(x)dx-(E(X))^2=\\int_{0}^{+\\infty}x^2\\frac{1}{3}e^{-\\frac{x}{3}}dx-9=\\frac{27}{4}$$第二部分随机过程练习题3设二阶矩有限的离散时间随机过程X n的均值序列为m n,自相关函数为R n(i,j)=E(X i−m i)(X j−m j),其中 $0 \\leq i,j \\leq N$。

若m n=n2,R n(i,j)=ij(i+j),求 $E(\\sum_{n=0}^N X_n)$。

随机信号处理考题答案

随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号分析CH6习题及答案

随机信号分析CH6习题及答案

6.1 复随机过程0()()j t Z t e ω+Φ=,式中0ω为常数,Φ是在(0,2)π上均匀分布的随机变量。

求:(1)[()()]E Z t Z t τ*+和[()()]E Z t Z t τ+;(2)信号的功率谱。

解:(1) 0()()j t Z t eω+Φ=[][]0000()2200()cos sin 11cos sin 220j t j t j j tj t E Z t E e E e e E j e d d eωωωππωππ+ΦΦ⎡⎤⎡⎤==⎣⎦⎣⎦=Φ+Φ⎡⎤=Φ⋅Φ+Φ⋅Φ⎢⎥⎣⎦=⎰⎰()0000[()][][()()]j t j t j j Z E Z t Z t E e e E e e R ωτωωτωτττ++Φ-+Φ*⎡⎤+=⎣⎦⎡⎤===⎣⎦[][][][][]000000[()][](2)2(2)2(2)2(2)[()()]cos 2sin 21cos 2sin 220j t j t j t j t j j t j t E Z t Z t E e e E e e E e e E j e j d ωτωωτωτωτπωττπ++Φ+Φ++Φ+Φ++⎡⎤+=⎣⎦⎡⎤⎡⎤==⎣⎦⎣⎦⎡⎤=Φ+Φ⎣⎦=Φ+ΦΦ=⎰ (2) 00()[()][]2()j Z Z S F R F e ωτωτπδωω===-6.2 6.36.4 已知()a t 的频谱为实函数()A ω,假定ωω>∆时,()0A ω=,且满足0ωω∆,试比较:(1) 0()cos a t t ω和0(12)()exp()a t j t ω的傅立叶变换。

(2) 0()sin a t t ω和0(2)()exp()j a t j t ω-的傅立叶变换。

(3)0()cos a t t ω和0()sin a t t ω的傅立叶变换。

解:由傅立叶变换的定义可以得到: (1)000001()cos [()()]211()()22FTj t FTa t t A A a t e A ωωωωωωωω←−→-++←−→- ()000()()cos ()sin j t a t e a t t ja t tωωω=+0()j ta t eω是0()cos a t t ω的解析信号01()2j t a t e ω的傅立叶变换是0()cos a t t ω的傅立叶变换的正频率部分。

随机信号李晓峰版第一章习题答案

随机信号李晓峰版第一章习题答案

ve e φ-=+; (3)()4/(4)v jv φ=; (4)()(sin 5)/(5)v v v φ=; 解:(1)1()i k jvxiivpe φ==∑ ()()1 k i i i f x p x x δ==-∑ 2424()0.20.30.20.20.1j v j v j v j v v e e e e φ--=++++ ()()()()()() 0.20.320.240.220.14f x x x x x x δδδδδ=+-+-++++ ()()()(0)/20.340.220.240.10.6E X j φ'==?+?+-?+-?= ()()()()22 2 2 2 2 (0) 20.340.220.240.1 6.8 EX j φ''=-=?+?+-?+-?= ()()()22 6.80.36 6.44Var X E X E X =-=-= (2)() 11 ()0.30.7jv jv v e e φ??-=+ ()()()0.310.71f x x x δδ=-++ ()()(0)/10.310.70.4E X j φ'==?+-?=()()()
25. 设太空梭飞行中,宇宙粒子进入其仪器舱的数目N 服从(参数为λ)泊松分布。进舱后每个粒子造成损坏的概率为p ,彼此 独立。求:造成损坏的粒子平均数目。解:每个粒子是否造成损坏用i X 表示 1,1,2,,0i X i N ?==? ? 造成损坏没有造成损害 , 造成损坏的粒子数 1 N i i Y X ==∑ ,于是 () 1 1 (|)(|) |n iin i i E Y N n E X N n E X N n =======∑∑ 可合理地认为N 和i X 是独立的,于是 ()1 (|)n i i E Y N n E X np ====∑ ()()()()(|)E Y E E Y N E Np pE N p λ==== 27. 若随机变量X 的概率特性如下,求其相应的特征函数: (1)X 为常数c ,即{}1P X c ==; (2)参数为2的泊松分布; (3)(-1,1)伯努利分布: ()0.4(1)0.6(1)f x x x δδ=-++ (4)指数分布: 30 3(), x x e f x -≥?=??其他 解:(1)()jvX jvc jvc X v E e E e e φ????===???? , 如果c=0,则()1X v φ=。 (2)

随机信号李晓峰版第一章习题答案

随机信号李晓峰版第一章习题答案

随机信号分析第一章1. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。

解:()()()())0.210.520.33i i if x p x x x x x δδδδ=-=-+-+-∑( ()()()())0.210.520.33i i iF x p u x x u x u x u x =-=-+-+-∑(2. 设随机变量X 的概率密度函数为()xf x ae-=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩ 3. 若随机变量X 与Y 的联合分布律为求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

解:(1)()()()()()()()(),,0.07,10.18,0.15,10.081,10.321,0.201,1ij i j ijF x y p u x x y y u x y u x y u x y u x y u x y u x y =--=+++-+-++-+--∑∑()()()()()()()(),,0.07,10.18,0.15,10.081,10.321,0.201,1ij i j ijf x y p x x y y x y x y x y x y x y x y δδδδδδδ=--=+++-+-++-+--∑∑(2)X 的分布律为(i ij jP P ⋅=∑)()()00.070.180.150.4010.080.320.200.60P X P X ==++===++=Y 的分布律为()()()10.070.080.1500.180.320.5010.150.200.35P Y P Y P Y =-=+===+===+=(3)Z XY =的分布律为()()()()()()()()()()111,10.080001,00.400.320.72111,10.20P Z P XY P X Y P Z P XY P X P X Y P Z P XY P X Y =-==-===-======+===+======== (4)因为()()()00.4010.600.6010.1500.5010.350.20E X E Y =⨯+⨯==-⨯+⨯+⨯=()()10.0800.7210.200.12E XY =-⨯+⨯+⨯=则()()()()ov ,0.120.600.200C X Y E XY E X E Y =-=-⨯=X 与Y 的相关系数0XY ρ=,可见它们无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. 写出随机过程的两个定义。
5. 随机过程有那两个变化特性,如何理解其随机性?
6. 叙述“狭义平稳”的定义;如何理解这个定义在实际应用中的困难?
7. (a)随机过程的遍历性与平稳性的关系是什么?(b) 简述“狭义遍历”与“宽遍历”的关系。
三、计算题
1 设随机振幅信号为 X (t) = V sinω0t ,其中ω0 为常数;V 是标准正态随机变量。求该随机信号的均值、
①条件数学期望 E[Y X = x] ;②条件数学期望 E[Y X ] 。
10. 已知随机变量 X = cosϕ 和Y = sin ϕ ,式中 ϕ 是在 (0,2π) 上均匀分布的随机变量。讨论 X
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 mX = 3 ,方差 σ2X = 2 ,且另一随机变量Y = −6 X + 22 。讨论 X 和
关函数;(3)求该过程的功率谱密度。
5.已知平稳过程 X(t)的自相关函数如下:
(1)RX (τ ) = e−α τ
cos ω0τ
− τ2
;(2)RX (τ ) = be 2α3
分别求过程 X
(t)的功率谱密度。
6. 已 知 平 稳 过 程 X ( t ) 的 自 相 关 函 数 如 下 : (1)RX (τ ) = 4e−τ cosπτ + cos 3πτ ;
方差、相关函数和协方差函数。
2. 设随机过程 X (t) = Acos(t) + B sin(t) + t ,其中 A 、 B 为两个互不相关的随机变量,且 E{A} = 1 、
E{B} = 2 、 E{A2} = 3、 D{B2} = 4 。求过程 X (t) 的均值、相关函数。
3 设随机过程 Y (t) 和常数 a ,试以Y (t) 的自相关函数表示出另一随机过程, X (t) = Y (t + a) − Y (t) 的自
4-5 设输入随机信号 X (t ) = M + B cos(20t + Θ) ,式中 M 是均值为 5、方差为 64 的高斯随机变量,B 是
均方值为 32 的瑞利随机变量,Θ 是 (0,2π )上均匀分布的随机变量,这三个随机变量相互独立。若系统的
单位冲激响应 h(t ) = δ (t ) − 10e U −10t (t ) ,试求其输出的均值和均方值。
的遍历性。
8 如果随机过程 X (t ) = V cos 4t − ∞ < t < +∞ ,式中V 是随机变量,其均值为 1、方差为 3。求:随机过
程 X (t ) 的均值、方差、相关函数和协方差函数。
103
9 若两个随机过程 X (t) = A(t)cost 和Y (t) = B(t)sin t 都是非平稳过程,其中 A(t) 和 B(t) 为相互独立,且
⎪⎩1 x > 1 (0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
设二维随机变量(X,Y)的概率密度为:
f
(x,
y)
=
⎧e−( ⎨
x+
y)
⎩0
0 < x < +∞,0 < y < +∞ 求:① 其它
分布函数 FXY (x, y) ;②(X,Y)落在如图所示的三角形区域内的概率。
y
x+y=1
___。
4. 若 对 应 任 意 两 个 时 刻 t1,t2 , 均 有 E[X (t1 )Y (t2 )] = mX (t1 )mY (t2 ) , 则 随 机 过 程 X (t ) 与 Y (t ) ____
____(不相关、独立、正交);若联合平稳过程 X (t )和Y (t )的互相关函数 RXY (t1,t2 ) = 0 ,则 X (t )与Y (t )
的均值,方差,自相关函数及协方差。
6 设随机过程 X (t) = a cos(ω0t + Θ) ,其中 a ,ω0 为常数,随机相位 Θ 均匀分布于 (0, 2π ) 上。判断 X (t)
是否为平稳随机过程,给出理由。
7 设随机过程 Z (t) = X (t) + Y ,其中 X (t) 是一平稳过程,Y 是与 X (t) 无关的随机变量。试讨论过程 Z (t)
101
7. 已知随机变量 X 服从标准高斯分布,求随机变量Y = X 2 的概率密度。
8. 已知二维随机变量 ( X1, X 2 ) 具有联合概率密度:
f
X1X
2
(
x1,
x2
)
=
⎧e−( ⎨ ⎩0
x1 + x2
)
x1 > 0, x2 > 0 其它
新的二维随机变量 (Y1,Y2 ) 是 ( X1, X 2 ) 的函数,满足关系:
为 SY (ω ) = 2 S X (ω )(1 + cos ωT )
X(t)
Y(t)=X(t)+ X(t-T)
+
延迟 T
X(t-T)
第 7 题的图
9.设随机过程 Y (t) = aX (t) sin ω0t ,其中 a,ω0 皆为常数, X (t) 为具有功率谱密度 SX (ω) 的平稳过程, 求过程Y (t) 的功率谱密度
Y1
=
X1
+ 2
X2
, Y2
=
X1
− X2 2
求:①二维随机变量 (Y1,Y2 ) 的联合概率密度 fY1Y2 ( y1, y2 ) ;②边缘密度 fY1 ( y1) 和 fY2 ( y2 ) ,说明
Y1 与Y2 是否相互独立。 9. 已知随机变量 X 服从(0,1)的均匀分布,随机变量 Y 服从(X,1)的均匀分布。求
x 0
5. (续上题)求③边缘分布函数 FX (x) 和 FY ( y) ;④求边缘概率 f X (x) 和 fY ( y) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX (x y) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X (x y) 和
fY ( y x) 。
布,试问该信号是否具有平稳性?证明之。 第三章 平稳随机过程的谱分析
一.简答题 1 给出平稳过程的功率谱密度的性质。 2 简述功率谱密度与自相关函数的关系,写出相互转换的数学关系表达式。 3 简述互功率谱密度与互相关函数的关系,写出相互转换的数学关系表达式。 4 简述功率谱密度的采样定理。 5 什么是理想白噪声。 6 什么是带限白噪声。 7 色噪声的定义。 二.计算题
10.
平稳随机过程 X (t) 和Y (t) 的互功率谱密度函数为 SXY (ω) =
10 4 + j5ω

求对应的互功率谱密度函数 SYX (ω) 。
第四章
4-1 设确定性随机信号为 X (t ) = M + B cos(20t + Θ)其中 M、B、 Θ 是随机变量。将 X (t )输入到单位冲 激响应为 h(t ) = 10e U −10t (t )的系统的输入端,求系统输出随机信号的表达式。 4-2 已知系统的单位冲激响应 h(t ) = 5e−3tU (t ),设其输入随机信号为 X (t) = M + 4 cos(2t + Θ), (− ∞ < t < ∞) ,其中 M 是随机变量, Θ 是 (0,2π )上均匀分布的随机变量,
求:① X 的分布函数 F (x) ;② P{X ≤ 0.5}, P{1 < X ≤ 1.5}, P{1 ≤ X ≤ 1.5};③随机变量
Y = 3X + 1的分布函数。
⎧0 x < 0 3. 已知随机变量 X 的分布函数为: FX (x) = ⎪⎨kx2 0 ≤ x < 1,求:①系数 k;②X 落在区间
相关函数。
4 设随机过程 X (t) = Acosω0t , Y (t) = B sin ω0t 。而其中 A 、 B 为相互独立的随机过程,且它们均值
为零、方差皆为σ 2 。证明 Z (t) = X (t) + Y (t) 是宽平稳的随机过程。
5 设随机过程Y (t) = a cos(ω0t + Θ) ,其中 a ,ω0 为常数,随机相位 Θ 均匀分布于 (0, 2π ) 上。求过程Y (t)
(2)RX (τ ) = 16e−2τ − 8e−4τ ,分别求过程 X(t)的功率谱密度。
7 已知平稳过程的自相关函数 Rx (τ ) = 5 + 4e−3τ cos2 2τ ,求其功率谱密度
104
8.若系统的输入 X(t)为平稳随机过程,系统的输出为 Y(t)=X(t)+ X(t-T)。试着证过程 Y(t)的功率谱密度
,反之则
;一个广义平稳的
正态过程必定是

2. 广义遍历的信号______(是、不是、不一定是)广义平稳随机信号;反之,广义平稳的随机信号_______
(是、不是、不一定是)广义遍历的随机信号。
3. 任意维的概率密度函数为高斯分布的噪声称为____
____;而如果一个随机过程的功率谱密度是
常数,则称它为_
P(
A0
)
=
P(
A1)
=
1 2
,求:①B
端接收到
0
码及
1
码的概率
P(B0 )

P(B1)
;②当分别收到
0 和 1 码后,判断原来发送的是什么码的概率? 即求:P( A1 / B0 ) 、P( A1 / B1) 、P( A0 / B0 )
和 P( A0 / B1) 。 2. 随机变量 X 的分布律为
X0 1 2 P 0.2 0.1 0.7
且 M 和 Θ 相互独立,求输出信号的表达式。
相关文档
最新文档