大学物理第四章习题解
《大学物理教程》郭振平主编第四章光的衍射课后习题答案

第四章 光的衍射一、基本知识点光的衍射:当光遇到小孔、狭缝或其他的很小障碍物时,传播方向将发生偏转,而绕过障碍物继续前行,并在光屏上形成明暗相间的圆环或条纹。
光波的这种现象称为光的衍射。
菲涅耳衍射:光源、观察屏(或者是两者之一)到衍射屏的距离是有限的,这类衍射又称为近场衍射。
夫琅禾费衍射:光源、观察屏到衍射屏的距离均为无限远,这类衍射也称为远场衍射。
惠更斯-菲涅耳原理:光波在空间传播到的各点,都可以看作一个子波源,发出新的子波,在传播到空间某一点时,各个子波之间可以相互叠加。
这称为惠更斯-菲涅耳原理。
菲涅耳半波带法:将宽度为a 的缝AB 沿着与狭缝平行方向分成一系列宽度相等的窄条,1AA ,12A A ,…,k A B ,对于衍射角为θ的各条光线,相邻窄条对应点发出的光线到达观察屏的光程差为半个波长,这样等宽的窄条称为半波带。
这种分析方法称为菲涅耳半波带法。
单缝夫琅禾费衍射明纹条件:sin (21)(1,2,...)2a k k λθ=±+=单缝夫琅禾费衍射暗纹条件:sin (1,2,...)a k k θλ=±=在近轴条件下,θ很小,sin θθ≈, 则第一级暗纹的衍射角为 1aλθ±=±第一级暗纹离开中心轴的距离为 11x f faλθ±±==±, 式中f 为透镜的焦距。
中央明纹的角宽度为 112aλθθθ-∆=-=中央明纹的线宽度为 002tan 2l f f faλθθ=≈∆=衍射图样的特征:① 中央明纹的宽度是各级明纹的宽度的两倍,且绝大部分光能都落在中央明纹上。
② 暗条纹是等间隔的。
③ 当入射光为白光时,除中央明区为白色条纹外,两侧为由紫到红排列的彩色的衍射光谱。
④ 当波长一定时,狭缝的宽度愈小,衍射愈显著。
光栅: 具有周期性空间结构或光学性能(透射率,反射率和折射率等)的衍射屏,统称为光栅。
光栅常数: 每两条狭缝间距离d a b =+称为光栅常数。
大学物理习题册及解答_第二版_第四章_刚体的定轴转动

第四章 刚体定轴转动(一)
一.选择题
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
(1 )m m / 2 T mg m m m/2
k 1 k 2 2 1 2
4.质量为M,长为l的均匀细杆,可绕A端的水平轴自由转动,当 杆自由下垂时,有一质量为m的小球,在离杆下端的距离为a处垂 直击中细杆,并于碰撞后自由下落,而细杆在碰撞后的最大偏角 为,试求小球击中细杆前的速度。 解:球与杆碰撞瞬间,系统所受合外力矩为零,系 统碰撞前后角动量守恒
m (l a) J
1 J Ml 3
2
杆摆动过程机械能守恒
1 l J Mg (1 cos ) 2 2
2
解得小球碰前速率为
Ml 2 gl sin m(l a ) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少? 解:选人、滑轮、与重物为系统,系统所受对滑轮轴的 外力矩为 1
1 d 13 即 MgR ( MR MRu) 2 dt 8
该题也可在地面参考系中分别对人和物体利用牛顿第二定 律,对滑轮应用转动定律求解。
一选择题
第四章 刚体定轴转动(二)
大学物理第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
大学物理课后习题答案第四章

第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
大学物理第四章习题解答PPT演示课件

16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况
大学物理学课后习题4第四章答案

k
m1g x1
1.0 103 9.8 4.9 102
0.2
N m1
而 t 0 时, x0 1.0 102 m,v0 5.0 102 m s-1 ( 设向上为正)
又
k m
0.2 8 103
5,即T
2
1.26s
A
x02
(
v0
)2
(1.0 102 )2 (5.0 102 )2 5
(7)两列波叠加产生干涉现象必须满足的条件
是
,
和
。
[答案:频率相同,振动方向相同,在相遇点的位相差恒定。]
4.3 质量为10 103 kg 的小球与轻弹簧组成的系统,按
x 0.1cos(8t 2 ) (SI) 的规律作谐振动,求: 3
(1)振动的周期、振幅和初位相及速度与加速度的最大值; (2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与 势能相等?
习题 4.2(2) 图 [答案:b、f; a、e]
(3)一质点沿 x 轴作简谐振动,振动范围的中心点为 x 轴的原点,已知周 期为 T,振幅为 A。
( a ) 若 t=0 时 质 点 过 x=0 处 且 朝 x 轴 正 方 向 运 动 , 则 振 动 方 程 为 x=___________________。
[答案: 2 s ] 3
(2)一水平弹簧简谐振子的振动曲线如题 4.2(2)图所示。振子在位移为零, 速度为-A、加速度为零和弹性力为零的状态,对应于曲线上的____________ 点。振子处在位移的绝对值为 A、速度为零、加速度为-2A 和弹性力为-KA 的 状态,则对应曲线上的____________点。
103
(
)2
大学物理04角动量守恒习题解答

刚体力学-角动量习题
第1页
一、选择题
1. 已知地球的质量为m,太阳的质量为M,地心与日心的距离为R
,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ A ]
m( l )2 2
0
ml 2 3
mx2
O
1l m m
2
第9页
三、计算题
1. 如图所示,一质量为M的均匀细棒,长为l,上端可绕水平轴O自 由转动,现有一质量为m的子弹,水平射入其下端A而不穿出,此 后棒摆到水平位置后又下落。棒的转动惯量J= Ml2/3 ,如不计空气 阻力并设 mM。求 (1)子弹射入棒前的速度v0; (2) 当棒转到与水平位置的夹角为30时,A点的速度及加速度。
(A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。
解 对上述每一句话进行分析: (1)正确 √ (2)正确 √
(3)错误 × (4)错误 ×
第5页
一、选择题
5. 关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。
所受的合外力矩的大小M =
大小β= 2g 3l 。
3 2
mgl
,此时该系统角加速度的
解 M 2mg l mg l 3 mgl
2 22
M J
2m
o
mg
大学物理教程第4章习题答案

思 考 题4.1 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关。
试用气体动理论予以说明。
答: 据压强公式 p nkT = ,当压强和温度相同时,n 也相同,与气体种类无关; 4.2 对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大。
当体积不变时,压强随温度的升高而增大。
从微观角度看,两种情况有何区别。
答:气体压强是器壁单位面积上受到大量气体分子频繁地碰撞而产生的平均作用力的结果。
当温度不变时,若体积减小,分子数密度增大,单位时间内碰撞器壁的分子数增加,从而压强增大;而当体积不变时,若温度升高,分子的平均平动动能增大,分子碰撞器壁的力度变大,从而压强增大;4.3 从气体动理论的观点说明:(1)当气体的温度升高时,只要适当地增大容器的容积,就可使气体的压强保持不变。
(2)一定量理想气体在平衡态(p 1,V 1,T 1)时的热动平衡状况与它在另一平衡态(p 2,V 2,T 2)时相比有那些不同?设气体总分子数为N ,p 2< p 1,V 2< V 1。
(3)气体在平衡状态下,则222213x y z v v v v ===, 0x y z v v v ===。
(式中x v 、y v 、z v ,是气体分子速度v 的三个分量)。
答:(1)由p nkT = 可知,温度升高时,n 适当地减小,可使压强不变;(2) 在平衡态(2p ,2V ,2T )时分子的平均平动动能较在平衡态(1p ,1V ,1T )时小,但分子数密度较大;(3) 因分子向各方向运动的概率相同,并且频繁的碰撞,速度的平均值为零,速度平方的平均值大小反映平均平动动能的大小,所以各分量平方平均值相等;4.4 有人说“在相同温度下,不同气体分子的平均平动动能相等,氧分子的质量比氢分子的大,所以氢分子的速率一定比氧分子大”。
这样讲对吗?答:不对,只能说氢分子的速率平方平均值比氧分子的大。
大学物理课后答案第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。
大学物理课后习题答案(第四章) 北京邮电大学出版社

又
k 0.2 2 5,即T 1.26s 3 m 8 10
2 A x0 (
v0
)2
2 2
5.0 10 2 2 (1.0 10 ) ( ) 5 2 10 2 m v 5.0 10 2 5 tan 0 0 1, 即 0 2 x 0 1.0 10 5 4 5 x 2 10 2 cos(5t )m 4 ∴
A 3.2 10 3 rad l
∴ 故其角振幅
2 A x0 (
小球的振动方程为
4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为 0.20m ,位相与第一振动的
给小球一水平向右的冲量 Ft 1.0 10 kg m s ,取打击时刻为计时起点 (t 0) ,求 振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有
4 1
v0 x 0
F t mv 0
∴
v
F t 1.0 10 0.01 m 1.0 10 3
A mg 2 m 2 2 gh 2 x ( ) ( ) ( ) k (m M )
2 0 2
v0
mg 2kh 1 k (m M ) g
2kh ( M m) g (第三象限),所以振动方程为 (3) mg 2kh k 2kh x 1 cos t arctan k (m M ) g ( M m) g mM 3 4-10 有一单摆,摆长 l 1.0m ,摆球质量 m 10 10 kg ,当摆球处在平衡位置时,若 tan 0
(2)
当
Ek E p
时,有
E 2E p
大学物理第四章课后思考题详解

谐振动:
X. J. Feng,
1. 力学特征: 线性恢复力(力矩)
F kx
F mg
2.动力学方程:
d 2x dt 2
02 x
0
M mgb 思考: 拍皮球时球的往
3.运动学方程: x Acos(0t ) 复运动是否是谐振动?
v 0 Asin( 0t )
m
Px
X. J. Feng,
M 0t
Px
X. J. Feng,
M
P
x
M P
Xபைடு நூலகம் J. Feng,
x
X. J. Feng,
M
P
x
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
M Px
突然速度为0的质点m0轻粘在m上,求:m0粘上后振动系统
周期和振幅
m0
解: 两弹簧的等效系数:2k
km k
(请同学们课后自己证明)
m0粘上前系统振动的圆频率: 0
2k m
v 2l0
m0粘上后系统振动的圆频率:
2k
m m0
T 2 m m0
2k
A
x0
v02
2
x0 0
x
M
M nm
l0
·m
(2).t Tn 2
Tn
2 n
n
k M nm
MO
l0
大学物理课本答案习题 第四章习题解答

习题四4-1 一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是多少?解 5光年是在地球上测得的原长,由于此长度相对宇航员也是高速运动的,所以他测得收缩了的长度为3光年. 即3=火箭相对于地球的速度应为45u c =4-2 一飞船以0.99c 的速率平行于地面飞行,宇航员测得此飞船的长度为400 m.. (1)地面上的观察者测得飞船长度是多少?(2)为了测得飞船的长度,地面上需要有两位观察者携带着两只同步钟同时站在飞船首尾两端处.那么这两位观察者相距多远? (3)宇航员测得两位观察者相距多远?解(1)56.4(m)l l ===(2)这两位观察者需同时测量飞船首、尾的坐标,相减得到飞船长度,所以两位观察者相距是56.4 m.(3)地面上的两位观察者相距56.4 m ,这一距离在地面参考系中是原长,宇航员看地面是运动的,他测得地面上两位观察者相距为7.96(m)l l ===所以宇航员测得两位观察者相距7.96 m.4-3 已知π介子在其静止系中的半衰期为81.810s -⨯。
今有一束π介子以0.8u c =的速度离开加速器,试问,从实验室参考系看来,当π介子衰变一半时飞越了多长的距离?解:在π介子的静止系中,半衰期80 1.810s t -∆=⨯是本征时间。
由时间膨胀效应,实验室参考系中的观察者测得的同一过程所经历的时间为8310s t -∆==⨯因而飞行距离为7.2m d u t =∆=4-4 在某惯性系K 中,两事件发生在同一地点而时间相隔为4s 。
已知在另一惯性系'K 中,该两事件的时间间隔为6s,试问它们的空间间隔是多少?解:在K系中,04st∆=为本征时间,在'K系中的时间间隔为6st∆=两者的关系为t∆==所以259β=故两惯性系的相对速度为8110m su cβ-==⋅由洛伦兹变换,'K系中两事件的空间间隔为)k kx x u t'∆=∆+∆两件事在K系中发生在同一地点,因此有0kx∆=,故810mkx'∆==4-5 惯性系'K相对另一惯性系K沿x轴作匀速运动,取两坐标原点重合的时刻作为计时起点。
大学物理第四章-刚体的转动-习题及答案

1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩
为
dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I
而
I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24
大学物理(第二版)上册课后习题详解第四章-静电场

11
C m-2。求此系统的电场分
布。 解 如题 4.10 图所示, 三个区域的场强由两平行无限大均匀带 电面产生的场强的叠加,其电场强度分别为
E2
E2
4.10 解图
E2
E1
1 , E2 2 2 0 2 0
设水平向右的方向为场强的正方向,则 左边区域:
EⅠ E1 E2
题 4.8 图
29
电荷为 Q2。求电场分布规律。 解 因电荷呈球对称分布,电场强度也为球对称分布,取半径为 r 的同心球面为高斯面, 由高斯定理得
2 E dS 4r E
q
0
当 r R1 时,该高斯面内无电荷,
q 0 ,故
Q1 (r 3 R13 ) ,故 3 R2 R13
4.2 一根不导电的细塑料杆,被弯成近乎完整的圆,圆的半径为 0.5m,杆的两端有 2cm 的缝隙, 3.12 10 C 的正电荷均匀地分布在杆上,求圆心处电场的大小和方向。 解 运用叠加原理,可以把带电体看成是一个带正电的整圆环和一段长为 2cm 带负电的 圆弧产生的电场的叠加,而圆环在中心产生的电场为零。所以电场就等于长为 2cm 的带负电 的圆弧产生的电场。由于圆弧长度远小于半径,故可看成是一点电荷,所以
q0 必须在两电荷之间才能平衡,设与 2q 之间的距离为 x ,若合力为零,则有
2qq0 qq0 1 2 4 0 x 4 0 (l x) 2 1
由此可得 x 2 4lx 2l 2 0 ,解此方程可得
x (2 2)l 。只能取负号,所以
x (2 2)l ,为稳定平衡状态。
q , 2l
x
dx
2l
4.11 解图
大学物理学课后习题4第四章答案

x 轴正方向运动,代表此简谐振动的旋转矢量图为
()
[答案:B]
(2)两个同周期简谐振动曲线如图所示,振动曲线 1 的相位比振动曲线 2
的相位 (
)
(A)落后
2
(B)超前
2
(C)落后
(D)超前
[答案: B]
习题 4.1(2)图
(3)一质点作简谐振动的周期是 T,当由平衡位置向 x 轴正方向运动时,从
E
1 2
mvm2
3.16 102 J
E p E k 1 E 1.58102 J 2
当 Ek E p 时,有 E 2E p ,
即
1 kx 2 1 ( 1 kA2 )
2
22
∴
x 2 A 2m
2
20
(3)
(t2 t1 ) 8 (5 1) 32
4.4 一个沿 x 轴作简谐振动的弹簧振子,振幅为 A ,周期为T ,其振动 方程用余弦函数表示.如果 t 0 时质点的状态分别是:
的单位是 s,则 (A)波长为 5m
向传播 [答案:C]
(B)波速为 10ms-1
(C)周期为 1 s 3
(D)波沿 x 正方
(8)如图所示,两列波长为 的相干波在 p 点相遇。波在 S1 点的振动初相是 1 ,点 S1 到点 p 的距离是 r1。波在 S2 点的振动初相是2 ,点 S2 到点 p 的距离是
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置
大学物理第四章课后答案

υ2 l
9. 解: m 下降到斜面瞬间满足机械能守恒: 1 则 mgh = mυ 0 2 2 M 与 m 碰撞后无机械能损失: 1 1 1 mυ 0 2 = Mυ 2 + mυ ′ 2 2 2 2 水平方向 M 与 m 组成的系统动量守恒, 总动量 为 0, Mυ = m υ ′ 解得: υ = 2m 2 gh M ( M + m)
如图所示在一铅直面内有一光滑的轨道左边是一个上升的曲线右边是足够长的水平直线两者平滑连接现有b两个质点b在水平轨道上静止a在曲线部分高h处由静止滑下与b发生完全弹性碰撞碰后a仍可返回上升到曲线轨道某处并再度滑下已知ab两质点的质量a分别为和
自治区精品课程—大学物理学
题库
第四章 动量定理
一、 填空 1. 2. 3. 4. 是表示力在空间上累积作用的物理量, 是表示力在时间上累 积作用的物理量。 质点动量定理的微分形式是 。 质点动量定理的积分形式是 。 对于质点系来说,内力 ( “改变”或“不改变” )质点系中各个质点 的动量,但 ( “改变”或“不改变” )质点系的总动量。 若质点系沿某坐标方向所受的合外力为零,则 守恒。 如果两物体碰撞过程中,动能完全没有损失,这种碰撞称为 ,否则 就称为 ;如果碰撞后两物体以相同的速度运动,这种碰撞称 为 。 , 其中 υ10 ,υ1 是某一物
-1-
自治区精品课程—大学物理学
题库
上,如图所示。求链条下落在地面的长度为 l 瞬时,地面所受链条的作用力的大 小。 4. 质量为 M 的人,手里拿着一个质量为 m 的物体,此人以与地平面成 α 角的速 度 υ0 向前方跳起,当他达到最高点时,将物体以相对速度 µ 水平向后抛出,由 于物体的抛出,人跳的距离增加多少?假设空气阻力不计。 5. 速度为 υ0 的物体甲和一个质量为甲的 2 倍的静止物体乙作对心碰撞,碰撞后 1 甲物体以 υ 0 的速度沿原路径弹回,求: 3 (1)乙物体碰撞后的速度,问这碰撞是完全弹性碰撞吗? (2) 如果碰撞是完全非弹性碰撞, 碰撞后两物体的速度为多大?动能损失多少? 6. 如图所示,质量为 m 的物体从斜面上高度为 h 的 A 点处由静止开始下滑,滑至水平段 B 点 停止,今有一质量 m 的子弹射入物体中,使物 体恰好能返回到斜面上的 A 点处。求子弹的速 度( AB 段摩擦因数为恒量) 。 7. 如图所示,劲度系数 k = 100 N m 的弹簧, 一 段固 定于 O 点, 另一端 与一 质量 为
大学物理第四章习题及答案

大学物理第四章习题及答案大学物理第四章习题及答案第四章是大学物理课程中的重要章节,主要涉及力学和运动学的内容。
在这一章中,学生将学习到关于运动的基本概念和原理,以及如何应用这些知识解决实际问题。
为了帮助学生更好地理解和掌握这一章节的知识,以下是一些常见的习题及其答案。
习题一:一个物体以10 m/s的速度从10 m高的斜面上滑下,滑到底部时的速度是多少?解答:根据能量守恒定律,物体在滑下过程中,其机械能守恒。
由于没有外力做功,物体的机械能在滑下过程中保持不变。
因此,物体在滑到底部时的机械能等于初始机械能。
初始机械能 = 动能 + 重力势能= 1/2 mv^2 + mgh根据题目给出的条件,可得:1/2 mv^2 + mgh = 1/2 m(10)^2 + m(10)(10)= 50m + 100m= 150m因此,滑到底部时的速度为10 m/s。
习题二:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的时间是多少?解答:根据运动学中的运动方程,可以求解物体滑下斜面所用的时间。
在这个问题中,物体的初速度为0,加速度为重力加速度g,位移为斜面的长度L。
根据运动方程:S = ut + 1/2 at^2L = 0 + 1/2 gt^22L = gt^2t^2 = 2L/gt = sqrt(2L/g)根据题目给出的条件,斜面的长度L为10 m,重力加速度g为10 m/s^2,代入上述公式可得:t = sqrt(2(10)/10)= sqrt(2)≈ 1.414 s因此,滑到底部时的时间约为1.414秒。
习题三:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的加速度是多少?解答:根据牛顿第二定律,物体在斜面上滑动时受到的合力等于物体的质量乘以加速度。
在这个问题中,物体的质量为m,斜面的倾角为θ,重力加速度为g。
合力 = m * 加速度m * g * sinθ = m * 加速度加速度= g * sinθ根据题目给出的条件,斜面的倾角θ为30度,重力加速度g为10 m/s^2,代入上述公式可得:加速度= 10 * sin(30°)≈ 5 m/s^2因此,滑到底部时的加速度约为5 m/s^2。
大学物理简明教程第四章习题答案

第四章 电磁学基础静电学部分解:平衡状态下受力分析 +q 受到的力为:20''41r qq F qq πε=ϖ()()24441l q q F q q πε=ϖ处于平衡状态:()04'=+q q qq F F ϖϖ()0441'412020=+l qq r q q πεπε (1) 同理,4q 受到的力为:()()()20'44'41r l q q F q q -=πεϖ()()204441l q q F q q πε=ϖ ()()04'4=+q q q q F F ϖϖ()()()04414'412020=+-l q q r l q q πεπε (2)通过(1)和(2)联立,可得: 3l r =,q q 94'-=解:根据点电荷的电场公式:re r q E ϖϖ2041πε=点电荷到场点的距离为:22l r +22041l r qE +=+πε 两个正电荷在P 点产生的电场强度关于中垂线对称:θcos 2//+=E E0=⊥E22cos lr r +=θ所以:()232202222021412cos 2l r qrlr r l r qE E +=++==+πεπεθqlq+当l r >> 202024121r q r q E πεπε==与点电荷电场分布相似,在很远处,两个正电荷q 组成的电荷系的电场分布,与带电量为2q 的点电荷的电场分布一样。
解:取一线元θλRd dq =,在圆心处产生场强:20204141R Rd R dq dE θλπεπε==分解,垂直x 方向的分量抵消,沿x 方向 的分量叠加:RR Rd dEx00202sin 41πελθθλπεπ==⎰⎰方向:沿x 正方向解:(1)两电荷同号,电场强度为零的点在内侧; (2)两电荷异号,电场强度为零的点在外侧。
解:线密度为λ,分析半圆部分:θλλrd dl dq ==点电荷电场公式:r e r q E ϖϖ2041πε=在本题中: 241rrd E θλπε=电场分布关于x 轴对称:θθλπεθsin 41sin 2r rd E E x ==,0=y E进行积分处理,上限为2π,下限为2π-:rd r r rd E E 000022sin 4sin 41sin πελθθπελθθλπεθππ====⎰⎰⎰方向沿x 轴向右,正方向 分析两个半无限长:)cos (cos 4d sin 4210021θθπελθθπελθθ-===⎰⎰xx dE E x x )sin (sin 4d cos 4120021θθπελθθπελθθ-===⎰⎰xx dE E y yx21πθ=,πθ=2, x E x 04πελ=,xE y 04πελ-= 两个半无限长,关于x 轴对称,在y 方向的分量为0,在x 方向的分量:rr E E x 002422πελπελ=== 在本题中,r 为场点O 到半无限长线的垂直距离。
大学物理第四章习题解答

l
v v
O
以杆、摆锤和地球为整体,该系统在 摆动过程中机械能守恒,选择最低点 为重力势能零点。若刚好能完成一次
m/
A
m
/
v v 2
圆周运动,则系统在最高点的角速度 为0。
/ / 11 / 2 2 m gl 3m gl / 2 = + 2m / gl m l + m l ω0 + 23 2 2
解:有心力对地心的力矩为零, 有心力对地心的力矩为零, 卫星 m 对地心 o 角动量守恒
v 2 h2 r r 1
h1 m
mv1r1 = mv2 r2
卫星与地球系统机械能守恒: 1 2 GmM 1 2 GmM mv1 − = mv2 − 2 r1 2 r2
24
v1
r1 = R + h1 , r2 = R + h2
0
6
−t / τ
d ( − )]
t
τ
= ω 0 [t
−t / τ 6 + τe ]0
= 9[6 + 2(e −6 / 2 - e 0 )] = 36.9 rad
∆θ N= = 5.87 (圈) 2π
N ≠ ∆θ
6
4 − 9:一飞轮由一直径为30cm,厚度为2cm的圆盘和两个直径都为10cm ,长为8cm的共轴圆柱体组成,设飞轮的密度为7.8 ×103 kg / m 3,求飞轮 对轴的转动惯量。
有两个力作用在一个有固定转轴的刚体上: 4-1 有两个力作用在一个有固定转轴的刚体上: 力都平行于轴作用时 (1)这两个力都平行于轴作用时, )这两个力都平行于轴作用时, 对轴的 一定是零 它们对轴 合力矩一定是 它们对轴的合力矩一定是零; 力都垂直于轴作用时 (2)这两个力都垂直于轴作用时, )这两个力都垂直于轴作用时, 它们对轴的合力矩可能是 合力矩可能 它们对轴的合力矩可能是零; 合力为零时 (3)当这两个力的合力为零时, )当这两个力的合力为零 它们对轴的合力矩也一定是零 合力矩也一定是 它们对轴的合力矩也一定是零; 4)当这两个力对轴的合力矩为 (4)当这两个力对轴的合力矩为 它们的合力也一定是零 合力也一定是 零时,它们的合力也一定是零。 对上述说法正确的是( 对上述说法正确的是( B ) (A) 只有 是正确的 只有(1)是正确的 (B) (1)(2)正确,(3)(4)错误 正确, 正确 错误 (C) (1)(2)(3)都正确,(4)错误 都正确, 错误 都正确
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--- ------ -- --- 啪诫”彳--- ----- --- ------第四章刚体的定轴转动4-1半径为20cm的主动轮,通过皮带拖动半径为无相对滑动,主动轮从静止开始作匀角加速度转动,在主动轮在这段时间内转过了________________ 圈。
解:被动轮边缘上一点的线速度为v22r 28 n 0.5 4 n m/s在4s内主动轮的角速度为1V1V2 4 n20 n rad/sr1r10.2主动轮的角速度为11020n 5 n rad/?t4在4s内主动轮转过圈数为121(20 n^ …N20 (圈)2 n2 1 2 n 2 5 nt= 0时角速度为0= 5rad/s, t= 20s时角速度为, t= 0到t= 100s时间内飞轮所转过的角解:由于飞轮作匀变速转动,故飞轮的角加速度为t= 0到t = 100s时间内飞轮所转过的角度为1 2 1 20t — t2 5 100 — ( 0.05) 1002 250rad2 24H3转动惯量是物体_____________ 量度,决定刚体的转动惯量的因素有 _______________________解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4T如图4-1,在轻杆的b处与3b处各系质量为2m和m的质点,可绕0轴转动,则质点系的转动惯量为____________________________解:由分离质点的转动惯量的定义得2J m i r i2 2mb2 m(3b)2 11mb2i 14-5 一飞轮以600r/min的转速旋转,转动惯量为2.5kg m2,现加一恒定的制动力矩使飞轮在1s内停止转动,则该恒定制动力矩的大小M = _________ 。
解:飞轮的角加速度为制动力矩的大小为M J 2.5 ( 20n) 50 d N m负号表示力矩为阻力矩。
50cm的被动轮转动,皮带与轮之间4s内被动轮的角速度达到8 n /s则4T2绕定轴转动的飞轮均匀地减速,0.8 o,则飞轮的角加速度=0 0.8 5 5t 2020.05rad /s___ 0 0 600 2/60t 120rad/ s2图4-1A •只有(1)是正确的B . (1)、(2)正确,(3 )、(4)错误-- ------ --- --- 时 & 诫吠 --- ----- --- ------4-6半径为0.2m ,质量为1kg 的匀质圆盘,可绕过圆心且垂直于盘的轴转动。
现有一变力F=5t ( SI )沿切线方向作用在圆盘边缘上,如果圆盘最初处于静止状态,那么它在 3秒末的角加速度为 _________________ ,角速度为 _________________ 。
解:圆盘的转动惯量为1 2 1 2 2 JmR 21 (0.2)20.02kg m 2。
3秒末的角加速度为45rad/s4-7角动量守恒定律成立的条件是 ________________________________解:刚体(质点)不受外力矩的作用或所受的合外力矩为零。
4 -8以下运动形态不是平动的是 [ ]。
解:火车在拐弯时,车厢实际是平动和转动的合成,故不是平动,应选(B )。
4 -9以下说法错误的是[]。
A .角速度大的物体,受的合外力矩不一定大 B. 有角加速度的物体,所受合外力矩不可能为零 C. 有角加速度的物体,所受合外力一定不为零D. 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零解:角速度大的物体,角加速度不一定大,由于M J ,所以它所受的合力矩不一定大;如果一个物体有角加速度,则它一定受到了合外力矩的作用;合外力矩不等于零,不等 于所受的合力一定不为零, 如物体受到了一个大小相等,方向相反而不在一条直线上的力的作用;当物体作定轴(轴过质心)转动时,质心此时的加速度为零,根据质心运动定律,它 所受的合外力一定零。
综上,只有(C )是错误的,故应选(C )。
4-10有两个力作用在一个有固定转轴的刚体上:[](1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
在上述说法中M 0.2 5t 10t 10 3 30rad/sJ0.0210t ddtd10tdtt 0时, 0,得d3 10tdt由即对上式积分,并利用初始条件:A .火车在平直的斜坡上运动B •火车在拐弯时的运动C .活塞在气缸内的运动D •空中缆车的运动-- ------- -- --- 啪 Sr 诫"彳 . .... — -- ------C . (1 )、(2)、( 3)都正确,(4)错误D . (1 )、(2)、( 3)、(4)都正确解:这两个力都平行于轴作用时,它们对轴的矩都为零,自然合力矩为零,故(1)正确;当两个力都垂直于轴作用时,如果两个力大小相等、方向相反,作用在物体的同一点, 则它们的合力矩为零,或两个力都通过转轴,两力的力矩都等于零,合力矩也等于零,但如 两力大小不等,方向相反,也可通过改变力臂,使两力的合力矩为零,如此时力臂相同,贝U 合力矩不等于零,因此(2)也时正确的;当这两个力的合力为零时,还要考虑力臂的大小, 所以合力矩不一定为零,故( 3)是错误的;两个力对轴的合力矩为零时,因 M r F ,所以它们的合力不一定为零,故(4)也是错误的。
故答案应选(B )。
4-11 一圆盘正绕垂直于盘面的水平光滑固定轴0转动。
如图4-2所示,射来两个质量并在同一条直线上的子弹。
子弹射入并且停留在圆盘内, 与射入前角速度 °相比[ ]。
解:人站在转台中心时,他相对于转台中心的角动量为零。
当人沿半径向外跑去,至y 达相同、速度的大小相同而方向相反, 则子弹射入的瞬间,圆盘的角速度A •增大B •不变C .减小D .不能确定解:设射来的两子弹的速度为v ,对于圆盘和子弹组成的系统来说, 无外力矩作用,故系统对轴0的角动量守恒,即mvd mvd J ° ° J式中mvd 这子弹对点0的角动量,J 。
为子弹射入前 盘对轴0的转动惯量,J 为子弹射入后系统对轴的转动惯量。
由于 J 0 J ,则 °。
故选(C )。
4-12如图4-3所示,有一个小块物体,置于一个光滑水平桌面上。
有一绳其一端连接此物体,另一端穿过中心的小孔。
该物体原以角速度 3在距孔为r 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 []。
A .角速度减小,角动量增大,动量改变 B. 角速度不变,动能不变,动量不变 C. 角速度增大,角动量增大,动量不变 D. 角速度增大,动能增加,角动量不变解:在拉力绳子的过程中,力对小球的力矩为零,故小球的角动量在转动过程中不变,有 J 1 1 J 2 2。
当小球的半 径减小时,小球对0点的转动惯量减小,即 J 1 J 2,故22,角速度增大,小球转得更快。
又由J 1 1 J 2 2可得mv 1r 1 mv 2r 2,因r 1 r 2,所以v 2 v 1,故小球的动能增 加,小球的动量也要发生变化。
故选(D )4-13有一半径为R 的水平圆转台,可绕过其中心的竖直 固定光滑轴转动,转动惯量为J 。
开始时,转台以角速度 °转动,此时有一质量为 M 的人站在转台中心,随后人沿半径向外跑去。
当人到达转台边缘时, 转台的角速度为[]。
JJ MR 2J(J M )R 2J 0 C .图4-2图4-3----- -------------- ---------- ----- 布 诫”彳 -------------------- ------ -------------- ------ 转台边缘的过程中, 不受外力矩作用,人和转台组成的系统角动量守恒, 由于人是沿半径方 向走,故人和转台的角速度相同,相对于转台中心有角动量 MvR M R 2。
根据角动量守恒, 可列方程得J 0 JMR 2故J2 J MR 2所以应选(A )。
4-4一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力矢量和 为零,则此系统[]。
A .动量、机械能、角动量均守恒 B. 动量、机械能守恒,角动量不守恒C. 动量守恒,但机械能和角动量是否守恒不能断定D. 动量、角动量守恒,但机械能是否守恒不能断定解:由于两质点系所受的合外力为零,故系统的动量守恒。
当质点所受的合外力不是共点力时,尽管两质点所受的合外力矢量和为零,但力矩不为零,则物体将转动,从而改变系 统的机械能和角动量,而当质点所受的合外力为共点力,且外力矢量和为零时,质点所受的力矩将为零。
则系统的机械能和角动量将守恒,所以,应选(C )。
4 T 20两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮。
小圆盘的半径 为r ,质量为 m ;大圆盘的半径r = 2r ,质量m = 2m 。
组合轮可绕通过其中心且垂直于盘 面的光滑水平固定轴 O 转动,对O 轴的转动惯量 J = 9mr 2/2。
两圆盘边缘上分别绕有轻质 细绳,细绳下端各悬挂质量为 m 的物体A 和B ,如图4-7所示。
这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变。
已知 r=10cm 。
求:(1)组合轮的角加速度;(2)当物体A 上升h = 40cm 时,组合轮的角速度。
4七。
A 、B 看成质点,应用牛顿第二定律。
滑轮是刚体,应用刚体转动定律,得A1 B►mg I r图4-8解:(1)各物体受力情况如图 图4-7T *-- ------ --- --- 啪 ............. — -- -----a r由上述方程组,代入题给已知条件可得空 10.3rad/s 2 19r(2)设B 为组合轮转过的角度,则h 0.4 4rad r 0.1所以组合轮的角速度为2 . 2 10.34 9.08rad/s4E4如图4-14所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为s -------- 2工— 20kg m 2,开始时,A 轮转速为600转/分, B 轮静止,C 为摩擦啮合C 的左右组件啮合(1)两轮啮合后的转速n ; (2)两轮各自所受的冲量矩。
解:选A 、B 两轮为系统,合外力矩为零, 正号表示冲量矩与方向相同。
4T 26如图4-15所示,一质量 M ,半径为R 的圆柱,可绕固定的水平轴0自由转动。
今有一质量为 m ,速度为v 0的子弹,水平射入静止的圆柱下部(近似看作在圆柱边缘) ,且停留在圆柱内(v o 垂直于转轴)。
求:(1)子弹与圆柱的角速度;(2)该系统损失的机械能。