分式的加减法(二)
分式加减法(共9张PPT)
计算 :
例1
5aa2b2 b33aa2b2 b58 aa2b2b
把分子看作 一个整体, 先用括号括
起来!
解:原式= (5a2b3)(3a2b5)(8a2b) a2b
=
5a2b33a2b58a2b a2b
=
a 2b ab 2
=
a b
注意:结果要化为 最简分式!
尝试完成下列各题:
分母不变,分子相加减.
分式加减法
1.同分母分数如何进行加减法运算,举例说
明
同分母的分数相加减, 分母不变,分子相加减.
2.你认为
1 a
2 a
?
3.猜一猜,同分母的分式应该如何加减?
同分母的分式相加减,分母不变,分子相加减.
1类比同分母分数加减法法则,概括同分母分 式的加减法法则
2会熟练地应用同分母分式的加减法法则进 行计算
x2 x1 x1
x3
x2
x 1 x1
x3
x
x
1
.
例2
计算 :
x2 x y
y2 yx
解:原式=
x2
y2
x y (x y)
=
x2 y2 xy xy
= x2 y2 =x+y
x y
分母不同,先 化为同分母。
(1)
3b x
b x
;
(2) aabbaa ;
3aa2b2
b2
ba2
计算 3b b
2 分母不同,先化为同分母。
同分母分式相加减:分母不变,分子相加减
2
x 4 x4 x2x2 分母不变,分子相加减.
2会熟练地应用同分母分式的加减法法则进行计算
(1) ? x2. 1.同分母分数如何进行加减法运算,举例说明
北师版八年级下册数学精品教学课件 第五章 分式与分式方程 第3课时 异分母分式的加减(2)
3
m
m3
3m
3
2m (m 3)
m 3m 3
m
m3
3m
3
从 1,-3,3 中任 选一个你喜欢的 m 值代入求值.
1. m3
当
m
=
1
时,原式
1 1
3
1 2
做一做
先化简,再求值: 1 x 1
x
2 2
,其中 1
x
2.
解:
1 x 1
2 x2 1
1 x 1
2 (x 1)(x 1)
(x 1)
2
(x 1)(x 1) (x 1)(x 1)
计算结果要化为最简分式或整式.
例解4:原计式算: (m1)2m22
2m
5 2m
m
5 ••232m3mm4mm;41
2
(m
或
2)(2 2m
m)
9 m2 • 2m 2
先算括号里的
2m 3m
加法,再算括
3 m3 m 22 m
•
号外的乘法
2m
3m
2m 3 2m 6.
注:当式子中出现整式时,把整式看成整体,并把
第五章 分 式
5.3 分式的加减法
第3课时 异分母分式的加减(2)
复习引入 1. 分式的乘除法则是什么?用字母表示出来:
b d bd a c ac
b d b c bc a c a d ad
2. 分式的加减法则是什么?用字母表示出来:
b d bc ad bc ad a c ac ac ac
异分母 通分 相加减 转化为
同分母 分母不变 相加减 转化为
分子 (整式) 相加减
2. 分式的混合运算法则 先算乘除,再算加减;如果有括号先算括号内的.
分式的加减法2说课稿
《3.3分式的加减法(2)》说课稿尊敬的评委,上午好!我说课的题目是北师大版九年义务教育三年制初级中学教科书初中数学八年级下册第三章第3节《分式的加减法》第二课时,下面我将从教材、学情、教法学法、教学过程与板书设计五个方面具体阐述我对这节课的理解和设计。
一、说教材《分式的加减法》是本册教材第三章《分式》重要内容,是进一步学习分式方程、反比例函数以及其它数学知识的基础,同时也是学习物理、化学等学科不可缺少的工具。
与其它数学知识一样,它在实际生活中有着广泛的应用。
学习分式的加减法并熟练地进行运算是学好分式运算的关键,为学生综合运用多种运算法则拓宽了空间,有利于学生对双基的掌握,在综合运用多种运算法则的过程中,逐渐形成运算能力。
同时本节课的教学难度有所增加,学生通过观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则。
考虑到以上这些因素,确定本节课的目标和重点、难点如下:(一)说教学目标:1.知识与技能目标:理解并掌握异分母分式加减法的法则;经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学生在学习中转化未知问题为已知问题的能力;进一步通过实例发展学生的符号感。
2、过程与方法目标:与上节课类似,通过一些问题的引入与提出,启发学生在已有的知识经验基础上,通过观察、类比、猜想、尝试等一系列思维活动,发现法则、理解法则、应用法则。
3、情感与态度目标:在学生已有数学经验的基础上,探求新知,从而获得成功的快乐;同时提高学生“用数学”意识。
(二)说重点、难点①重点是异分母分式的加减运算②难点是异分母分式的通分。
(三)说难点突破与异分母的分数的通分类比,由数到式转化。
二、说学情学生在上节课已经学习过同分母的分式相加减及简单异分母分式相加减。
在本章的前面几节课中,又学习了分式的约分及分式的乘除等。
这节课只是在简单异分母分式相加减的基础上进一步,转化为复杂的异分母分式相加减。
同时在以前的学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
人教版数学八年级上册15.2.2分式的加减(第2课时)教学设计
在学生掌握了分式加减法的基本知识后,我会设计一些课堂练习题,让学生独立完成。这些练习题将涵盖不同难度层次,以便满足不同学生的学习需求。
在学生完成练习题后,我会挑选部分学生的答案进行展示和讲解,针对共性问题进行解答,帮助学生巩固所学知识。
(五)总结归纳
课堂最后,我会组织学生进行总结归纳。首先,让学生回顾本节课所学的分式加减法的运算规则,总结通分、简化分式等关键步骤。然后,我会提问学生:“通过本节课的学习,你们觉得自己在哪些方面有了提高?还有哪些疑问和困惑?”
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握分式加减法的运算规则。
-能够将复杂分式简化为最简形式,并进行加减运算。
-学会根据实际问题构建分式加减模型,解决具体问题。
这些重点内容是学生形成分式加减知识体系的基础,也是提高学生数学能力的关键。
2.教学难点:
-异分母分式的加减运算,特别是通分过程中的技巧和方法。
-分式的简化,尤其是含有复杂多项式的分式的化简。
-将实际问题转化为分式加减运算的过程,需要学生具备较强的抽象思维和数学建模力。
针对难点内容,教学中需要设计梯度性、层次性的教学活动,帮助学生逐步突破。
(二)教学设想
1.创设情境,激发兴趣:
-通过生活中的实例,如购物时计算折扣、比较不同物品的价格等,引出分式加减运算的实际意义,激发学生的学习兴趣。
5.总结反思,形成策略:
-在课堂结束前,组织学生进行自我反思,总结分式加减运算的技巧和方法,形成自己的解题策略。
6.创新评价,鼓励进步:
-采用多元化的评价方式,如口头提问、书面作业、小组展示等,全面评估学生的学习效果,鼓励学生的进步。
分式加减法运算法则
分式加减法运算法则分式加减法运算法则:1. 分式加法:分式加法是把分子相加或者相减,而分母保持不变,用一个新分式来表示和或差。
一般格式是:(分子1/分母)➕(分子2/分母)=(分子1+分子2/分母)。
2. 分式减法:分式减法也是把分子相减或者相加,而分母保持不变,用一个新分式来表示差。
一般格式是:(分子1/分母)➖(分子2/分母)=(分子1-分子2/分母)。
3. 分式整体乘法:分式整体乘法是将两个分式的分子相乘,而分母相乘。
一般格式是:(分子1/分母1)×(分子2/分母2)=(分子1×分子2/分母1×分母2)。
4. 分式整体除法:分式整体除法是将分式的分母相乘,而分子相乘。
一般格式是:(分子1/分母1)÷(分子2/分母2)=(分子1×分母2/分母1×分子2)。
5. 一般的分式的运算:在分式加减法和分式乘除法之后,还可以进行一般的计算,比如:(分子/分母)+(x/分母)+3=(分子+x+3×分母/分母)。
其中的 +x 和+3 就是一般的计算。
因此,在做分式加减法和乘除法的时候,我们首先要确定每个分式中分子和分母,然后根据其法则做整体或一般计算,得出正确结果。
此外,分母一般不能为0,否则会出现无穷大或者不可定义解答;分子和分母要使用相同的符号,否则会导致结果的正负不正确;如果分子和分母出现了负数,要根据实际情况将负号带到分子或者分母,以便能够得到正确的答案。
此外,分式的运算还有一个重要的技巧,即分数化简,就是用数学技巧找出分数的最简形式。
常用的分数化简诀窍就是先分子分母分别除以最大公约数,然后将分子和分母比较,可以将分母统一为最小值,再算出最终结果。
例如,有分式等式:(4/8)=(2/4),明显可以看出它们的最简形式应该为:(1/2)=(1/2),所以,我们只要在做分数运算的时候注意分数化简,就可以得出正确的答案。
总之,分式加减法和乘除法运算都要掌握其基本原理和规律,熟悉一般计算技巧,注意分数化简,以及分母不能为0,就可以得出正确的结果了。
分式的加减法(二)授课反思(含试卷)
分式的加减法(二)授课反思在昨天同分母加减法的基础上学生很顺利过度到今天的异分母的加减法,但在第一个班的情况却没有我想象的好,原因是在确定公分母时没有明白目标,出现了一个学生通过分之后又约分的现象。
而且我发现通分后的运算太费时间和本节重难点联系性不强。
于是在第二个班及时调整授课方式。
首先,让学生通过举例自行找出异分母分式加减运算要先通分的必要性。
接着我用了几个单项式分母举例,让学生由易而难逐步感知找公分母的技巧。
在此我为让学生能把注意力放在找公分母和通分上,让分子的形式都以1的形式出现了。
很好地穾显了重点。
其次,讲到多项式的分母时,我只问了学生一句x+3与x-3一不一样,学生通过对比和类比单个字母知道不一样,剩下的放手由学生确定公分母都很顺利。
而且我淡化了后期的加减运算,从测试结果看效果不错。
本节课我抓住了重点,由浅入深的策略值得推广。
小升初数学模拟试卷一、选择题1.小数2.995精确到0.01,正确的答案是( )A.2.99 B.3 C.3.002.一个正方形的边长是素数,它的面积是()。
A.奇数B.偶数C.质数D.合数3.四年级(3)班男生有30人,正好占全班的.这个班共有学生多少人?()A.30×B.30÷C.30×(1﹣)D.30÷(1﹣)4.圆锥的侧面展开后是一个()A.圆B.扇形C.三角形D.梯形5.在路边安装电线杆,每两根电线杆之间相距8米,从第一根到最后一根电线杆一共长96米,一共安装了()根电线杆。
A.13 B.12 C.11 D.106.把45千克的苹果平均分成9份,那么它的是()千克。
A.5 B.25 C.507.一个长方体的盒子,从里面量,长8dm、宽5dm、高4dm。
最多能装进()个棱长2 dm的正方体。
A.12B.16C.20D.248.a、b和c是三个非零自然数,在a=b×c中,能够成立的说法是( )。
A.b和c是互质数B.b和c都是a的质因数C.b和c都是a的因数D.b一定是c的倍数9.某校园长240米、宽180米,把平面图画在一张只有3分米长、2分米宽的长方形纸上,那么选择( )作比例尺比较合适。
分式的加减法与乘除法
分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。
分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。
在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。
本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。
一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。
例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。
例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。
例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。
例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。
例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。
例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。
分式的加减练习题
分式的加减习题精选(一)一、判断题··二、选择题三、填空题9.10.11.12.四、计算题13.14.15.16.分式的加减 习题精选(二)1.1+--b b a等于 ( )A.b b b a -+-2 B.b b b a ++-2 C.b b b a +--2 D.b b b a ---2 2.⎪⎪⎭⎫⎝⎛-÷y x x 11等于 ( )A.y x y x -2 B.x y y x -2C.xy x -2 D.2x xy -3.m n m n m n -+-22等于 ( ) A.m+n B.m-n C.-m+n D.-m-n4.计算)6(246612--+--a a a a a ,其结果等于 ( ) A.)6(210--a a B.)6(210--a a C.a a 24- D.a a 24+5.如果x y <<-1,那么2211++-++x y x y 的值 ()A.大于零 B.等于零C.小于零 D.以上都有可能6.计算:1213223-+----x x x x x 7.计算:22229631y xy x y x y x y x +--÷---8.计算: 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y9.计算: ⎪⎭⎫⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 10.计算:2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+11.已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x yx y x y xy x y xy x x 的值.12.计算:x x x x -----52335175 13.计算:y x z zy z x y z x z y x y x -++---+++-+14.计算: 1123-+-+x x x x15.已知0132=++x x ,求441x x +的值.16.已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 分式的加减 习题精选(三)一、选择题:1.分式的值为( )A .B .C .D .2.分式、、的最简公分母是( ) A .B .C .D .3.分式的值为( )A .B .C .D .以上都不对4.把分式、、通分后,各分式的分子之和为( )A .B .C .D .5.若的值为,则的值为()A.B.C.D.6.已知为整数,且为整数,则符合条件的有()A.2个B.3个C.4个D.5个二、填空题:1.式子的最简公分母是___________。
分式方程的加减法运算
分式方程的加减法运算
分式方程是指含有分数形式的方程,其中未知数出现在分母或分子中。
分式方程的加减法运算是解决这类方程的常见方法之一,下面将详细介绍分式方程的加减法运算。
一、同分母分式的加减法
当分式方程中的分式有相同的分母时,可以直接进行加减法运算。
例如,对于分式方程$\frac{3}{5x} + \frac{2}{5x}$,由于两个分式的分母相同,可以将分子相加得到$\frac{3+2}{5x}=\frac{5}{5x}$。
二、不同分母分式的加减法
当分式的分母不同的时候,需要通过找到它们的最小公倍数来将它们的分母转换成相同的,然后再进行加减法运算。
例如,对于分式方程$\frac{1}{2x} - \frac{1}{3y}$,分母的最小公倍数为$6xy$,将分子乘以相应的倍数进行转换得到$\frac{3y}{6xy} - \frac{2x}{6xy}=\frac{3y-2x}{6xy}$。
三、加减法运算注意事项
在进行分式方程的加减法运算时,需要注意以下几点:
1. 确保分式的分母相同或转换成相同的分母;
2. 分子之间进行加减法运算时,分母保持不变;
3. 结果可能需要进行约分或化简。
通过以上介绍,我们可以看到分式方程的加减法运算并不复杂,关键在于找到合适的方法将分式转换成相同的分母,然后进行简单的加减法运算即可。
希望本文的内容能够帮助到大家理解分式方程的加减法运算,更好地解决相关问题。
分式加减法(第2课时)
7 12
72 12 2
14 24
1 1 3 3 8 83 24
4 12 8
32
最简公倍数: 4×3×2=24
类比分数,怎样把分式 通分呢?
素养目标
2. 会运用异分母的分式加减法则进行异分母 分式的加减运算. 1. 会确定几个分式的最简公分母,并根据分 式的基本性质进行通分.
探究新知
知识点 1 最简公分母
x3 x3 (x 3( ) x 3)
6 x2 9
(3) a
2a 2
4
-
1 a2
(a
2a 2)( a
2)
-
1 a2
(a
2a 2)( a
2)
-(a
a2 2)(a
2)
(a2a( -2)a(a22) )
(a2a2-)(aa-
2
2)
(a
a-2 2)( a
2)
1 (a 2)
探究新知
注意: 1.分子要做为一个整体参与运算,注意符号问题 2.最后结果为最简分式,也就是分子分母不能含有 公因式
2x2 10x x2 25
3x 3x x 5 x 5 x 5 x 5
3x2 15x x2 25
探究新知
先通分,再计算:
(1)3 +
a
a 15 (2) 1 -
5a
x3
x
1
3(3)a
2a 2
4
-
1 a2
5a
15 + a 15
5a
5a
转 (x-3)(x+3) 化 x3
(x 3)( x 3)
=
__-__2_(_x_1__2_)__;
( 4 ) 1-1-1x = __-_1_-x_x____.
分式的乘除法和加减法
2
6y ( 3 )3 xy x
2
2
a 1 a 1 (4) a 4a 4 a 4
2 2 2
二、分式加减法:
同分母分式加减法的法则: 同分母的分式相加减, 分母不变,分子相加减。 异分母分式加减法的法则: 异分母的分式相加减,
先通分,化为同分母的分式,再进行计算。
【通分】 利用分式的基本性质 , 把异分母的分式化为同 分分母的过程 。 【通分的原则】 异分母通分时, 通常取各分母的最简公分母作
一、分式乘除法运算法则:
两个分式相乘,把分子相乘的积作为积的分子,
把分母相乘的积作为积的分母;
b d bd a c ac
两个分式相除,把除式的分子和分母颠 倒位置
b d b c bc 后再与被除式相乘。 a c a d ad 计算: a2 1 6a 2 y ( 2 ) (1 ) a 2 a 2a 8 y 3a
为它们的共同分母。
3 a5 例题: (1 ) a 5a
ห้องสมุดไป่ตู้2 x 1 (2) x 1 1 x
1 1 (3) ; x3 x3 2a 1 (4) a 4 a2
2
分式的混合运算:
(1)
x+1 ÷ 2 x -2x+1 x- 1
x2 - 1
x- 1 x+1
x- 1 x+1
(2) 用两种方法计算:
1 x 1 1 1 x x
+ 1 a- b
1 1 2a
(3)
1 a 2- b 2
1 ÷ a+b
3.3分式的加减法(2)学案
3.3分式的加减法(2)课型:新授 学生姓名:_________[目标导航]1、学习目标(1)知识目标:①经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力。
②进一步通过实例发展学生的符号感。
(2)能力目标:在学生已有数学经验的基础上,探求新知,从而获得成功的快乐。
(3)情感目标:提高学生“用数学”意识。
2、学习重点:①掌握异分母的分式加减运算。
②理解通分的意义3、学习难点:①化异分母分式为同分母分式的过程。
②符号法则、去括号法则的应用。
[课前导学]1、课前复习:(1)用数学符号表示同分母分式相加减的法则___ ____。
(2)=---3932x x x ___ ___。
(3)=+-++--++131112x x x x x x。
(4)=---n m n m n n _____ 。
(5)=-+pp p 64257 2、课前预习:问题引入:请同学们尝试解决以下问题(1)24a -a 1=___ _=(2)a 1+b 1=____________=(3)ab b a +-bc c b +=___________= =(4)a b 3+b a 2= 异分母分式相加减的法则是: 。
3、课前学记(课前学习疑难点、教学要求建议)[课堂研讨]1、 新知探究,把下列各式通分(1)x y 2,23y x ,xy41 (2)y x -5,2)(3x y -2、例题讲解计算: (1)31-x -31+x (2)422-a a -21-a3、随堂练习:用两种方法计算 (23-x x -2+x x )·xx 42- (1)通分法 (2)分配律法4、学以致用甲、乙两位采购员同去一家饲料公司购买两次饲料。
两次饲料的价格有变化,两位采购员的购货方式也不同。
其中,甲每次购买1000千克,乙每次用去1000元,而不管购买多少饲料。
(1)甲、乙所购饲料的平均单价各是多少?提示:设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 是正数,且m ≠n )(2)谁的购货方式更合算?5、巩固练习计算:(1)b a a b 23+ (2)21211aa ---6、问题解决:几位大学生租车去郊外游览,租金为300元,出发时又加了2位同学,总人数达到了x 人。
初中数学分式的加减知识点
If one day I have money or I am completely out of money, I will start wandering.整合汇编简单易用(页眉可删)初中数学分式的加减知识点分式加减法法则(rule of addition and subtraction of fraction)是分式的运算法则之一。
下面是初中数学分式的加减知识点,快来看看吧!初中数学知识点总结:分式的加减法则以下是对分式的加减知识点的总结学习,同学们认真记录笔记。
法则:同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:b(a)±b(c)=b(a±c)法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:b(a)±d(c)=bd(ad)±bd(bc)=bd (ad±bc)注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。
希望上面对分式的加减知识点的总结内容,同学们都能很好的掌握,并在考试中取得理想的成绩。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的`数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面;②两条数轴;③互相垂直;④原点重合。
三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
《分式的加减法》分式与分式方程(第2课件)
2023-11-09CATALOGUE目录•分式的基本概念•分式的加减法•分式的乘除法•分式方程及其解法•分式在实际生活中的应用•分式与分式方程的历史与发展01分式的基本概念如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
分式的定义定义读作“分子A,分母B”,写作“A/B”符号表示当A=0,B≠0时,分式无意义;当A≠0,B=0时,分式值为无穷大特殊情况分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。
性质1性质2性质3分式的分子和分母同时扩大(或缩小)相同的倍数,分式的值改变。
当分式的分子和分母是多项式时,首先要进行因式分解,然后约分。
03分式的基本性质0201把一个分式的分子和分母的公因式约去,叫做分式的约分。
定义先把分子、分母分解因式,然后约去它们公因式。
方法约分时,分子、分母必须是公因式的最高次幂。
注意分式的约分02分式的加减法运算法则同分母分式相加减,分子相加减,分母不变。
概念同分母分式是指具有相同分母的分式。
例子如$\frac{2}{3} + \frac{3}{3}$,$\frac{5}{6} - \frac{1}{6}$等。
同分母分式的加减法异分母分式是指具有不同分母的分式。
概念异分母分式的加减法异分母分式相加减,先通分,变为同分母分式,再按照同分母分式的加减法进行运算。
运算法则如$\frac{2}{3} + \frac{1}{2}$,$\frac{5}{6} - \frac{1}{2}$等。
例子概念混合运算是指包含加法、减法、乘法、除法等多种运算的算式。
分式加减法的混合运算运算法则按照运算的优先级,先乘除后加减,有括号先算括号里面的。
例子如$(2 + 3) \times 5 - \frac{1}{2} \times 4$,$5 \div (3 - 1) + \frac{1}{3} \times 6$等。
03分式的乘除法总结词了解分式乘法的运算方法,能够熟练进行分式乘法运算。
第19讲 分式的加减及综合计算(解析版)
原创精品资源学科网独家享有版权,侵权必究!1第19讲分式的加减及综合计算模块一:分式的加、减法一、同分母的分式加减法法则:同分母分式相加减,分母不变,分子相加减.二、异分母的分式加减法法则:(1)通分:将几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫做通分,这几个相同的分母叫做公分母.(2)异分母分式加减法法则:分母不同的几个分式相加减,应先进行通分,化成同分母分式后再进行加减运算,运算结果能化简的必须化简.【例1】计算:(1)x yx y x y ---;(2)211a ab ab+-.【答案】(1)1;(2)b2.【解析】本题主要考查同分母的加减法,注意计算结果一定要是最简分式.【例2】化简22x y y x y x---的结果是()A 、x y--B 、y x-C 、x y-D 、x y+【答案】A【解析】本题主要考查同分母的加减法,注意结果为最简分式.【例3】计算:(1)22x x+;(2)31269x x+.【答案】(1)x x 242+;(2)321843x x +【解析】(1)222442222x x x x x x x++=+=;(2)22333312343469181818x x x x x x x++=+=.【总结】本题主要考查异分母分式的加减法.【例4】计算:(1)a b b c ab bc++-;(2)2212y x x x y y -+-.【答案】(1)ac ac -;(2)22232242xy x x y x y +-+.【解析】(1)()()()c a b a b c b c a a b b c ca cb ab ac c aab bc abc abc abc abc ac++-+++----=-===;(2)()323222222222121224222222x x y x x y x y y x y x x x y y xy xy xy xy--+-++-=+-=.【总结】本题主要考查异分母分式的加减法,注意结果要化为最简分式.【例5】计算:(1)23(3)3x xx x ---;(2)2216322a a a a a --++--.【答案】(1)()223x x -;(2)4102--a a .【解析】(1)23(3)3x x x x ---()()2233(3)3x x x x x -=---2233(3)x x x x -+=-22(3)x x =-;(2)2216322a a a a a --++--()()()()161221a a a a a -=-++-+()()()()()()()()()1262122122a a a a a a a a a --+=-++-++-()()()232612122a a a a a a -+--=++-原创精品资源学科网独家享有版权,侵权必究!3()()()2910122a a a a a --=++-()()()()()101122a a a a a -+=++-()()1022a a a -=+-2104a a -=-.【总结】当分式的分母是多项式时,要先分解因式,再按照相应法则进行加减运算.【例6】某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下.已知该同学上楼速度是a 米/分,下楼速度是b 米/分,求他上、下楼的平均速度.(用含a 、b 的代数式表示)【答案】b a ab+2.【解析】b a ababb a b a +=+=+22112.【总结】本题要注意速度等于路程除以时间,不要简单的求两个速度的平均数.模块二:分式的综合计算一、分式的综合运算:与分数的混合运算类似,先算乘除,再算加减,如果有括号,要先算括号内的.【例7】计算:a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为()A 、a b b-B 、a b b+C 、a ba-D 、a b a+【答案】A【解析】原式=bba b a a ab b a -=+⋅-22.【总结】本题在计算时,注意按照运算顺序进行,有括号先算括号里面的.【例8】计算:262393m m mm ⎛⎫⎛⎫⎛⎫-÷ ⎪ ⎪ ⎪+--⎝⎭⎝⎭⎝⎭的结果为()A 、1B 、33m m -+C 、33m m +-D 、33m m +【答案】A【解析】原式=()()1333233363=+++=-⋅+--+mm m m m m m m .【总结】本题依旧考查的是分式的混合运算,注意先乘除后加减.【例9】计算:(1)22211()()a b ab a b b a a b a b--÷-+--;(2)2284111[(1)(442a a a a+-⋅-÷--.【答案】(1)ab a b -+;(2)22+-a a .【解析】(1)22211((a b ab a b b a a b a b--÷-+--()()()()()()()()2()a a b b a b ab b a a b a b a b a b a b a b ab ab ⎡⎤-+=+-÷-⎢⎥+-+-+-⎢⎥⎣⎦()()222a ab ab b ab ab a b a b b a -++-=⋅+--()()()2a b ab a b a b b a-=⋅+--ab a b=-+;(2)2284111[(1)()]442a a a a+-⋅-÷--()()284421[((224422a a a a a a a a a +=-⋅-÷-+-()()()228212242a aa a aa -=-⋅⋅+--412a =-+22a a -=+.【总结】本题主要考查分式的混合运算,在计算时一方面注意法则的准确运用,一方面注意方法的灵活.【例10】已知320a b -=,求下式的值:(1)(1b a b a a a b a a b+-÷---+.【答案】-5.【解析】∵320a b -=,∴23=a b ,2-=-b a a ,52=+b a a .∴(1)(1b a b a a a b a a b +-÷---+332121225⎛⎫⎛⎫=++÷-- ⎪ ⎪⎝⎭⎝⎭5=-.【总结】本题主要是利用分式的性质,通过整体代入的思想求值,另外本题也可以通过分式的混合运算,算出分式的最终结果之后再求值.【例11】化简:11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- .原创精品资源学科网独家享有版权,侵权必究!5【答案】()()99199---a a 【解析】11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- 1111111=1213210099a a a a a a a +-+-++-------- 1100a =-.【总结】本题主要是类比分数的拆项的思想来求解,注意方法的恰当选择.1.(2022秋黄浦七年级期末真题)12-的结果是()A .12B .12-C .2D .2-【答案】A【分析】根据负整数指数幂法则即可得.【详解】解:1122-=,故选:A .【点睛】本题考查了负整数指数幂,熟练掌握运算法则是解题关键.2.(2022秋浦东新区七年级期末真题)如果2210a a --=,那么代数式242aa a a ⎛⎫-⋅ ⎪+⎝⎭的值是()A .3-B .1-C .1D .3【答案】B【分析】先化简所求的式子,再根据2210a a --=,可以得到221a a -=-,然后代入化简后的式子即可.【详解】解:242aa a a ⎛⎫-⋅⎪+⎝⎭2242a a a a -=⋅+()()2222a a a a a +-=⋅+()2a a =-22a a =-,2210a a --= ,221a a ∴-=-,∴原式1=-,故选:B .【点睛】本题考查了分式的化简求值,掌握分式的混合运算法则是解答本题的关键.3.计算23111b b b a a a +-+++的结果是()A .0B .61b a +C .()3361b a -+D .1b a -+【答案】A【分析】根据分式的混合运算法则即可求解.【详解】解:23111b b b a a a +-+++231b b b a +-=+0=,故选:A .【点睛】本题主要考查分式的混合运算,掌握同分母分式的加减法运算法则是解题的关键.4.(2022秋黄浦七年级期末真题)已知244A x =-,1122B x x=++-,其中2x ≠±,下列说法正确的是()A .A B=B .A ,B 互为倒数C .A ,B 互为相反数D .以上均不正确【答案】C【分析】把A 、B 先分别化简,然后观察比较.【详解】∵B=222111122442222444x x x x x x x x x ----+=-===-+-+----,且A=244x -,∴A 、B 互为相反数,故选C .【点睛】本题考查分式的加减运算,这类题通常的解题思路是将A 、B 两个式子分别先化简,然后再根据化简的结果进行分析判断,得出结论.5.(2022秋徐汇区七年级期末真题)如图是嘉琪进行分式计算的过程,下列判断不正确的是()原创精品资源学科网独家享有版权,侵权必究!7A .第二步运用了分式的基本性质B .从第三步开始出现错误C .原分式的计算结果11x -D .当1x =时,原分式的值为0【答案】D【分析】根据分式的混合运算法则和分式有意义的条件即可解答.【详解】解:第二步将11x +变为()()()111x x x -+-,即分式的分子和分母同时乘()1x -,是运用了分式的基本性质,故A 正确,不符合题意;第三步分式相减时,把分母减没了,出现错误,故B 正确,不符合题意;从第三步开始,正确的计算如下,()()2(1)11x x x x --=+-…………第三步()()111x x x +=+-…………第四步11x =-…………第五步.∴原分式的计算结果为11x -,故C 正确,不符合题意;当1x =时,原分式没有意义,故D 错误,符合题意.故选D .【点睛】本题考查分式的化简求值.掌握分式的混合运算法则和分式的分母不能为0是解题关键.6.(2022秋青浦区七年级期末真题)计算312112a a a a++--的结果是()A .1B .1-C .2121a a +-D .4121a a +-【答案】A【分析】根据同分母分式减法计算法则求解即可.【详解】解:312112a a a a++--312121a a a a +=---3121a a a --=-2121a a -=-1=,故选A .【点睛】本题主要考查了同分母分式减法,正确计算是解题的关键.7.(2022秋浦东新区七年级期末真题)计算211a a a a ++++的结果是()A .1a a +B .21a a ++C .3D .2【答案】D【分析】根据同分母分式加法计算法则求解即可.【详解】解:211a a a a ++++21a a a ++=+221a a +=+()211a a +=+2=,故选D .【点睛】本题主要考查了同分母分式加法,熟知相关计算法则是解题关键.8.(2022秋徐汇区七年级期末真题)计算12x x+=_____.【答案】3x【分析】根据同分母分式相加,分母不变,只把分子相加,进行计算即可.【详解】解:123x x x+=,故答案为:3x.【点睛】本题要考查了同分母分式的加法,解题的关键是掌握:同分母分式相加,分母不变,只把分子相加.原创精品资源学科网独家享有版权,侵权必究!99.化简分式2422x x x ---的结果为______.【答案】2x +/2x+【分析】根据分式的减法法则进行计算.【详解】2422x x x ---242x x -=-()()222x x x +-=-2x =+,故答案为:2x +.【点睛】本题考查了分式的减法,正确的计算是解题的关键.10.(2022秋民办华育七年级期中真题)化简22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭的结果为______.【答案】1m n-【详解】解:22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭222m n m mn n m m m ⎛⎫--=÷- ⎪⎝⎭222m n m mn n m m--+=÷()2m n mm m n -=⨯-1m n=-故答案为:1m n-【点睛】此题考查了分式的混合运算,熟练掌握运算顺序和法则是解题的关键.11.已知50x y --=,则11⎛⎫-÷ ⎪-++⎝⎭yx y x y x y 的值为______.【答案】25/0.4【分析】先将括号里面的通分,将除法转化为乘法,约分化简,代入x y -的值,即可求解.【详解】原式()()()()x y x yx y y x y x y x y x y ⎡⎤+-+=-⨯⎢+-+-⎢⎥⎣⎦()()2yx yyx y x y +=⨯+-2x y=-5x y -= ∴225x y =-故答案为:25.【点睛】本题考查了分式化简求值,正确化简分式是解题的关键.12.计算:23111m m m +-=++______.【答案】2【分析】根据同分母的减法运算可进行求解.【详解】解:231222111m m m m m ++-==+++;故答案为2.【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.13.(2022秋青浦区七年级期末真题)已知13a b =,则2222a ab b a b ++=+________.【答案】1310【分析】由13a b =可得3b a =,代入式子进行化简即可求解.【详解】解:13a b =,3b a ∴=,原式22222399a a a a a +=++2213131010a a ==.故答案:1310.【点睛】本题考查了分式化简求值,掌握化简求值方法是解题的关键.原创精品资源学科网独家享有版权,侵权必究!1114.(2022秋上宝七年级期中真题)通分(1)314x y ,246xy (2)26a a +,219a a --(3)229a a -,2369a a -+(4)21(1)4a a -+-,21242a a a --+【答案】(1)33213412y x y x y =,223248612x xy x y =(2)(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-(3)2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+(4)212(1)(1)42(1)(3)a a a a a --=+--+,2132422(1)(3)a a a a a a -+=--+-+【分析】根据分式的基本性质,把几个异分母分式分别化为与原来的分式相等的同分母的分式,叫做分式的通分.根据分式的通分的概念逐个化简即可.【详解】(1)最简公分母:3212x y ,33213412y x y x y =,223248612x xy x y =;(2)最简公分母:2(3)(3)a a +-(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-;(3)最简公分母:2(3)(3)a a -+,2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+;(4)最简公分母:2(3)(1)a a +-,21112(1)(1)4(3)(1)32(1)(3)a a a a a a a a a ---===--+-+-+,2211132422(1)2(1)2(1)(3)a a a a a a a a a --+==-=--+---+.【点睛】本题考查了分式通分的概念,理解分式通分的概念,会正确求出几个分式的最简公分母是解题的关键.15.化简:(1)()1333x x x ---;(2)2111x x x+--;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭.【答案】(1)1x (2)1x +(3)1x +(4)22a bb a+-【分析】(1)根据异分母分式的减法运算法则求解即可;(2)根据同分母分式的加法运算法则求解即可;(3)根据分式的混合运算法则求解即可;(4)根据分式的混合运算法则求解即可;【详解】(1)()1333x x x ---()()333x x x x x =---()33x x x -=-1x=;(2)2111x x x+--2111x x x =---211x x -=-()()111x x x +-=-1x =+;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭()()1111211x x x x x x -⎛⎫-÷ ⎪--+⎝=-⎭-()()11212x x x x x +--⨯--=原创精品资源学科网独家享有版权,侵权必究!131x =+;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭()222223a b b a b a b a b a b +⎛⎫-=÷ ---⎝⎭()22224a b b a b a a b+=-÷--()()()2222a a b a b ba b a b +-+⨯--=22a bb a +=-.【点睛】此题考查了分式的加减乘除混合运算,解题的关键是熟练掌握以上运算法则.1.分式2411÷--xxx x 的值可能等于()A .0B .1C .2D .4【答案】B【详解】解:()()2441411111x xxx x x x x x x -÷=⋅--+-+,401x ≠+,故选项A 不符合题意;41x =+,则3x =,存在,故选项B 符合题意;()421x =+,则1x =,此时原式无意义,故选项C 不符合题意;()441x =+,则0x =,此时原式无意义,故选项D 不符合题意;故选:B .【点睛】此题主要考查了分式的乘除,正确化简分式是解题关键.2.已知13xyx y =+,15yzy z =+,16zxz x =+,则xyzxy yz zx =++()A .14B .12C .17D .19【答案】C【分析】结合题意得3x y xy +=,5y z yz +=,6z x zx+=从而求出1117x y z ++=,对xyz xy yz zx ++进行化简得1111z x y++代入即可求解.【详解】解:13xy x y =+ ,15yz y z =+,16zx z x =+,3x y xy +∴=,5y z yz +=,6z x zx+=,113x y ∴+=,115y z +=,116z x+=,111111356x y y z z x∴+++++=++,1117x y z∴++=,1111117xyz xy yz zx xy yz zx xyz xyz xyz z x y===++++++,故选:C .【点睛】本题考查了分式的化简求值,解题的关键是结合题意求出1111z x y++.3.若分式24932321x A B x x x x -=---+-(A 、B 为常数),则A 、B 的值为()A .43A B ==;B .71A B ==;C .17A B ==;D .3513A B =-=;【答案】B 【分析】等式右边进行分式的减法运算,再根据对应项的系数相等可求解.【详解】解:∵321A B x x -+-()()()()132321A x B x x x --+=+-()()32321Ax A Bx Bx x ---=+-()()22323A B x x A B x --+--=,∴()()2223493232A B x A B x x x x x ---+=----,∴3429A B A B -=⎧⎨+=⎩,则71A B =⎧⎨=⎩,故选:B .【点睛】本题考查了分式的加减法、解二元一次方程组,熟练掌握分式加减运算法则是解答的关键.原创精品资源学科网独家享有版权,侵权必究!154.已知2610m m --=,则22126m m m -+的值为______.【答案】39【分析】由已知得到16m m-=和22261m m m -=+,再整体代入,利用完全平方公式化简即可求解.【详解】解:将2610m m --=,两边同时除以m ,得:16m m -=,由2610m m --=,可得:22261m m m -=+,所以22126m m m -+2211m m =++2112m m ⎛⎫ ⎪⎝⎭=+-+2162=++39=.故答案为:39.【点睛】本题考查了分式的加减以及完全平方公式的运用,解题关键是正确将已知变形.5.甲、乙两港口分别位于长江的上、下游,相距50千米,一艘轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,轮船往返两个港口一次共需______小时.【答案】22100aa b -【分析】分别求出顺流和逆流时的速度,利用路程、时间、速度之间的关系即可列式求解.【详解】解: 轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,∴顺流速度为()a b +千米/时,逆流速度为()a b -千米/时,甲、乙两港口分别位于长江的上、下游,相距50千米,∴轮船往返两个港口一次共需时间为:()()()()2250505050100a b a b a a b a b a b a b a b -+++==+-+--,故答案为:22100a a b -.【点睛】本题考查分式加减的应用,解题的关键是计算出轮船顺流和逆流时的速度,根据路程、时间、速度之间的关系列出分式.6.分式化简:22424422x x x x x x x ⎛⎫---÷= ⎪-++-⎝⎭___.【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式2(2)(2)22(2)2x x x x x x x ⎡⎤+---=-⨯⎢⎥-+⎣⎦22222x x x x x x +--⎛⎫=-⨯ ⎪-+⎝⎭()()()()2222222x x x x x x +---=⨯+-82(2)(2)x x x x x-=-+82x =+.故答案为:82x +.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.若()()112121A x x x x =+----,则A =__________.【答案】1-【分析】首先将等式右边通分,然后根据题意得到()112x A x =-+-,然后求解即可.【详解】∵121A x x +--()()()()()212121A x x x x x x --=+----()()()1221x A x x x -+-=--∵()()112121A x x x x =+----∴()112x A x =-+-∴()22x A x -=-∴1A =-.故答案为:1-.【点睛】此题考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算法则.8.计算:(1)2221651565a a a a a a a a a --+⋅÷++++;(2)29(2)33666x x x x x x --+--+-.原创精品资源学科网独家享有版权,侵权必究!17(2)26xx +【分析】(1)因式分解约分即可得到答案;(2)通分合并再因式分解约分即可得到答案.【详解】(1)解:原式1(5)(1)1(5)(5)(1)a a a a a a a a a -++=⨯⨯++--15a =-;(2)解:原式221896(318)(6)(6)x x x x x x x -+----+=+-2(6)(6)(6)x x x x -=+-26x x =+.【点睛】本题考查分式化简,解题的关键是熟练掌握整式乘法及因式分解.9.已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭的值.【答案】2ab a b -+,14a ,b ,再根据分式的混合运算法则先化简后代值求解即可.【详解】解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩原式22()()b a a b a a b a a b a b a b ⎡⎤----⎡⎤=÷⋅⎢⎥⎢⎥+--⎣⎦⎣⎦2b a b ab a b b a b--=⋅⋅+-2ab a b=-+,当14a =-,12b =时,原式21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭=-=-+.【点睛】本题考查非负数的性质、分式的混合运算、解二元一次方程组等知识,正确运用法则是解题的关键,是中考常考题型,可以通过此类题目的训练提高计算能力.10.计算(1)22211444a a a a a --÷-+-;(2)211a a a ---【答案】(1)2(1)(2)a a a ++-(2)11a -【分析】(1)先将两个分式分解因式,然后再约分化简即可.(2)先通分,再化简求解.【详解】(1)解:原式21(2)(2)2(2)(1)(1)(1)(2)a a a a a a a a a -+-+=⋅=-+-+-(2)解:原式=2111a a a +--=2(1)(1)1a a a a -+--=2211a a a -+-=11a -【点睛】本题考查了分式的加减、乘除运算,掌握通分、分解因式的方法是求解的关键.。
21分式的加减法(二)
拓展练习 工 效 问 题
一项工程 , 甲单独做 a h 完成, 乙单独做 b h 完成 . 甲、乙两人一起完成这项工程,需要多长时间?
1 v甲 = a , v乙 =
1 1 x = 1 。 则: a b
ab 解得 x= a b 。
1 b
。
设 “甲、乙两人一起完成这项工程” 需要 x 天,
(2) ∵ 实际每天修建盲道的长度 = (x+10) m ,
1120 ∴ 实际修建这条盲道用了 天. x 10
因此 , 实际修建这条盲道的工期比原计划缩短了
1120 1120 11200 (天) . x( x 10) x - x 10
甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料 的价格有变化,两位采购员的购货方式也不同:甲每次购买 1000千克;乙每次用去800元,而不管购买多少饲料,设 两次购买的单价分别为m元/千克和n元/千克(m、n是正数, 且m≠n),那么甲乙所购买饲料的平均单价各是多少?哪一 个较低?
2 A B = ,求A、B的值. 2:若 2 x 1 x 1 x 1
3:
1 1 3x xy 3 y 已知 - =3,求 的值. x y x y xy
28 时, 25 1 25 原式= 28 53 25 1 当a
再来试试
计算
2a 1 a b b a b b 4
2
b ab 1 a b b a a b
1 1 1 1 3 1 x x
2 a3 a2 9 (3) 2 2 a 1 a 4a 5 a 3a 10
巩固练习
计算: 1 2 (1) ; 2 a 1 1 a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 分式的加减法(二)
数学组 汪波澜
【课题】 5.3 分式的加减法(二) 【课型】新课
【班级】初二、14班 【时间】2016年3月24日 【教材分析】
分式的加减法是代数变形的基础之一,在学习完同分母分式的加减法法则后必将谈到异分母分式的加减法,教科书安排了两节课的教学,就是不让难度突然加大,而是循序渐进的去接受,允许学生经过一定时间的学习达到《标准》要求的目标,应把教学重点放在落实和理解上。
本节内容不多,教学时对异分母分式加减法法则的探索过程上,要使学生充分活动起来,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则。
【学情分析】
学生知识技能基础:学生在上节课已经学习过同分母的分式相加减及分母互为相反式分式的加减运算。
在第四章又学习了因式分解,在本章的前面几节课中,回忆了分数的基本性质,学习了分式的基本性质、分式的约分及分式的乘除等。
对这节课异分母分式相加减内容的学习都有了充分的铺垫。
学生活动经验基础:从学习字母表示数开始,学生就经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。
同时在以前的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。
【教学目标】 结果性目标:
1、 会找最简公分母,能进行分式的通分;
2、 理解并掌握异分母分式加减法的法则;
体验性目标:
运用异分母的分式加减运算法则解决问题的过程中,体验到异分母分式加减与同分母分式加减、同分母分式加减与整式加减的关联 【教学重点】
异分母分式的加减运算 【教学难点】
正确找最简公分母,进行异分母分式的通分 【核心问题】
运用异分母的分式加减运算法则解决下列问题
1)2)(1(3132142)2(12876c 5122
22-+-------+x x x x a a a c a b b a b a )()计算:(
【教学流程图】
【实施反馈】。