可降解高分子材料

合集下载

可降解高分子材料

可降解高分子材料

可降解高分子材料可降解高分子材料是一种具有环保特性的新型材料,它在使用过程中可以自然降解,不会对环境造成污染,因此备受人们关注。

可降解高分子材料主要包括可降解塑料、可降解包装材料、可降解医用材料等,它们在各个领域都有着广泛的应用前景。

首先,可降解高分子材料在塑料制品领域有着重要的应用价值。

传统塑料制品在使用过程中会产生大量的废弃物,对环境造成严重污染,而可降解塑料可以在一定条件下自然降解,降低了对环境的影响,因此备受青睐。

可降解塑料的制备工艺也在不断改进,使其性能和稳定性得到提升,逐渐替代传统塑料成为塑料制品的主要材料。

其次,可降解高分子材料在包装领域也有着广阔的市场前景。

随着人们环保意识的增强,对包装材料的要求也越来越高,可降解包装材料应运而生。

可降解包装材料可以在使用完毕后迅速降解,减少了对环境的污染,符合人们对绿色环保的追求。

同时,可降解包装材料的研发也在不断完善,使其具有更好的保鲜性能和耐用性,满足了人们对包装材料的多样化需求。

此外,可降解高分子材料在医用材料领域也有着重要的应用意义。

医用材料的使用对材料的降解速度和降解产物的环境友好性有着严格的要求,而可降解医用材料可以在一定条件下迅速降解,减少了对医疗废弃物的处理压力,降低了对环境的影响。

可降解医用材料的研发也在不断推进,使其在生物相容性和机械性能方面得到进一步提升,为医疗行业提供了更多的选择。

综上所述,可降解高分子材料具有重要的环保意义和广阔的应用前景,它在塑料制品、包装材料、医用材料等领域都有着重要的应用价值。

随着科技的不断进步和人们环保意识的增强,相信可降解高分子材料将会在未来得到更广泛的应用,为环境保护和可持续发展做出更大的贡献。

可降解高分子材料

可降解高分子材料

可降解高分子材料高分子材料具有很多其它材料不具备的优异性能,在尖端技术、国防建设和国民经济各个领域得到广泛的应用,是现代科技和生活不可缺少、不可替代的重要材料,其生产和消费一直保持很旺的势头。

21世纪更是高分子材料高速发展和充分利用的新世纪,但是大多数高分子材料在自然环境中不能很快降解,日益增多的废弃高分子材料已成为城市垃圾的重要来源,产生的白色污染已严重影响人类生存环境,这已成为全球性的问题。

因此研究和开发可降解高分子材料是非常有意义的。

高分子降解是指构成聚合物的大分子链断裂反应。

聚合物暴露于氧、水、射线、热、光、化学试剂、污染物质、机械力及生物(尤其是微生物)等环境条件下的降解过程称为环境降解。

从机理上降解因素可归纳为生物、光、化学降解,其中最具应用前景的是光降解与生物降解。

可降解高分子材料按照降解机理可大致分为光降解高分子材料、生物降解高分子材料和光-生物双降解高分子材料三大类。

目前的重点研究方向是具有光生物双降解特性的高分子材料和具有完全降解特性的完全生物降解高分子,这也是今后产业发展的方向。

1生物降解高分子就天然高分子而言,我们对生物降解高分子是非常熟悉的,我们知道生命体不仅能合成多种高分子(例如:蛋白质、多糖等),而且也能分解它们,但是随着人工合成高分子的出现,问题随之而来,这些人工合成的高分子不能为生物所降解,而且自身分解极慢,它大大危害着我们的生存环境。

于是人工合成降解高分子应运而出。

1.1生物降解高分子的定义和降解性的表征方法以下为从学术角度和一般意义上对生物降解高分子的定义,但对降解的时限、降解的产物等实质性问题均未作任何描述和定义,仍需进一步完善。

(a)学术上:生物降解高分子就是在一定环境条件下和一定时间内由于微生物(例如:细菌、酵母等)的作用而发生降解反应的高分子。

(b)一般意义上:生物降解高分子是一类在自然环境条件下可为微生物作用而引起降解的高分子。

高分子材料在一定的环境中降解一般要经历以下几个降解阶段(见图2),各个阶段有其独特的特征,因而评价方法也不同[2]。

可降解高分子材料的制备及其降解机理

可降解高分子材料的制备及其降解机理

可降解高分子材料的制备及其降解机理引言可降解高分子材料是一种具有良好可降解性能的材料,其制备及降解机理研究对于环境保护和可持续发展具有重要意义。

本文将重点介绍可降解高分子材料的制备方法和降解机理。

一、可降解高分子材料的制备方法1. 天然高分子材料的提取与改性天然高分子材料,如淀粉、纤维素等,具有良好的可降解性能。

通过提取天然高分子材料并进行化学改性,可以改善其物理性能,增强其可降解性能。

2. 合成可降解高分子材料合成可降解高分子材料是一种常用的制备方法。

常见的合成可降解高分子材料的方法包括聚合法、缩聚法和共聚法等。

例如,聚乳酸(PLA)是一种常用的可降解高分子材料,可以通过乳酸的聚合反应得到。

3. 复合材料的制备将可降解高分子材料与其他材料进行复合制备,可以改善材料的性能。

例如,将可降解高分子材料与纳米材料进行复合,可以提高材料的力学性能和降解速率。

二、可降解高分子材料的降解机理1. 生物降解可降解高分子材料的主要降解方式是生物降解。

在自然环境中,微生物和酶等生物体可以分解可降解高分子材料,将其转化为无害的物质,最终实现降解。

生物降解的过程中,可降解高分子材料分子链的断裂和酶的作用是关键。

2. 热降解可降解高分子材料也可以通过热降解的方式实现降解。

在一定温度下,可降解高分子材料分子链的键断裂,从而导致材料的降解。

热降解的温度和时间是影响降解速率的重要因素。

3. 光降解光降解是一种利用光能将可降解高分子材料降解的方法。

可降解高分子材料对特定波长的光线具有吸收能力,吸收光能后分子链发生断裂,从而实现降解。

结论可降解高分子材料的制备方法多样,可以通过提取天然高分子材料、合成和复合等方式得到。

其降解机理主要包括生物降解、热降解和光降解等方式。

研究可降解高分子材料的制备及其降解机理对于环境保护和可持续发展具有重要意义,有助于减少塑料污染和资源浪费,推动可持续发展。

未来的研究应着重于提高可降解高分子材料的降解效率和探索新的制备方法,以满足环境保护和可持续发展的需求。

医用生物可降解型高分子材料

医用生物可降解型高分子材料

医用生物课降解型高分子材料1.聚己内酯(PCL)这种塑料具有良好的生物降解性,熔点是62℃。

分解它的微生物广泛地分布在喜气或厌气条件下。

作为可生物降解材料可把它与淀粉、纤维素类的材料混合在一起,或与乳酸聚合使用。

2.聚丁二酸丁二醇酯(PBS)及其共聚物以PBS(熔点为114℃)为基础材料制造各种高分子量聚酯的技术已经达到工业化生产水平。

日本三菱化学和昭和高分子公司已经开始工业化生产,规模在千吨左右。

中科院理化研究所也在进行聚丁二酸丁二醇酯共聚酯的合成研究。

目前中科院理化研究所正在筹建年产万吨的PBS生产线、广东金发公司建成了年产1000吨规模的生产线等。

3.聚乳酸(PLA)美国Natureworks公司在完善聚乳酸生产工艺方面做了积极有效的工作,开发了将玉米中的葡萄糖发酵制取聚乳酸,年生产能力已达1.4万吨。

日本UNITIKA公司,研发和生产了许多种制品,其中帆布、托盘、餐具等在日本爱知世博会被广泛使用。

我国目前产业化的有浙江海生生物降解塑料股份有限公司(规模5000千吨/年生产线),正在中试的单位有上海同杰良生物材料有限公司、江苏九鼎集团等。

4.聚羟基烷酸酯(PHA)目前国外实现工业化生产的主要为美国和巴西等国。

目前国内生产单位有宁波天安生物材料有限公司(规模2千吨/年),正在中试的单位有江苏南天集团股份有限公司、天津国韵生物科技有限公司等。

1 晶体结构PLA其主要合成方法有2种:乳酸的缩聚和丙交酯的开环聚合。

常用的高效催化剂为无毒的锡类化合物(如氯化锡和辛酸亚锡)。

乳酸或丙交酯在一定条件下聚合,都可得到全规、间规、杂规及不规则的PLA,依聚合单体的不同,可分为左旋聚乳酸(Z—PLA)、右旋聚乳酸(d—PLA)、内消旋聚乳酸(me—PLA)及外消旋聚乳酸(df—PLA)。

PLA只要PLA的立体规整度足够高,本体或溶液中的PLA就会结晶。

PLA结晶度、晶体大小和形态均影响制品的性能(如冲击强度、开裂性能、透明性等) 。

生物可降解高分子材料的发展前景与挑战

生物可降解高分子材料的发展前景与挑战

生物可降解高分子材料的发展前景与挑战随着全球环境污染和资源短缺问题日益凸显,生物可降解高分子材料作为一种环保、可持续的新型材料备受关注。

生物可降解高分子材料是指能够在自然环境中被微生物分解,最终转化为水、二氧化碳和生物质的高分子化合物。

其开发应用不仅可以有效减少塑料垃圾对环境的污染,还能降低对石油等化石能源的需求,具有巨大的经济和环保潜力。

生物可降解高分子材料的发展前景十分广阔。

首先,生物可降解高分子材料可以广泛应用于包装材料、农业膜、医疗器械等领域,取代传统的塑料制品,减少环境负担。

其次,生物可降解高分子材料具有可再生性和可降解性,可以降低对石油等非可再生资源的依赖,是实现循环经济的重要材料基础。

再者,生物可降解高分子材料的制备技术逐渐成熟,生产成本逐渐下降,市场前景广阔。

然而,生物可降解高分子材料的发展也面临一些挑战。

首先,虽然生物可降解高分子材料具有生物可降解性,但在实际应用中,其降解速率和降解产物对环境的影响仍存在争议,需要进一步深入研究。

其次,生物可降解高分子材料的性能和稳定性还有待提高,目前在一些领域的应用受到限制。

再者,生物可降解高分子材料的产业链还未形成完善的体系,需要加大政府支持和产业投入,推动产业化和市场化进程。

为了促进生物可降解高分子材料的发展,需要加强科研机构和企业之间的合作,加大创新力度,开展多方面的研究工作,提高生物可降解高分子材料的性能和稳定性,降低生产成本,拓展应用领域。

同时,政府应加大支持力度,出台相关政策,引导企业加大投入,推动生物可降解高分子材料产业的快速发展。

只有各方共同努力,才能实现生物可降解高分子材料的广泛应用,为建设资源节约型和环境友好型社会做出贡献。

总之,生物可降解高分子材料作为一种环保、可持续的新型材料,具有巨大的发展潜力和市场前景。

在未来的发展中,科研机构、政府和企业应加强合作,共同推动生物可降解高分子材料的研发和应用,为建设绿色环保的美丽家园作出积极贡献。

浅析可降解生物医用高分子材料

浅析可降解生物医用高分子材料

浅析可降解生物医用高分子材料一、本文概述随着科技的进步和医疗领域的发展,可降解生物医用高分子材料作为一种新型的医用材料,正逐渐受到人们的关注。

本文旨在浅析可降解生物医用高分子材料的基本概念、特性、应用以及发展前景。

通过对这一领域的深入探讨,希望能够为医用材料的研究和应用提供一定的参考和启示。

可降解生物医用高分子材料是一类能够在生物体内或体外环境中,通过水解、酶解或生物代谢等方式逐渐降解的高分子材料。

它们具有良好的生物相容性和生物活性,能够在体内与生物组织进行良好的结合,且降解产物对生物体无害。

这些特性使得可降解生物医用高分子材料在医疗领域具有广泛的应用前景,如药物载体、组织工程、医疗器械等。

本文将从可降解生物医用高分子材料的分类、性质、制备方法、应用现状等方面进行详细阐述,并探讨其未来的发展趋势和挑战。

通过综合分析国内外相关研究成果,旨在为可降解生物医用高分子材料的研究和应用提供有益的参考和指导。

二、可降解生物医用高分子材料的分类天然高分子材料:这类材料主要来源于自然界,如多糖、蛋白质等。

多糖如纤维素、壳聚糖等,具有良好的生物相容性和降解性。

蛋白质如胶原蛋白、明胶等,在人体内能够被自然酶解。

这些天然高分子材料在生物医学领域有着广泛的应用,如药物载体、组织工程支架等。

合成高分子材料:合成高分子材料是通过化学合成方法制得的,如聚酯、聚乳酸(PLA)、聚己内酯(PCL)等。

这类材料具有良好的可加工性和机械性能,可以通过调整分子结构和合成条件来调控其降解速率。

合成高分子材料在生物医用领域的应用也非常广泛,如用于制作药物缓释系统、临时植入物等。

杂化高分子材料:杂化高分子材料是结合天然高分子和合成高分子优点的一种新型材料。

它们通常是通过将天然高分子与合成高分子进行化学或物理共混、交联等方式制备得到的。

杂化高分子材料不仅具有良好的生物相容性和降解性,还兼具了天然高分子和合成高分子的优点,如机械强度高、易于加工等。

可降解高分子材料的制备及其降解机理

可降解高分子材料的制备及其降解机理

可降解高分子材料的制备及其降解机理可降解高分子材料是一类具有良好的环境适应性和可持续性的材料,其在使用过程中能够被自然环境中的微生物、光、热等因素降解为无毒、无害的物质,从而减少对环境的污染和资源的浪费。

本文将从可降解高分子材料的制备和降解机理两个方面进行探讨。

一、可降解高分子材料的制备可降解高分子材料的制备通常可以通过两种途径实现:一种是从天然资源中提取可降解高分子,另一种是通过化学合成方法制备可降解高分子。

1. 从天然资源中提取可降解高分子天然资源中存在着许多可降解高分子,如淀粉、纤维素等。

这些天然高分子具有良好的可降解性,可以通过提取和改性等方法得到可降解高分子材料。

例如,将纤维素经过酸碱处理、酶解等工艺,可以得到可溶性纤维素,再通过聚合反应得到可降解高分子材料。

2. 化学合成方法制备可降解高分子化学合成方法是制备可降解高分子的常用方法之一。

通过选择合适的单体和聚合反应条件,可以合成出具有可降解性的高分子材料。

例如,通过选择具有可降解基团的单体,如乳酸、丙交酯等,经过聚合反应,可以得到可降解高分子材料聚乳酸、聚丙交酯等。

二、可降解高分子材料的降解机理可降解高分子材料的降解机理主要包括生物降解和物理降解两种方式。

1. 生物降解生物降解是指在自然环境中,通过微生物的作用将可降解高分子材料分解为低分子量物质的过程。

微生物通过分泌酶类对可降解高分子材料进行降解。

首先,微生物通过粘附在可降解高分子材料表面,分泌酶类使材料表面发生局部降解。

随着降解的进行,酶类逐渐穿透到材料内部,使其整体发生降解。

2. 物理降解物理降解是指可降解高分子材料在外界刺激下发生结构破坏的过程。

外界刺激可以是光照、温度变化、机械力等。

例如,可降解高分子材料在受到光照作用下,其分子链中的化学键发生裂解,使材料发生降解。

另外,温度变化也可以导致可降解高分子材料的降解,当温度升高时,分子链中的键能降低,从而使材料变得不稳定,发生降解。

生物可降解高分子材料

生物可降解高分子材料

生物可降解高分子材料
生物可降解高分子材料是一种在多年的发展中被越来越多地采用的材料,它具有良好
的可降解性能,而且没有环境污染。

生物可降解材料一般都是指通过有机物质,如细菌、
酵母等,用生物酶受体产生和降解可生物降解的高分子材料。

生物可降解高分子材料的主要原料可以分为葡萄糖类和植物油脂类两大类,葡萄糖类
材料主要来源于玉米、大豆等蛋白质类植物,如羟基玉米淀粉;植物油脂类材料主要来源
于油料豆类植物,如棉籽、玉米籽等。

生物可降解高分子材料可以通过有机物质,如细菌、酵母等,催化发生降解,产生CO2和H2O,不会产生废料污染环境。

今天,生物可降解高分子材料主要应用于食品包装、医疗、地膜、种植培养板、耕作
层及各种收集装置。

聚乳酸(PLA)是一种绿色、可降解和可生物降解的高分子材料,是
生物可降解高分子材料中最经典的材料之一。

同时,由于它具有乳白色、柔软的性能、抗
静电的性能以及耐温性,因此也可以用于汽车内饰,电子产品和家具等方面的应用。

总之,随着我们对环境及社会的日益重视,生物可降解高分子材料的使用将越来越多,取得越来越好的结果。

它可以有效地帮助我们去减少环境污染,保护我们的环境,提高我
们生活的品质。

高分子材料的可降解性及其改性研究

高分子材料的可降解性及其改性研究

高分子材料的可降解性及其改性研究近年来,可降解高分子材料在各个领域中受到越来越多的关注。

这种材料具有许多优点,如可减少对环境的污染、缓解资源短缺问题以及降低废弃物的处理成本等。

然而,可降解高分子材料的应用受到一些限制,如机械性能不稳定、降解速率过快等。

为了克服这些问题,研究者们进行了大量的研究,试图改善可降解高分子材料的性能。

首先,可降解性是评估高分子材料的关键指标之一。

当材料进入自然环境或生物体内时,其分子结构会逐渐断裂并转化为低分子量的化合物,最终被生物体代谢或通过自然降解过程转化为无害的物质。

因此,可降解材料的降解过程应该具有一定的可调控性,既要满足应用需求,又要避免对环境造成负面影响。

研究可降解高分子材料的降解性能的方法主要包括实验室测试和数值模拟模型。

实验室测试中常用的方法包括浸泡实验和微生物降解实验。

浸泡实验可以模拟材料在环境中的降解过程,通过测量材料质量损失、形态变化以及化学结构的变化来评估材料的可降解性。

微生物降解实验主要用来模拟生物体内的降解过程,通过观察微生物对材料的降解能力来评估其可降解性。

这些实验方法可以定量地评估可降解高分子材料的降解速率以及降解产物的性质,为改进材料的可降解性能提供参考。

另一方面,数值模拟模型可以通过建立数学和物理模型来预测材料的降解过程。

这些模型可以考虑材料的化学反应、质量传递和热传导等过程,从而提供了一种便捷的评估材料降解性能的方法。

通过模拟计算,可以研究影响材料降解速率和降解产物分布的因素,如材料的化学结构、分子量、环境条件等,为改进材料的可降解性能提供指导。

除了研究可降解性,改性也是提高高分子材料性能的重要途径之一。

改性可使材料在降解过程中有更好的稳定性和可调控性,同时提高材料的力学性能和加工适应性。

目前,常见的高分子材料改性方法包括添加剂改性、共混改性和交联改性等。

添加剂改性通过向高分子材料中添加一些具有特定功能的化合物,如抗氧化剂、稳定剂、增塑剂等,可以改善材料的降解性能和力学性能。

生物可降解高分子材料

生物可降解高分子材料

生物可降解高分子材料生物可降解高分子材料,是指以天然有机物为主要原料制备的高分子材料,经过特殊处理后能够在自然环境中被微生物或其他生物降解,最终转化成二氧化碳、水和生物质等无害物质的材料。

与传统的合成塑料相比,生物可降解高分子材料具有许多优势,如低碳排放、资源可再生、对环境友好等。

生物可降解高分子材料的原料主要来自于可再生的植物和动物资源,如淀粉、纤维素、蛋白质等。

它们通过特殊的加工技术,如酯交换反应、水解反应等,转化成生物可降解高分子材料。

这些材料在使用过程中通常不会对环境造成污染,因为它们可以被微生物分解并与自然界无害物质循环。

生物可降解高分子材料具有许多优点。

首先,它们能够显著减少对环境的污染。

传统塑料制品通常需要数百年才能被降解,对环境造成严重威胁。

而生物可降解高分子材料的降解速度远远快于传统塑料,减少了对土壤和水源的污染。

其次,生物可降解高分子材料可以降低碳排放。

生产生物可降解高分子材料的过程中,相对于传统塑料,其二氧化碳排放量更低,对气候变化的影响更小。

此外,生物可降解高分子材料可以有效利用可再生资源,不会对非可再生资源造成枯竭。

与此同时,生物可降解高分子材料本身也能作为良好的土壤改良剂和植物营养源,促进土壤生态系统健康发展。

然而,生物可降解高分子材料也存在一些挑战和限制。

首先,由于生物可降解高分子材料通常比传统塑料价格更高,其成本仍然是一个制约因素。

其次,目前的生物可降解高分子材料在性能上还无法完全替代传统塑料。

例如,在机械性能、热稳定性和耐化学性等方面,生物可降解高分子材料仍然存在一定差距,不能满足一些特殊行业的需求。

此外,生物可降解高分子材料的降解速度也需要控制,否则可能会造成不必要的资源浪费。

为了推动生物可降解高分子材料的广泛应用,需要加强相关技术的研究和开发。

首先,需要提高生物可降解高分子材料的性能,使其能够满足广泛的应用需求。

这可以通过改进材料配方、加强材料加工和改良材料结构等方式来实现。

可降解高分子材料

可降解高分子材料

可降解高分子材料可降解高分子材料(也称为可生物降解高分子材料)是指能够在自然环境下被微生物降解、分解的高分子材料。

随着环境保护意识的增强以及对塑料垃圾影响的关注,可降解高分子材料得到了广泛关注和应用。

可降解高分子材料根据其来源可分为天然的和合成的两类。

天然的可降解高分子材料主要来源于动植物,如淀粉、纤维素、蛋白质等。

合成的可降解高分子材料则是通过化学合成得到的,常见的有聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)、聚己内酰胺(PHB)等。

可降解高分子材料的应用范围十分广泛。

在包装行业中,可降解高分子材料可以替代传统的塑料包装材料,减少塑料垃圾的产生,对环境友好。

在农业领域,可降解高分子材料可以用于农膜、肥料包袋等农业用品的生产,减少对土壤的污染。

在医疗领域,可降解高分子材料可以用于制造缝合线、修复器械等,避免二次手术取出缝线的需求,减轻患者的痛苦。

可降解高分子材料具有许多优点。

首先,它们可以被微生物降解,无需进行特殊的处理。

其次,它们与传统塑料相比具有更快的降解速度,不会给环境带来长期的污染。

第三,可降解高分子材料可以根据需要进行调节,在强度、降解速度等方面进行优化。

此外,可降解高分子材料还具备良好的生物相容性,不会对人体或其他生物产生不良影响。

然而,可降解高分子材料也存在一些挑战。

首先,目前很多可降解高分子材料的生产成本较高,使得其在一些领域的应用受到限制。

其次,降解速度可能会受到环境条件的影响,造成降解时间的不确定性。

另外,可降解高分子材料的性能与传统塑料相比仍有一定差距,需要进一步的研发和改进。

综上所述,可降解高分子材料具有广泛的应用前景,可以帮助减少塑料垃圾的产生,保护环境。

随着技术的发展和成本的下降,相信可降解高分子材料将在各个领域得到更广泛的应用。

可生物降解高分子材料的分类及应用

可生物降解高分子材料的分类及应用

可生物降解高分子材料的分类及应用可生物降解高分子材料是一类具有生物降解性能的高分子材料,它们能够在自然环境中通过微生物的作用或物理化学变化而分解降解,对环境影响较小。

下面将介绍可生物降解高分子材料的分类及应用。

一、分类:1. 天然高分子材料:包括纤维素、淀粉、蛋白质和天然胶等,这些材料具有良好的生物降解性能,并且可以再生、可持续利用。

2. 生物可降解聚合物:包括可降解聚酯、可降解聚乳酸、可降解聚酰胺等,这些材料是通过合成聚合物的方法制备而成,具有良好的生物降解性能,并可用于替代传统塑料制品。

3. 生物塑料:这是一类以可再生材料为原料制备的可降解高分子材料,如玉米淀粉、蔗糖等。

它们可以在一定条件下通过微生物的作用降解分解,对环境影响较小。

二、应用:1. 包装材料:可生物降解高分子材料可以广泛应用于包装领域,用于制备食品包装袋、包装盒等。

这些材料具有较好的可降解性能,降低了对环境的污染。

2. 农业与园艺:可生物降解高分子材料可以制备农膜和园艺覆盖膜,用于农业和园艺领域。

这些材料具有良好的降解性能,可避免农膜残留对土壤和植物造成的污染。

3. 医疗器械与生物医学材料:可生物降解高分子材料在医疗器械和生物医学材料领域具有广泛的应用。

例如可降解聚酸乳酸制备的缝合线、骨修复材料等,这些材料可以在体内发挥作用一定时间后降解,无需二次手术取出。

4. 纺织品:将可生物降解高分子材料应用于纺织品中,可以制备出具有良好降解性能的纺织品,如环保袋、生物降解纤维等。

这些纺织品可以在使用结束后通过自然环境的作用得到降解分解。

5. 环境修复:可生物降解高分子材料还可以应用于环境修复领域,例如用于污水处理、油污修复等。

这些材料具有良好的吸附性能和降解性能,可以对环境中的污染物起到清除和降解的作用。

可生物降解高分子材料具有良好的降解性能,对环境影响较小。

在包装、农业、医疗、纺织品和环境修复等领域具有广泛的应用前景。

随着环保意识的不断提高,可生物降解高分子材料将成为一种重要的替代材料,并推动可持续发展的进程。

可降解高分子材料

可降解高分子材料

可降解高分子材料可降解高分子材料是一类具有良好性能并且在使用后可以自然降解的材料,它们在当今社会中扮演着越来越重要的角色。

与传统的塑料材料相比,可降解高分子材料具有更低的环境影响,对于解决环境污染和资源浪费问题具有重要意义。

首先,可降解高分子材料在环保方面具有明显优势。

传统的塑料制品在被丢弃后需要数十年甚至上百年才能自然降解,而可降解高分子材料则可以在较短的时间内降解为无害的物质,减少对环境的污染。

这对于解决塑料垃圾围城的问题具有重要意义,可以有效减少对土壤和水源的污染。

其次,可降解高分子材料在资源利用方面具有优势。

传统的塑料材料是由石油等化石燃料制成的,而这些资源是有限的。

可降解高分子材料通常采用可再生资源作为原料,如淀粉、纤维素等,不仅可以减少对化石燃料的依赖,还可以促进农业和林业资源的合理利用。

此外,可降解高分子材料在应用领域也具有广阔的前景。

它们可以被用于制造一次性餐具、购物袋、包装材料等,满足人们日常生活中对塑料制品的需求,同时又不会对环境造成长期的污染。

在医疗领域,可降解高分子材料也可以被用于制造可降解的缝合线、支架等医疗器械,有助于减少手术后的二次伤害。

然而,可降解高分子材料也面临一些挑战。

首先是成本问题,目前可降解高分子材料的生产成本相对较高,需要进一步降低成本才能更广泛地应用于各个领域。

其次是性能问题,部分可降解高分子材料的力学性能、耐热性能等方面还需要进一步改进,以满足不同领域的需求。

综上所述,可降解高分子材料是一种具有环保、资源利用和应用前景的新型材料,它们在解决环境污染和资源浪费方面具有重要意义。

随着技术的不断进步和应用的不断拓展,相信可降解高分子材料将会在未来发展中扮演更加重要的角色,为人类社会的可持续发展做出更大的贡献。

(完整版)可降解高分子材料

(完整版)可降解高分子材料

可降解高分子材料1 可生物降解高分子材料的定义可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

2 生物降解高分子材料降解机理生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。

一般认为,高分子材料的生物降解是经过两个过程进行的。

首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。

因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。

到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。

人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。

高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。

当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。

一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面张力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。

生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、pH值、微生物等外部环境有关。

3 可生物降解高分子材料的种类按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性产物、微生物合成高分子和化学合成高分子。

新型可降解高分子材料的研究与应用

新型可降解高分子材料的研究与应用

新型可降解高分子材料的研究与应用随着环保意识的提高和资源紧缺的情况日益严峻,可降解高分子材料成为了现代社会发展的热点之一。

近年来,新型可降解高分子材料的研究取得了重大进展,不仅具有优良的物理和化学性质,还能够有效地保护环境,促进绿色经济的发展。

本文旨在探讨新型可降解高分子材料的研究与应用现状,以及未来的发展方向。

一、可降解高分子材料的定义和种类可降解高分子材料是指在一定条件下,可以通过生物降解或物理降解来使其分解成小分子物质,被大自然吸收和利用,不对环境造成污染。

根据其来源和降解方式,可降解高分子材料可以分为三类。

1. 生物可降解高分子材料生物可降解高分子材料是指由天然高分子和生物发酵产生的高分子材料,经过一定工艺后生产的可以被微生物降解的材料。

如淀粉、木质素、纤维素等,这些材料具有双重性质,既可以当做淀粉的替代品,又不对环境造成污染。

2. 合成可降解高分子材料合成可降解高分子材料是指以天然高分子为原材料,或通过对合成材料进行改性来制备的高分子材料。

如聚乳酸(PLA)、聚乙烯醇(PVA)和聚丙烯酸等。

这类材料不仅成本低廉,而且具有良好的可溶性、热塑性和生物相容性等性质,适合制造寿命较短的包装材料。

3. 复合可降解高分子材料复合可降解高分子材料是指将生物可降解材料与合成可降解材料进行复合制备。

由于生物可降解材料具有较强的生物相容性和可溶性;而合成材料具有高强度和高加工性能、可回收性和易造型的优点,两者的组合能够有效地提高材料的性能和降解速度。

二、可降解高分子材料的研究现状近年来,可降解高分子材料的研究取得了长足进展。

在材料的制备、改性和降解等方面,不断出现新成果,为其在各个领域的推广应用提供了更好的基础。

1. 可降解高分子材料的制备制备技术是可降解高分子材料研究中的重要一环。

目前,国内外学者以生物可降解高分子材料、合成可降解高分子材料和复合可降解高分子材料为代表,提出了一系列制备方案,例如生物降解聚合法、溶剂交联法、界面缩聚法等。

医用用高分子材料

医用用高分子材料

医用用高分子材料医用高分子材料在医学领域中发挥着重要的作用。

这些材料具有良好的生物相容性和生物降解性,能够在医疗过程中与人体组织相互作用,达到修复、替代或辅助治疗的效果。

下面将详细介绍医用高分子材料的分类、特点以及在医学领域中的应用。

医用高分子材料主要分为生物可降解高分子材料和生物惰性高分子材料两大类。

生物可降解高分子材料具有良好的可降解性和吸附能力,可被分解为无毒的溶解物,不会对人体产生负面影响。

常见的生物可降解高分子材料有聚酯类、聚酮类和聚脲/聚氧甲基纳/聚亚甲基纳等。

聚酯类材料具有良好的生物可降解性和生物相容性,在医学领域中广泛应用于各种领域。

例如,聚乳酸(PLA)和聚羟基烷酸酯(PHA)等聚酯类材料可以用于制备可降解的缝合线、保持器和修复材料等。

此外,聚-ε-内酯(PCL)是一种常见的有机溶剂可降解高分子材料,在组织工程和药物传递领域也有广泛的应用。

聚酮类材料具有较高的熔融温度和耐疲劳性,可以制备出具有优异力学性能的材料。

多异氰酸酯(MDI)和聚己内酯(PCL)共混物(PHDI)是一种常见的聚酮类材料,可以用于制备心脏瓣膜、关节替代物和人工血管等。

生物惰性高分子材料具有优异的生物相容性,不会引起明显的炎症反应和免疫反应。

常见的生物惰性高分子材料有聚乙烯醇(PVA)、聚己内酯(PCL)、聚甲基丙烯酸甲酯(PMMA)等。

聚乙烯醇(PVA)是一种具有高透明度和生物相容性的高分子材料,可以用于制备人工眼角膜、人工关节和人工内膜等。

聚己内酯(PCL)具有良好的生物相容性和降解性能,可以用于制备支架、药物传递系统和组织工程支架等。

聚甲基丙烯酸甲酯(PMMA)是一种常见的生物惰性高分子材料,具有高透明度和良好的抗菌性能,可以用于制备人工眼架和透明人工组织等。

医用高分子材料在医学领域中的应用非常广泛。

首先,它们可以用于制备生物打印支架,用于组织工程,如骨骼和软组织再生。

其次,医用高分子材料可用于制备生物医药用途的药物输送系统。

高分子材料的可降解性研究

高分子材料的可降解性研究

高分子材料的可降解性研究在当今全球环境问题日益严峻的背景下,可持续发展和环保已成为全社会的共识。

而高分子材料作为一种重要的材料,其可降解性研究显得尤为重要。

本文将探讨高分子材料的可降解性及其研究进展,旨在为环保材料的开发和应用提供新的思路和途径。

一、高分子材料的可降解性概述高分子材料是一类由重复单元组成的大分子化合物,其特点是分子量大且耐用。

然而,由于其在大自然环境中分解速度缓慢,导致高分子材料的大量应用不可避免地会导致环境污染和资源浪费。

因此,研究如何提高高分子材料的可降解性,促进其环境友好型应用已成为学术界和工业界关注的热点。

目前,人们主要通过两种方式来实现高分子材料的可降解性,即自然降解和人工降解。

自然降解是指高分子材料在自然环境中通过生物降解或化学降解减少分子量的过程。

而人工降解是通过特定条件下引入助剂或者改变材料结构,使其可以在特定环境下发生降解反应。

这两种降解方式的研究和应用为我们开发可降解材料提供了多样化的选择。

二、高分子材料的自然降解研究自然降解是高分子材料可降解性研究的重要方向之一。

在自然环境中,微生物可以通过分泌特定酶类将高分子材料分解为较小分子,进而降低其分子量和完全降解。

近年来,通过分离和筛选环境中的降解微生物,研究人员已经成功地发现了多种能够降解高分子材料的微生物。

这些微生物能够针对不同的高分子材料种类,发挥不同的降解作用。

然而,高分子材料的自然降解速度较慢,降解产物也可能对环境构成潜在的危害。

因此,为了提高高分子材料的自然降解性,研究人员通过筛选适宜的微生物和优化降解条件等方式实现了一定的突破。

同时,利用生物降解助剂也可以加速高分子材料的自然降解过程。

这些研究为高分子材料的环境友好型应用提供了有力支撑。

三、高分子材料的人工降解研究人工降解是高分子材料可降解性研究的另一重要方向。

通过引入特定的助剂或改变高分子材料的结构,可以使其在特定条件下发生降解反应。

人工降解具有可控性强、反应速率快等优点,目前已经有多种人工降解方法得到广泛研究和应用。

高分子材料在生物医学领域的应用研究

高分子材料在生物医学领域的应用研究

高分子材料在生物医学领域的应用研究引言高分子材料是一类由聚合物构成的材料,具有广泛的应用领域。

在生物医学领域,高分子材料正发挥着重要的作用。

本文将重点探讨高分子材料在生物医学领域的应用研究,并按照材料的不同类别进行划分。

一、生物可降解高分子材料生物可降解高分子材料是指能够自然降解并被生物体代谢排出体外的材料。

这种材料在生物医学领域具有重要的应用潜力。

例如,聚乳酸和聚羟基酸等生物可降解高分子材料可用于制造缝合线、修复组织或器官,因其良好的生物相容性和可降解性能,可以减少二次手术和组织反应。

二、生物仿生材料生物仿生材料是指模仿生物体的结构和功能设计的一类材料。

在生物医学领域,生物仿生材料的应用非常广泛。

例如,聚脲酯和聚乙烯醇等材料可用于制造人工血管,具有良好的生物相容性和柔软度,能够模拟真实血管的形态和功能,对心脑血管疾病的治疗具有重要意义。

三、生物传感材料生物传感材料是指能够检测和传递生物体内外信息的一类材料。

在生物医学领域,生物传感材料的应用也是非常重要的。

例如,聚丙烯酸和聚乙烯吡咯烷酮等材料可用于制造生物传感器,可以检测血糖、血压、体温等生理指标,并实时传递给医生和患者,提供准确的实时监测和诊断。

四、生物组织工程材料生物组织工程材料是指能够促进组织修复和再生的一类材料。

在生物医学领域,生物组织工程材料的应用非常广泛。

例如,聚合甲基丙烯酸甲酯和聚对苯二甲酸酯等材料可用于制造人工骨骼和软骨,能够促进骨骼和软骨的再生和修复,对于骨折和关节疾病的治疗具有重要作用。

五、生物控释材料生物控释材料是指能够控制药物释放速率的材料。

在生物医学领域,生物控释材料的应用非常重要。

例如,聚乳酸-羟基乙酸聚合物和胶原蛋白等材料可用于制造药物控释微球,能够持续释放药物,提高药物的效果和降低副作用,对于治疗肿瘤和炎症等疾病具有重要意义。

结论高分子材料在生物医学领域的应用研究具有广阔的前景。

生物可降解材料、生物仿生材料、生物传感材料、生物组织工程材料和生物控释材料等不同类型的高分子材料在生物医学领域发挥着重要的作用。

生物医用可降解材料

生物医用可降解材料

生物医用可降解高分子材料1.引文近年来生物材料被广泛的应用于医学领域中,并在临床上取得了成功,为研制人工器官和一些医疗器具提供了物质基础。

在医疗过程中,有时需要一些暂时性的材料,如骨折内固定,这要求植入材料在创伤愈合或药物释放过程中生物可降解;在人体组织工程研究中,需要在一些合成材料上培养组织细胞,让其生长成组织器官,这要求材料在相当长的时间内生物缓慢降解。

因此开发高安全性的可降解生物材料,不断提高此材料的性能、完善材料的设计是我们急需解决的问题。

2. 定义可降解生物高分子材料是指在生物体内经水解、酶解等过程,逐渐降解成低分子量化合物或单体,降解产物能被排出体外或能参加体内正常新陈代谢而消失的材料[1]。

案例:ELLA-CS 鞣花酸-壳聚糖可降解肠道支架(郑州大学和北京大学研究所联名开发)[2]3. 特性生物医用可降解材料以医疗为目的,有些材料会长时间植入动物或人体内部,故而对该材料的要求会相对严苛。

目前对于生物医用高分子材料的要求有如下三个方面[3]:首先材料是其最基本属性,这就需要材料能够保证医疗过程的正常进行,不会因其机械强度、稳定性等物理化学方面的性能而影响医疗进程;(敷料——粘附性、力学性能)其二是生物医学方面,材料要能与生物体内的环境和谐相处,不影响生物体的正常生理反应、生理活动(生物相容性);另外是其可降解性,通过控制一定的条件(分子量、化学键数),来控制其降解时间,并确保最终材料可以通过人体的新陈代谢系统或者排泄系统安全排出体外。

(药物缓释+骨骼修复)与非可降解生物材料相比,可降解生物材料具有许多优势[4]:①更好的生物相容性。

生物相容性应包括:组织、血液和力学相容性,可降解生物材料一般会根据人体的环境特征而进行的材料设计与表面界面改性,可以有效地提高植入材料与组织间的相容性,同时保证材料应有的物理与力学性能。

②植入材料的物理和力学性能稳定可靠、易于加工成型、便于消毒灭菌、无毒无热源、不致癌不致畸等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可降解高分子材料1 可生物降解高分子材料的定义可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

2 生物降解高分子材料降解机理生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。

一般认为,高分子材料的生物降解是经过两个过程进行的。

首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体,经过种种的代路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。

因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。

到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体的降解还被描述为生物吸收、生物侵蚀及生物劣化等。

人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。

高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。

当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。

一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。

生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、pH值、微生物等外部环境有关。

3 可生物降解高分子材料的种类按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性产物、微生物合成高分子和化学合成高分子。

3.1 天然高分子及其改性产物天然高分子包括淀粉、纤维素、甲壳质、蛋白质等,虽然具有完全生物降解性,但是其热学、力学性能差,成型加工困难,不能满足工程材料的性能要求,因此需通过改性,得到有使用价值的可生物降解材料。

日本四国工业试验所开发了以乙酰多糖和纤维素为主要成分的高分子材料,试制的生物降解薄膜、无纺布、发泡塑料等已接近实用化。

Mater—Bi是由意大利Novamont公司开发的树脂,具有互穿网络结构,是一种生物降解性很好的材料,其显著特点是氧的阻隔性能好,已应用于包装行业。

蛋白质的降解主要是肽键的水解反应所引起的。

美国C1emson大学正在研究从玉米、麦子、大豆等植物中提取蛋白质。

可溶性蛋白质在一定温度(如140~C)下可交联,人们用其与纤维素一起制造生物降解复合材料:纤维蛋白单体在凝血酶作用下聚合成立体网状结构的纤维蛋白凝胶,纤维蛋白凝胶来源于自身血液,可避免免疫原性问题,是一种较为理想的细胞外基质材料。

3.2 微生物合成高分子微生物合成高分子是由微生物发酵法制成的一类材料,主要包括聚酯和多糖,如:真氧产碱杆菌可以利用果糖、木糖、延胡索酸、衣糠酸、丙酸、乳酸作为碳源生产PHB(聚一3一羧基丁酸酯)。

具有代表性的是聚B一羟基烷酸(PHAs)系列聚酯。

如英国IC公司首先以丙酸、葡萄糖为碳源食物,通过发酵法成功地开发出有实用价值的生物降解性3一羟基丁酸一3一羟基戊酸共聚物,商品名为Biopol。

Biopol的机械性能(从硬质到软质)、耐热性、耐水性、耐油性、耐药性和气体屏障性均优良,熔点为130~160~C,拉伸强度为18~30MPa。

Biopol在好气和厌气条件下均显示出良好的生物降解性,最后分解为二氧化碳和水而消失,但在空气和净水中不会降解。

3.3 化学合成高分子可以用化学合成法生产的有生物降解性高分子包括聚乳酸(PLA)、聚8一己酯(PCL)、聚乙烯醇(PV A)等。

美国Union Carbide公司以PCL为原料开发了商品名为Tone的产品;日本昭和高分子公司也开发了类似产品Bionol1e,已用来生产包装瓶、薄膜等:聚乙烯醇为研究得最多的可生物降解的高聚物。

美国Air Product&Chemical公司开发了Vinex品牌,它是以聚合度较低的聚乙烯醇为基础的树脂同时具有水溶性、热塑加工性和生物降解性,可制得适用于包装食品的薄膜、农用水溶性薄膜、容器及一次性消费用品等。

近年来世界上研究开发最活跃的可降解高分子材料是聚乳酸PLA类材料的一个突出特点是能用多种方式加工,如挤出、纺丝、双轴拉伸等,加工过程中分子的定向不仅会大大增加力学强度,同时使降解速度变慢。

目前国际市场上出售的PLA树脂仅有5种:大日本油墨与化学公司的产品CPLA;三井化学公司的产品LACEA;日本岛津制作所的产品LACTY:Cargill Dow公司的产品EeopLa;美国Chronopo1公司的产品Heplon除脂肪族聚酯外,聚酰胺类、聚酸酐类、聚氨酯、聚磷脂等也有研究。

4 生物可降解高分子材料的应用生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。

通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。

如填埋法对土地有长期危害,并且随填埋地的日益减少而无法继续实行;焚烧法释放出大量有害气体;回收再利用法,因材料的收集、分拣困难,故一时难以推广。

因此所有这些都无法彻底解决污染问题,只有生物降解高分子才能从根本上解决废弃物所造成的环境问题。

(2)利用其可降解性,用作生物医用材料。

由于成本等因素,目前研究多集中在生物医疗工程领域,因此以下对可降解高分子在此方面的应用作一简述。

生物医学材料必须具备以下两个条件:一、要求材料与组织短期接触时无毒性、无致敏、无致炎、无致癌作用、无其他不良反应二、应具备耐腐蚀性及相应的生物力学性能和良好的加工性能。

这类材料可在生物体分解,参与人体新代,并最终排出体外,其基本特征是生物降解性和生物相容性。

4.1 药物/基因控制释放系统初期的药物控制释放体系是将活性物质加载到高分子基质中,然后再输人人体。

在该体系中,药物释放主要是由扩散驱动,而后高分子基质本体水解。

这方面用得较好的是DLLA/GA共聚物。

PLA和PLGA制成的微球,能在一段时间以一恒定的速率释放缩氨酸、蛋白质、疫苗等,其释放速率依赖于高分子的生物可降解行为。

而药物以纳米球和纳米颗粒的形式直接注射到固态组织或器官中,则是更进一步的发展。

微球制剂可靶向体不同的器官和组织,使药物有效地靶向控释,拓宽了给药途径,减少了给药次数和给药量,提高了药物的生物利用度.最大程度地减少了药物对全身特别是肝、肾的毒副作用,美国专利提到一种利用可生物降解高分子制造缓控释药物的技术,可使药物在牙周病灶组织长期发挥药效。

PCL类的聚酯也被用于药物释放。

PCL是一种半结晶高分子,药物渗透性好,且降解速率很低。

将PCL和聚L一丙交酯(PLLA)或聚羟基乙酸(PGA)共混,或合成相应的嵌段共聚物,有利于控制生物降解过程和药物释放特性。

例如,控制PLA和PCL片段的长度就能控制药物释放行为。

4.2 外科手术缝合线用聚乙交酯、PLLA及其共聚物制成的外科缝合线,可在伤口愈合后自动降解并被生物体吸收,无需拆线,现已商业化。

目前的研究热点是如何提高缝合线的柔软性和机械强度,同时在缝合线加入非甾体消炎药来抑制炎症和排异性,加入增塑剂增加线的韧性和调节降解速度。

研究发现,用甲壳质制成的缝合线无毒,机械性能良好,易打结,在胆汁、胰液中拉力强度的延续性比聚乙交酯纤维好,在使用初始的10~15天强度很好,以后迅速降解并被生物体吸收。

4.3 骨固定材料和组织工程采用降解材料做固定材料可避免因使用不锈钢所造成骨质疏松及愈后的二次手术,在心血管组织工程也呈现出良好的应用前景。

可用于骨折固定材料的聚合物有PGA、PLLA、PDLLAD等。

PGA是一种结构最简单的线性聚烃基脂肪酸酯,是作为第一批可降解吸收材料被美国食品药物管理局批准用于临床的。

用PGA纤维、PLA纤维、碳纤维、磷酸钙等增强PLA,可明显提高材料的初始强度和承载能力。

另外,在治疗过程中还可将抗生素类的药物及骨生长因子、骨生长调节蛋白等置于植入材料中,可防止感染、促进骨愈合。

将聚乳酸及其共聚物用作支撑材料,在其上移植器官、组织的生长细胞,使其形成自然组织,称为外科替代疗法,即组织工程。

聚酯,特别是聚d一羟基酯(如聚乳酸、聚乙醇酸及聚e一己酯等)在组织工程领域得到了广泛的应用。

专利提到一种利用2~3种可降解纤维做的织物,可植入可控释药物作为组织工程材料。

5 存在问题与发展前景开发和应用生物可降解高分子材料,目前存在的主要问题是价格偏高,使其使用领域受到限制。

在理论和技术方面,应加深对生物降解高分子材料的降解机理研究,在提高可降解高分子材料的机械强度、使用寿命的同时兼顾其降解性能是研究的重点。

利用纳米技术将生物材料制成纳米级的胶体颗粒或制成超微小装置或纳米器械等,可用作药物载体、医用材料或医用设备等,这给医药学领域带来一场新的革命。

但其降解产物的毒性、高分子聚合物本身的降解速度以及在体的蓄积等是其主要的问题。

随着有关研究的进一步深入、生产技术的进一步提高和环保呼声的日益高涨,生物可降解高分子材料在21世纪必将实现工业化,进入人们的日常生活,在各种领域得到广泛应用。

相关文档
最新文档