高中数学等价转化思想方法

合集下载

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

中学数学思想与逻辑:11种数学思想方法总结与例题讲解中学数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟识化原则,即将生疏的问题转化为熟识的问题;2、简洁化原则,即将困难问题转化为简洁问题;3、直观化原则,即将抽象总是详细化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,假如从下面入手思维受阻,不妨从它的正面动身,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,状况困难,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简洁多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较困难的数学问题却须要从总体上去把握事物,不纠缠细微环节,从系统中去分析问题,不单打独斗.例2:一个四面体全部棱长都是,四个顶点在同一球面上,则此球表面积为( )A、B、C、D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,简洁出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培育学问迁移实力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相像性,奇妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合.解A= :分两种状况探讨(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种状况探讨:(i) B={-1},则=-1,a=-1(ii)B={1},则=1,a=1.(二级分类)综合上述所求集合为.例题2、设函数f(x)=ax -2x+2,对于满意1x4的一切x值都有f(x) 0,求实数a的取值范围.例题3、已知,试比较的大小.于是可以知道解本题必需分类探讨,其划分点为.小结:分类探讨的一般步骤:(1)明确探讨对象及对象的范围P.(即对哪一个参数进行探讨);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级探讨.;(3)逐类探讨,获得阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

关于数学中最重要的思想--转化思想63

关于数学中最重要的思想--转化思想63

关于数学中最重要的思想--转化思想摘要在中学数学教学中,转化思想既是一种解题方法,也是一种思维策略。

转化就是把不常见的问题转化为常见的、熟悉的问题来考虑,通过转化,化一般为特殊,化非典型为典型,化复杂为简单,化未知为已知等。

本文通过分析数学转化思想的重要性以及理论基础,对其常见的基本形式和培养方法进行了探讨。

关键词中学数学教学转化思想理论依据运用策略所谓转化思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择恰当的数学方法进行变换,转化为在已知知识范围内已经解决或容易解决的问题的思想。

布卢姆在《教育目标分类学》中指出:数学转化思想是“把问题元素从一种形式向另一种形式转化的能力”,它可以从语言描述向图形表示转化,或从语言表达向符号形式的转化,或是每一种情况反过的转化。

这种数学转化包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。

简而言之,数学转化思想就是通过数学内部的联系和矛盾运动,在转变中实现问题的规范化,将待解问题转化为规范问题从而使原问题得到解决的方法。

(一)数学转化思想的重要性转化思想贯穿在数学解题的始终,在解题过程中,常常需要把抽象的概念直观化、隐蔽的条件明显化、复杂的关系简单化,善用转化思想往往能使我们更深刻地领会问题的实质,有助于理解各知识体系间的相互联系,也更有利于各知识体系间的融合。

有意识地运用数学变换方法,将有利于提高数学解题的应变能力和技巧。

一方面,通过转化能优化解题方法。

有些数学问题通过转化,不只是获得了解决,更重要是获得了解法的优化。

另一方面,通过转化能揭露问题的本质。

有不少数学问题,在原来提出这一问题的领域内很难解决,甚至无法解决,如果把问题转化到另一领域中,就可以迎刃而解了。

(二)数学转化思想的理论基础辩证唯物主义:辩证唯物主义认为任何事物内部均存在着矛盾,客观世界是充满矛盾的统一体,是具有普遍联系的,事物处于运动变化中而又在一定条件下互相转化,从而推动事物的发展。

高中数学集合中的数学思想 学法指导

高中数学集合中的数学思想 学法指导

高中数学集合中的数学思想集合是近代数学中最基础、最重要的概念之一。

高考所考查的有关集合问题的主要类型有两种:一是直接考查集合本身的问题;二是以集合为载体,综合其他数学知识构成的综合问题。

下面举例说明蕴含在集合中的数学思想。

一、数形结合思想例1 集合},1)()(|),{(22R a a y a x y x A ∈≤-+-=,}2|||||),{(≤+=y x y x B ,a 为何实数时,B A ⋂表示的平面区域的面积最大?解析:集合A 表示的平面区域是圆心为(a ,a )、半径为1的圆及其内部,其位置由实数a 唯一确定。

集合B 表示的平面区域是以四个点(2,0)、(0,2)、(2-,0)和(0,2-)为顶点的正方形及其内部。

显然,当且仅当圆1)()(22=-+-a y a x 内切于正方形时,B A ⋂表示的平面区域面积最大。

此时,B A ≠⊂,如图所示。

由图可知此时圆心坐标为(0,0),即0=a 时,B A ⋂表示的平面区域的面积最大。

22 2- 2- yx点评:看似无从下手的一道综合题,通过采用数形结合的思想,便迎刃而解了。

运用数形结合思想时,要特别注意端点值,做到准确无误。

二、分类讨论思想例2 集合{}0103|2≤--=x x x A 与集合{}121|-≤≤+=m x m x B ,满足A B ⊆,求实数m 的取值范围。

解析:由A B ⊆可知B 有两种情况:其一,B 为非空集合,且B 中所有元素均为A 中的元素;其二,B 为空集。

易知{}52|≤≤-=x x A 。

①当Φ≠B 时,51212≤-≤+≤-m m ,解得32≤≤m 。

②当Φ=B 时,112+<-m m ,解得2<m 。

综合①②知,满足A B ⊆的实数m 的取值范围是3≤m 。

点评:解含有参数的集合问题时,最直接的办法就是运用分类讨论的思想,但在分类讨论时要注意不重不漏。

三、等价转化思想例3 设集合},1|{R x x y y M ∈+==,集合},1|{2R x x y y N ∈+==,求N M ⋂。

高中数学x等价转化方法

高中数学x等价转化方法

等价转化方法例题分析遵循以下五项基本原则: (1)化繁为简的原则. (2)化生为熟的的原则. (3)等价性原则. (4)正难反则易即逆向思维原则.当问题从正面解决困难时,可以转化为问题的逆否命题或考虑反证法.(5)形象具体化原则. 1.用构造法实现化归与转化例 已知,3232,x y y x R y x --+>+∈且那么( )0y x .<+A 0y x .>+B 0 x y .<C 0 xy .>D分析:移项联想构造 解:把原不等式化为y y xx3232->---,即)(3232y y x x ----->-.设.32)(x x x f --=因为函数x x --3,2均为R 上的增函数,所以xx x f --=32)(是R 上的增函数. 不等式)(3232y y xx----->-即)()(y f x f ->,0>+->∴y x y x 即,故选B .2.用特殊化法实现化归与转化例 已知|,0,3||,1|=⋅==点C 在ABC ∠内,且30=∠AOC .设),(R n m n m ∈+=,则=nm( ) 31 .A 3 .B 33.C 3 .D解析:本题若按通常解法,需要根据向量所给出的平面几何关系,把n m +=两边平方后,得到n m ,关系式,从中求出nm,比较繁琐.现在如果把n m ,特殊化,如取1=m 则OB AC //.由AC OA AOC ⊥=∠=,30,1|| 得33||=,所以31=n ,则3=n m ,由此判断选择D C A ,,错误。

3.转换变量实现化归与转化(变换主元)例设1log )2()(log 222+--+=t x t x y ,若t 在]2,2[-上变化时,y 恒取正值,求x 的取值范围.分析:转换思维角度,把y 看作t 的函数,则y 就是关于t 的一次函数或常数函数.原命题的陈述方式变为:关于t 的函数y ,当自变量t 在]2,2[-上变化时,y 恒大于零,求字母x 的取值范围. 解:设.1log 2)(log )1(log )(2222+-+-==x x t x t f y 则)(x f 为一次函数或常数函数.当]2,2[-∈t 时,0)(>x f 恒成立,则⎩⎨⎧>>-,0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-01log 03log 4log 22222x x x ,解得1log 2-<x 或210,3log 2<<∴>x x 或8>x ,所以x 的取值范围是).,8()21,0(+∞4.用换元法实现化归与转化例已知,R a ∈求函数)cos )(sin (x a x a y --=最小值. 解:设x x t cos sin +=,则].2,2[),4sin(2-∈+=t x t π而),1(21]1)cos [(sin 21cos sin 22-=-+=⋅t x x x x 所以x x x x a a t f y cos sin )cos (sin )(2⋅++-==2121)1(212222-+-=-+-=a at t t at a ].2,2[,2121)(2122-∈-+-=t a a t (1)若22≤≤-a 时,当;2121)(,2min -==a t f a t(2)若2>a 时,)(t f 在]2,2[-上单调递减,;212)2()(2min +-==a a f t f(3)若2-<a ,)(t f 在]2,2[-上单调递增,212)2()(2min ++=-=a a f t f .5.用数形结合实现化归与转化例 已知不等式22)12(x a x ⋅<-的解集中只有三个整数解,求实数a 的取值范围. 解:要使不等式22)12(x a x ⋅<-的解集中只有三个整数解,那么这三个解只能是3,2,1.所以⎩⎨⎧≥<)4()4()3()3(g f g f 即⎪⎩⎪⎨⎧⋅≥⋅<22224735a a 解得.1649925≤<a 这就是实数a 的取值范围. 6.用分离变量法实现化归与转化例5 若不等式012≥++ax x 对一切]21,0(∈x 成立,则a 的最小值为 .解: )1(x x a +-≥对一切]21,0(∈x 成立,则25-≥a ,所以a 的最小值为25-.7.用导数实现化归与转化 例7 已知函数22()ln (0)f x x a x x x=++>, (I )令1a =,求函数()f x 在2x =处的切线方程; (Ⅱ)若()f x 在[1,)+∞上单调递增,求a 的取值范围. 解:(I )02ln 34=+--y x (Ⅱ)0a ≥.备注函数在一个区间上为增函数的充要条件是导数只在该区间上大于等于0(但仅在有限个点处的导数值为零)8.利用命题的否定或反证法实现化归与转化例 已知下列三个方程: 03442=+-+a ax x , 0)1(22=+-+a x a x ,0222=-+a ax x 至少有一个方程有实数根,求实数a 的取值范围.分析:若从题设入手,三个方程至少有一个有实数根,则需要分为三类,即有一个方程有实根,有两个方程有实根, 有三个方程有实根.而且前两类中又各有三种情况,比较复杂.因此考虑该问题的相反情况即:三个方程都没有实根.求得a 的范围后,再在R 上求补集.该转化较好的体现了正难反则易的思想.解:假设三个方程均无实根,则有⎪⎩⎪⎨⎧<--<-<+--)()()(3 0)2(4)2(2 041)-(a 1 0)34(4)4(2222a a a a a ,解(1)得:,2123<<-a 解(2)得:,311>-<a a 或解(3)得:.02<<-a 所以三个方程均无实数解时.123-<<-a 因此三个方程至少有一个实数解时a 的取值范围是123-≥-≤a a 或. 9.利用归纳类比实现化归与转化例 在球面上有四个点C B A P 、、、,如果PC PB PA 、、两两互相垂直,如图2所示,且,a PC PB PA ===那么这个球面的面积是( )223 .a A π 223 .a B π 23.a C π 2433 .a D π解析:球的半径a r 23=,球的表面积2234a r S ππ==.故选C . 【扩展】1.某小组共10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )解析:选B .利用正难则反转化:2.已知a >0,f(x)=ax 2-2x+1+ln(x+1),l 是曲线y=f(x)在点P(0,f(0))处的切线. (1)求l 的方程;(2)若切线l 与曲线y=f(x)有且只有一个公共点,求a 的值;PABC图2(3)证明:对于任意的a=n(n∈N*),函数y=f(x)总有单调递减区间,并求出f(x)的单调递减区间的长度的取值范围.(区间[x1,x2]的长度=x2-x1)【解析】(1)∵f(x)=ax2-2x+1+ln(x+1),f(0)=1.∴f′(0)=-1,即切点P(0,1),l斜率为-1,∴切线l的方程:y=-x+1.(2)切线l与曲线y=f(x)有且只有一个公共点等价于方程ax2-2x+1+ln(x+1)=-x+1,即ax2-x+ln(x+1)=0有且只有一个实数解.令h(x)=ax2-x+ln(x+1),则方程h(x)=0有且只有一个实数解.∵h(0)=0,∴方程h(x)=0有一解x=0.3.设函数f(x)=x2-mlnx,h(x)=x2-x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.。

核心素养下高中数学解题中转化思想方法的应用

核心素养下高中数学解题中转化思想方法的应用

核心素养下高中数学解题中转化思想方法的应用发布时间:2021-07-12T13:17:30.513Z 来源:《现代中小学教育》2021年6月上作者:李宗平[导读] 数学一向被称为是思维的体操,其中高中数学作为数学学习的重要阶段,更是促使学生思维能力和品质迅速发展的重要时期。

高中数学对学生的思维能力的养成有着更高度要求,特别是高中数学自身有着明显的抽象性,而抽象素养作为思维活动所必备的一种素养,也是思维的一种重要形式,是高中数学学习的重要能力。

甘肃省嘉峪关市酒钢三中李宗平摘要:数学一向被称为是思维的体操,其中高中数学作为数学学习的重要阶段,更是促使学生思维能力和品质迅速发展的重要时期。

高中数学对学生的思维能力的养成有着更高度要求,特别是高中数学自身有着明显的抽象性,而抽象素养作为思维活动所必备的一种素养,也是思维的一种重要形式,是高中数学学习的重要能力。

抽象素养是指学生在学习过程中,人脑与数学思维对数量关系、空间形式等相互作用并按照一般思维规律认识数学内容的内在理想活动能力。

因此在教学中要重视解题中转化思想的应用。

本文以教学中的转化思想为切入点用探讨高中数学学习的方法性。

关键词:核心素养;高中数学;解题;转化思想1.引言高中数学课堂上对学生进行学科核心素养培养是一贯有之的,只是在传统教学模式下数学学科学生的核心素养仅是要求学生具备优秀而完备的数学运算能力与数学逻辑能力,这显然是无法满足现今社会发展需要的。

对于现今社会发展需求下的数学学科而言,需要学生具备思考数学定理、实验数学并表述、总结等能力,这就对学生数学学习思维提出了较高的要求。

为了能够平顺的提升学生的核心素养,高中数学教师要对传统教学形式与理念进行变通或改革,以适应新的教学要求,形成新的教学策略。

本文充分立足于教学实际,在调研的基础上,充分利用现有的在高中数学中的转化思想主要体现在数形转化、主次转化和等价转化这几个重要方面,在教学中要结合具体的教学内容进行探索。

高中数学常用思想方法

高中数学常用思想方法

高中数学常用的思想方法摘要:在数学教学的每一个环节中,都要重视数学思想方法的教学。

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。

关键词:数学方法思想中学数学教学内容从总体上可以分为两个层次:一个称为基础知识,另一个称为深层知识.基础知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。

基础知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的基础知识后,才能进一步的学习和领悟相关的深层知识。

深层知识蕴含于基础知识之中,是数学的精髓,它支撑和统帅着基础知识。

实施以培养创新精神和实践能力为重点的素质教育,是我国面向二十一世纪的战略选择,是教育走向现代化的开端。

那种只重视讲授基础知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略基础知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个基础知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。

这也是数学思想方法教学的基本原则。

一、函数与方程的思想方法函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种动态刻画。

因此,函数思想的实质是提取问题的数学特征,用联系的变化的观点提出数学对象,抽象其数学特征,建立函数关系。

很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的。

函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维。

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。

更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。

一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。

A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。

A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。

A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。

A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。

二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

高考数学复习化归与转化思想

高考数学复习化归与转化思想

高考数学复习化归与转化思想佚名知识整合1.解决数学问题时,常遇到一些问题直截了当求解较为困难,通过观看、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为化归与转化的思想方法。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

2.化归与转化思想的实质是揭示联系,实现转化。

除极简单的数学问题外,每个数学问题的解决差不多上通过转化为已知的问题实现的。

从那个意义上讲,解决数学问题确实是从未知向已知转化的过程。

化归与转化的思想是解决数学问题的全然思想,解题的过程实际上确实是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,差不多上转化思想的表达。

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。

”因此看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。

高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。

第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

“转化与化归”思想在高中数学解题教学中的应用

“转化与化归”思想在高中数学解题教学中的应用

解题研究2023年12月上半月㊀㊀㊀转化与化归 思想在高中数学解题教学中的应用◉哈尔滨师范大学教师教育学院㊀李㊀硕㊀㊀转化与化归 思想是高学数学中的一种重要的数学思想,运用非常广泛,尤其是一些特殊的问题,运用 转化与化归 思想解题可以提高效率,同时还可以降低问题解决的难度.因此,在数学课堂引入并应用转化与化归思想,能够让学生在学习数学及解题的过程中,加深对数学概念的理解,同时也能有效锻炼数学思维,提高学习效率,进一步发展数学核心素养.在高中数学的解题过程中,基于 转化与化归 思想的三大原则,主要运用的解题方法包括特殊与一般的转化㊁命题的等价转化,以及函数㊁方程㊁不等式之间的转化等一些常见的转化方法.1特殊与一般的转化将一般问题进行特殊化处理,可使问题的解决变得更为直接和简便,并且还能从特殊情况中寻找问题解决的常规思维;除此之外,对特殊性问题进行概括性研究,实现特殊问题一般化,也能从宏观与全局的角度把握特殊性问题的普遍规律,并能有效地解决特殊性问题.例1㊀ 蒙日圆 涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为(㊀㊀).A.x 2+y 2=9㊀㊀㊀㊀㊀B .x 2+y 2=7C .x 2+y 2=5D.x 2+y 2=4分析:根据题目中的已知条件,在椭圆上,两条相互垂直的切线可以随意选择,但其交点位于与椭圆同心的圆却是唯一的,也即答案是唯一的.由此,可以通过选取一般问题的特殊情形找到一般的解题思路,不妨利用过椭圆的右顶点和上顶点的两条切线进行解题.解:因为椭圆C :x 2a +1+y 2a=1(a >0)的离心率为12,所以1a +1=12,解得a =3.所以椭圆C 的方程为x 24+y 23=1,且椭圆C 的上顶点为A (0,3),右顶点为B (2,0),则椭圆在A ,B 两点的切线方程分别为y =3和x =2,这两条切线的交点坐标为M (2,3).由题意可知,交点M 必在一个与椭圆C 同心的圆上,可得与椭圆C 同心的圆的半径r =22+(3)2=7.所以椭圆C 的蒙日圆方程为x 2+y 2=7.故选:B .以问题的特征为依据,对命题进行转化,将原问题转化为与之相关的㊁容易解决的新问题,这也是解决数学问题常见的转化思路,并且可以通过这种转化逐步培养识别关键信息的能力.2命题的等价转化把题目中已有的条件或者结论进行相应的转化,化难为易,是解决较难问题常用的转化手段.其主要方法包括:数与形的转化㊁正与反的转化㊁常量与变量的转化㊁图形形体及位置的转化等.例2㊀由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,得m 的取值范围是(-ɕ,a ),则实数a 的值是.分析:利用转化思想可以将命题 存在x 0ɪR ,使e |x -1|-m ɤ0 是假命题转化为 对任意x ɪR ,e|x -1|-m >0是真命题,由此得出m <e |x -1|恒成立,进而通过m 的取值范围来求a 的值.解:由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,可知 对任意x ɪR ,e |x -1|-m >0是真命题,由此可得m 的取值范围是(-ɕ,1),而(-ɕ,a )与(-ɕ,1)为同一区间,故a =1.例3㊀若对于任意t ɪ[1,2],函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是.分析:根据函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,可以利用正难则反的转化思想先找出g (x )在(t ,3)上单调的条件,再利用补集思想求出m 的取值范围.852023年12月上半月㊀解题研究㊀㊀㊀㊀解:求得g ᶄ(x )=3x 2+(m +4)x -2.若g (x )在(t ,3)上单调递增,则g ᶄ(x )ȡ0,即3x 2+(m +4)x -2ȡ0,亦即m +4ȡ2x-3x 在x ɪ(t ,3)上恒成立.故m +4ȡ2t-3t 在t ɪ[1,2]上恒成立,则m +4ȡ-1,即m ȡ-5.若g (x )在(t ,3)上单调递减,则g ᶄ(x )ɤ0,即m +4ɤ2x-3x 在x ɪ(t ,3)上恒成立,所以m +4ɤ23-9,即m ɤ-373.综上,符合题意的m 的取值范围为-373<m <-5.根据命题的等价性对题目条件进行明晰化处理是解题常见的思路;对复杂问题采用正难则反的转化思想,更有利于问题得到快速解答.3函数㊁方程㊁不等式之间的转化函数与方程㊁不等式之间有着千丝万缕的关联,通过结合函数y =f (x )图象可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例4㊀若2x -2y<3-x -3-y ,则(㊀㊀).A.l n (y -x +1)>0B .l n (y -x +1)<0C .l n |x -y |>0D.l n |x -y |<0分析:由题意,可将2x -2y<3-x -3-y 转化为2x -3-x <2y-3-y ,进而实现不等式与函数之间的转化,从而解得答案.解:由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .故构造函数y =2x -3-x ,即y =2x -(13)x.由于函数y =2x-(13)x 在R 上单调递增,因此x <y ,即y -x +1>1.所以l n (y -x +1)>l n 1=0.故选择:A .例5㊀已知函数f (x )=e l n x ,g (x )=1ef (x )-(x +1).(e =2.718 )(1)求函数g (x )的最大值;(2)求证:1+12+13+ +1n >l n (n +1)(n ɪN +).分析:第(1)问要求函数g (x )的最大值,关键在于需要运用转化与划归思想,通过g ᶄ(x )得出函数g (x )单调性,即可求出g (x )的最大值.将第(1)问得出的g (x )最大值-2转化成l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立),再利用换元法最终证明出结论.解:(1)由g (x )=1ef (x )-(x +1),即g (x )=l n x -(x +1),得g ᶄ(x )=1x-1(x >0).令g ᶄ(x )>0,则0<x <1;令g ᶄ(x )<0,则x >1.所以,函数g (x )在区间(0,1)上单调递增,在区间(1,+ɕ)上单调递减.故g (x )的最大值为=g (1)=-2.(2)证明:由(1)知x =1是函数g (x )的极大值点,也是最大值点,故g (x )ɤg (1)=-2.所以l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立).令t =x -1,则有t ȡl n (t +1)(t >-1).取t =1n (n ɪN +),则有1n >l n (1+1n)=l n(n +1n ).故1>l n2,12>l n 32,13>l n 43,,1n>l n(n +1n ).上面n 个不等式叠加,得1+12+13+ +1n>l n (2ˑ32ˑ43ˑ ˑn +1n)=l n (n +1).故1+12+13+ +1n >l n (n +1)(n ɪN +).在分析此类题目的过程中,利用函数㊁方程㊁不等式进行转化与化归更有利于问题的解决,因此,利用转化与划归思想不仅能让整个数学知识的体系变得更加紧密,同时也能对学生从系统性角度掌握数学知识之间的联系提供非常大的帮助.转化与化归思想所蕴含的内容丰富且深奥,为高中数学问题的解决提供了多种思路,对高中数学的学习也有极大的指导与启发作用,值得我们不断地探索与研究.因此,在解决高中数学问题的过程中,要灵活运用 转化与化归 的解题思想.有些数学问题看似复杂,但通过分析可知出题者采用的是 障眼法 ,其中有的是多余或无用的条件.同时,在高中数学课堂教学中,教师可以在解题教学过程中渗透转化与化归思想,加强学生在特殊与一般转化㊁命题的等价转化以及函数㊁方程㊁不等式之间的转化等方面的技能,逐步锻炼学生简化题目内容的能力和意识,最大程度提高解题效率.Z95。

十大数学思想方法

十大数学思想方法

十大数学思想方法数学思想是数学研究活动中解决问题的根本方法,是数学的灵魂和生命力。

因此,在教学过程中,要重视数学思想的提炼、渗透。

分析近几年的高考试题,高考中重点考察学生函数与方程思想、分类讨论思想、数形结合思想、转化或化归思想。

在不等式解题中,若能恰当地运用这些思想方法,可使许多复杂问题化难为易,化繁为简,从而达到优化解题过程,提高思维能力的目的。

一、函数与方程思想函数与方程是高中数学内容之重点,应用广泛,是解决数学问题的有力工具,在高考中占据非常重要的地位。

因此,在教学中要培养学生如何建立函数关系或构造函数,运用函数的图像、性质去分析问题,解决问题。

例1已知某∈(0,+∞),求证: 根据不等式的结构特征,恰当地构造辅助函数,此时,若均值不等式取最值时等号不成立,常常考虑利用函数的单调性来解决。

二、分类讨论思想分类讨论是数学能力培养的一个重要组成部分,在解某些数学问题时,当在整个范围内不易解决时,往往可以将这个大范围划分成若干个小范围来讨论研究。

分类讨论只能确定一个标准,必须坚持不重不漏的原则。

例2.设a为实数,函数f(某)=2某2+(某-a)|某-a|。

(1)求f(某)的最小值; (2)设函数h(某)=f(某),某∈(a,+∞)解不等式h(某)≥1评注:分类讨论的关键是要根据问题实际找到分类的标准,本题函数解析式中含有绝对值,所以首先必须分类讨论去绝对值,其次在解不等式中必须对判别式△进行讨论,当△>0时还需讨论根的大小。

分类时标准的确定须使任何两类交集为空集且并集为全集,这样才能在解题过程中,做到分类合理,并力求最简。

三、数形结合思想数与形是现实世界中客观事物的抽象与具体的反映。

数形结合思想,其实质是将代数式的精确刻划与几何图形的直观描述有机结合起来,通过对图形的处理,实现代数问题几何化,几何问题代数化。

解题时要充分进行数形转换,借助数的逻辑推演与形的直观特性求解,既直观又深刻。

例3.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。

化归与转化思想在高考数学解题中的运用

化归与转化思想在高考数学解题中的运用

GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。

高中数学转化思维方法教案

高中数学转化思维方法教案

高中数学转化思维方法教案
教学目标:
1.了解数学转化思维的重要性;
2.掌握数学转化思维的基本方法;
3.培养学生的数学思维能力和创造力。

教学内容:
1.数学转化思维的定义和意义;
2.数学转化思维的基本方法:逆向思维、类比思维、类推思维、逻辑思维等;
3.数学转化思维的应用实例。

教学过程:
第一步:引入
引导学生讨论数学转化思维在日常生活中的应用,并介绍数学转化思维的定义和意义。

第二步:基本方法的介绍
通过讲解逆向思维、类比思维、类推思维、逻辑思维等基本方法,让学生了解数学转化思
维的多样性和灵活性。

第三步:案例分析
以实际数学问题为例,引导学生运用数学转化思维方法解决问题,培养他们的逻辑推理能
力和创造力。

第四步:讨论总结
让学生讨论数学转化思维方法的优点和不足之处,总结经验教训,促进学生对数学思维的
提高和创新能力的培养。

第五步:作业布置
布置相关练习题,要求学生运用数学转化思维方法解决问题,并在下节课讲解时交流分享。

教学反思:
通过本节课的教学,学生对数学转化思维的概念和方法有了更深入的理解,也培养了他们的创造力和思维能力。

在今后的教学中,我们应该结合实际情况,更灵活地运用数学转化思维方法,使学生能够更好地应用数学知识解决实际问题。

高中三角函数三角函数的等价变换与化简

高中三角函数三角函数的等价变换与化简

高中三角函数三角函数的等价变换与化简在高中数学学习中,三角函数是一个非常重要的概念。

我们通过学习三角函数,可以解决很多与角度和长度相关的问题。

而掌握三角函数的等价变换与化简方法,将有助于我们更加灵活、快速地处理相关题目。

本文将介绍一些常见的三角函数的等价变换与化简方法。

1. 正弦函数与余弦函数的等价变换正弦函数和余弦函数是三角函数中最基础的两个函数。

它们之间存在着一些等价的关系,我们可以利用这些关系来简化问题的处理。

首先是正弦函数与余弦函数的倒数关系:sin(x) = 1/cos(x)cos(x) = 1/sin(x)利用这个倒数关系,我们可以将一个三角函数转化为另一个三角函数的倒数形式,从而更方便地进行计算。

其次是正弦函数和余弦函数的平方和关系:sin^2(x) + cos^2(x) = 1根据这个关系,我们可以将一个三角函数的平方与另一个三角函数的平方结合起来,从而消去其中的一个三角函数,从而简化问题的处理。

2. 正切函数与余切函数的等价变换正切函数和余切函数同样是三角函数中的重要函数。

它们之间也存在一些等价的关系,可以利用这些关系来进行问题的简化。

首先是正切函数和余切函数的倒数关系:tan(x) = 1/cot(x)cot(x) = 1/tan(x)利用这个倒数关系,我们可以将一个三角函数转化为另一个三角函数的倒数形式,从而方便进行计算。

其次是正切函数和余切函数的平方差关系:tan^2(x) - cot^2(x) = 1根据这个关系,我们可以将一个三角函数的平方与另一个三角函数的平方结合起来,从而消去其中一个三角函数,进而简化问题的处理。

3. 正弦函数与正切函数的等价变换正弦函数和正切函数之间也存在一些等价的关系,可以利用这些关系来进行问题的简化。

首先是正弦函数和正切函数之间的关系:sin(x) = tan(x)/√(1+tan^2(x))根据这个关系,我们可以利用正切函数来表示正弦函数,从而方便计算。

高中的数学思想方法介绍

高中的数学思想方法介绍

高中的数学思想方法介绍1.函数函数题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

高中数学等价思想总结归纳

高中数学等价思想总结归纳

高中数学等价思想总结归纳高中数学等价思想主要包括等价变形、等价代换、等价关系和等价性质四个方面。

这些等价思想在数学的各个分支领域中普遍存在,并具有重要的理论和应用价值。

下面将对这四个方面进行归纳总结。

等价变形是数学中常用的一种推理方法。

它通过对数学表达式、方程式或不等式进行一系列的代数运算,使其形式上发生变化,而保证其数学意义不变。

等价变形的核心思想是利用数学运算的性质来调整表达式的形式,以达到简化、解决问题的目的。

常见的等价变形方法有因式分解、通分、配方法、换元等。

例如,对于一元二次方程ax^2+bx+c=0,可以通过配方法将其变形为(a'x+p)^2+q=0的形式,从而更便于解方程。

等价变形在解决各种类型的数学问题中起到了重要的作用,使复杂的问题变得简单。

等价代换是利用代数等式的等价性质进行推理的方法。

它将一个数学表达式或方程中的某个量用其它的等价形式进行替代,以便于化简或求解问题。

等价代换一般包括两个步骤:找到等价量并进行替代。

等价量指的是在数学运算过程中,可以与原有量进行等价替换的数学表达式或方程。

常见的等价代换方法有因式分解、代入法、递推法等。

例如,求解二次函数f(x)=ax^2+bx+c的最值问题,可以利用等价代换将其转换为求解一元二次方程的问题,进而应用二次函数的性质完成最值问题的求解。

等价关系是指在数学领域中具有某种关联的两个数学事物之间存在着一种特定的关系。

等价关系由三个性质构成:自反性、对称性和传递性。

自反性指的是任何元素与自身之间满足这种关系;对称性指的是如果x与y之间存在这种关系,那么y与x之间也存在这种关系;传递性指的是如果x与y之间存在这种关系,y与z之间也存在这种关系,那么x与z之间也存在这种关系。

等价关系在数学中具有广泛的应用,例如,等价关系可以用于划分集合,进行分类和归纳,也可以用于构建等价类以进行证明和推理。

等价性质是在数学中常用的一种判断两个事物是否具有相同性质或结构的方法。

浅谈转化的思想在高中数学解题中的运用

浅谈转化的思想在高中数学解题中的运用

浅谈转化的思想在高中数学解题中的运用一、什么是转化思想?转化思想是指将一个问题或概念转化为另一个问题或概念,从而更好地理解和解决它。

在数学领域中,转化思想是一种重要的解题方法和思维方式。

二、转化思想在数学中的应用1.等价物和等式的转化在初中数学中,我们学习了等式的性质和运算法则,用等式解决问题。

在高中数学中,我们不仅要会解方程和不等式,还要掌握等价转化。

即将涉及到问题的等式或不等式通过变形、代数运算,化为更简单、更容易处理的形式,帮助我们更轻松地理解和解决问题。

比如,有一道经典的高中数学题:“已知a+b=1,a2+b2=2,求a3+b3的值。

”通过平方(a+b)2=a2+2ab+b2,代入a2+b2=2,得到 $ab=-\\frac{1}{2}$ 。

又因为a3+b3=(a+b)(a2−ab+b2),代入a2+b2=2和 $ab=-\\frac{1}{2}$,则有 $a^3+b^3=\\frac{9}{4}$。

这道题就运用了等价转化的思想,把原来的难题转化为新增的更加简单的问题。

2.几何意义的转化几何意义的转化是指将几何问题用代数方法解决,或者将代数问题转化为几何问题来解决。

这种方法可以提高我们对几何图形的认识,同时,也能够帮助我们更好地掌握代数方法。

例如,有一道常见的高中数学题:“证明在直角三角形中,等腰直角锐角三角形的面积最大。

”我们可以将“等腰直角锐角三角形”的两个直角A、B沿斜边延长,分别交于两点C、D。

连接CD并求出它的一半,则得到了中线MN。

因此,等腰直角锐角三角形的面积等于以中线MN为底,高为CD的面积。

等区间一半,即为性质中所述的最大面积。

这种数学方法的转化不但方便我们的运算,还让我们理解了一种新的几何意义,将代数问题和几何问题联系起来。

3.数学模型的转化在实际生活中,我们常常需要用数学建立一些模型来分析和解决问题。

当问题很复杂时,我们可以采用转化思想,将问题转化为新的数学模型进行分析。

高中数学解题常用思想方法(四)--等价转化思想方法

高中数学解题常用思想方法(四)--等价转化思想方法

【高中数学解题常用思想方法】四、等价转化思想方法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。

我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。

数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。

在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。

它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。

消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。

可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。

由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。

中学数学常用的数学思想方法

中学数学常用的数学思想方法

中学数学常用的数学思想方法长期以来,由于应试教育的影响,教师已习惯了重视知识的传授而轻视对知识中蕴含的思想方法进行挖掘的传统教学模式,现在我们必须从传统教学模式的束缚中解脱出来,构建一种以突出数学思想方法为主、着眼于培养学生创新素质的教学模式.美国数学教育家波利亚说过,掌握数学就意味着要善于解题,而当我们解题时遇到一个新问题时,总想着用熟悉的题型去“套”,这只是满足能解出来,只有我们对数学思想、数学方法理解透彻并融会贯通,才能提出新看法,巧解法.中学数学中常用的思想方法有函数与方程思想方法、数形结合思想方法、分类讨论思想方法、转化与化归思想方法等,只有掌握这些方法并在解题中灵活应用,才能举一反三地快速解题,达到事半功倍的效果.我结合自己的教学经验对高中数学中常用的数学思想方法教学作介绍.一、函数与方程的思想方法函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种动态刻画.因此,函数思想的实质就是提取问题的数学特征,用联系的、变化的观点提出数学对象,抽象其数学特征,建立函数关系,在研究方程、不等式、数列、解析几何等其他内容时起着重要作用.例:若关于x的方程9x■+(4+a)3x+4=0有正实根,求实数a的取值范围.分析:若令3x=t,则t>0,原方程有解的充要条件是方程t■+(4+a)t+4=0有正根,故解得:a≤-8.这种解法是根据一元二次方程解的讨论,思维方法是常规的、合理的,但很繁琐.若采取以下解法:因为a∈r,所以原方程有解的a的取值范围即为函数的值域,分离a,得a=-(t+■)-4,根据基本不等式得a≤-4-4=-8.可见若突破思维常规,充分利用函数与方程的转化,则可得灵活简捷的解法.二、数形结合的思想方法数性结合是将抽象的数学语言与直观的图形结合起来,实现代数问题与图形之间的相互转化.通过“以形助数,以数解形”使复杂的问题简单化,抽象的问题具体化,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.例:设|z■|=5,|z■|=2,|z■-■|=■,求■的值.分析:利用复数模、四则运算的几何意义,把复数问题转化为几何问题求解.解:如图,设z■=■,z■=■,则■=■,■=■由图可知,■ =■,∠aod=∠boc,由余弦定理得:cos∠aod=■=■∴■=■(■±■i)=2±■i本题运用“数形结合法”,把共轭复数的性质与复平面上的向量表示、代数运算与复数的几何意义等都表达得淋漓尽致,体现了数形结合的生动性和活泼性.一般地,复数问题可以利用复数的几何意义将问题变成几何问题,也可利用复数的代数形式、三角形式、复数性质求解.三、分类讨论的思想方法分类讨论思想就是将一个复杂的数学问题分解成若干个简单的基础性问题,通过对基础性问题的解答,解决原复杂问题的思维策略,即“化整为零,各个击破,再积零为整”.分类讨论可以优化解题思路,降低问题难度.分类讨论时必须明确分类的依据,常见的有依据概念分类、依据运算需要分类、依据图形形状位置变化分类等;要做到分类对象确定,标准统一,不重不漏,不越级讨论.分类讨论是高中阶段最常用的思想方法之一.四、等价转化的思想方法等价转化思想是把未知解的问题转化为在已有知识范围内可解的问题,或者归结为一个熟悉的具有确定解决方法和程序的问题,或者归结为一个比较容易解决的问题,最终求得原问题解的一种重要的数学思想方法.转化思想贯穿于整个高中数学教学中,问题解答过程的实质就是转化的过程.当然,不同的数学思想方法具有各自的优势与缺陷,不存在一种普遍有效能解决任何数学问题的数学思想方法,同时数学思想方法之间具有互补性,有时解决一个问题需要运用几种不同的数学思想方法.例:直线l的方程为:x=-■(p>0),椭圆中心d(2+■,0),焦点在x轴上,长半轴为2,短半轴为1,它的左顶点为a.问p在什么范围内取值,椭圆上有四个不同的点,它们中每一个点到点a 的距离等于该点到直线l的距离?分析:由抛物线定义,可将问题转化成:p为何值时,以a为焦点、l为准线的抛物线与椭圆有四个交点,再联立方程组转化成代数问题(研究方程组解的情况).解:由已知得:a=2,b=1,a(■,0),设椭圆与抛物线方程并联立有:y■=2px■+y■=1,消y得:x■-(4-7p)x+(2p+■)=0 由△=16-64p+48p■>0,即6p■-8p+2>0,解得:p<■或p>1.结合范围(■,4+■)内两根,设f(x)=x■-(4-7p)x+(2p+■)=0,所以■<■<4+■即p<■,且f(■)>0、f(4+■)>0即p>-4+3■.综上可得:-4+3■<p<■.本题利用方程的曲线将曲线有交点的几何问题转化为方程有实解的代数问题.一般地,当给出方程的解的情况求参数的范围时就可以考虑应用“判别式法”,其中特别要注意解的范围.另外,“定义法”、“数形结合法”、“转化思想”、“方程思想”等在本题得到了综合运用.总之,“知识”是基础,“方法”是手段,“思想”是深化,数学素质的综合体现就是“能力”,提高学生数学素质的核心就是提高学生对数学思想方法的认识和灵活运用能力.教师在数学教学的每一个环节,都要重视数学思想方法的教学,“授之以鱼,不如授之以渔”,只有让学生掌握好数学方法,形成数学思想,才能使学生终身受益.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章高中数学常用的数学思想四、等价转化思想方法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。

我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。

数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。

在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。

它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。

消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。

可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。

由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。

按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

Ⅰ、再现性题组:1. f(x)是R上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于_____。

A. 0.5B. -0.5C. 1.5D. -1.52.设f(x)=3x-2,则f-1[f(x)]等于______。

A. x+89B. 9x-8C. xD.132x-3. 若m、n、p、q∈R且m2+n2=a,p2+q2=b,ab≠0,则mp+nq的最大值是______。

A. a b+2B. abC.a b222+D.aba b+4. 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值为______。

A. 1B. 2C. 2D. 55. 设椭圆ya22+xb22=1 (a>b>0)的半焦距为c,直线l过(0,a)和(b,0),已知原点到l的距离等于2217c,则椭圆的离心率为_____。

A. 14B.12C.33D.226. 已知三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB的中点,E为AC的中点,则四棱锥S-BCED的体积为_____。

A. 152B. 10C.252D.352【简解】1小题:由已知转化为周期为2,所以f(7.5)=f(-0.5)=-f(0.5),选B;2小题:设f(x)=y,由互为反函数的值域与定义域的关系,选C;3小题:由mp+nq≤m p222++n q222+容易求解,选A;4小题:由复数模几何意义利用数形结合法求解,选A;5小题:ab=2217c×a b22+,变形为12e4-31e2+7=0,再解出e,选B;6小题:由S∆ADE =14S∆ABC和三棱椎的等体积转化容易求,选A。

Ⅱ、示范性题组:例1. 若x、y、z∈R+且x+y+z=1,求(1x-1)(1y-1)(1z-1)的最小值。

【分析】由已知x+y+z=1而联想到,只有将所求式变形为含代数式x+y+z,或者运用均值不等式后含xyz的形式。

所以,关键是将所求式进行合理的变形,即等价转化。

【解】(1x-1)(1y-1)(1z-1)=1xyz(1-x)(1-y)(1-z)=1xyz(1-x-y-z+xy+yz+zx-xyz)=1xyz(xy+yz+zx-xyz)=1x+1y+1z-1≥313xyz-1=33xyz-1≥33x y z++-1=9【注】对所求式进行等价变换:先通分,再整理分子,最后拆分。

将问题转化为求1x+1y+1z的最小值,则不难由平均值不等式而进行解决。

此题属于代数恒等变形题型,即代数式在形变中保持值不变。

例2. 设x、y∈R且3x2+2y2=6x,求x2+y2的范围。

【分析】设k=x2+y2,再代入消去y,转化为关于x的方程有实数解时求参数k范围的问题。

其中要注意隐含条件,即x的范围。

【解】由6x-3x2=2y2≥0得0≤x≤2。

设k=x2+y2,则y2=k-x2,代入已知等式得:x2-6x+2k=0 ,即k=-12x2+3x,其对称轴为x=3。

由0≤x≤2得k∈[0,4]。

所以x2+y2的范围是:0≤x2+y2≤4。

【另解】数形结合法(转化为解析几何问题):由3x2+2y2=6x得(x-1)2+y232=1,即表示如图所示椭圆,其一个顶点在坐标原点。

x2+y2的范围就是椭圆上的点到坐标原点的距离的平方。

由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点。

设圆方程为x2+y2=k,代入椭圆中消y得x2-6x+2k=0。

由判别式△=36-8k=0得k=4,所以x2+y2的范围是:0≤x2+y2≤4。

【再解】三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由3x2+2y2=6x得(x-1)2+y232=1,设xy-==⎧⎨⎪⎩⎪162cossinαα,则x2+y2=1+2cosα+cos2α+32sin2α=1+32+2cosα-12cos2α=-12cos2α+2cosα+52∈[0,4]所以x2+y2的范围是:0≤x2+y2≤4。

【注】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力。

此题还可以利用均值换元法进行解答。

各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型。

例3. 求值:ctg10°-4cos10°【分析】分析所求值的式子,估计两条途径:一是将函数名化为相同,二是将非特殊角化为特殊角。

【解一】ctg10°-4cos10°=cossin1010°°-4cos10°=cos sin cossin104101010°°°°-=sin sinsin8022010°°°-=sin sin sinsin80202010°°°°--=250302010cos sin sinsin°°°°-=sin sinsin402010°°°-=2301010cos sinsin°°°=3(基本过程:切化弦→通分→化同名→拆项→差化积→化同名→差化积)【解二】ctg10°-4cos10°=cossin1010°°-4cos10°=cos sin cossin104101010°°°°-=sin sinsin8022010°°°-=2128022010·°°°sin sinsin-=2608022010cos sin sinsin°°°°-=sin sin()sinsin1402022010°°°°---=sin sinsin1402010°°°-=2806010cos sinsin°°°=3(基本过程:切化弦→通分→化同名→特值代入→积化和→差化积)【解三】ctg10°-4cos10°=cossin1010°°-4cos10°=cos sin cossin104101010°°°°-=sin sinsin8022010°°°-=sin()sinsin602022010︒+︒-°°=3220122022010cos sin sinsin︒+︒-°°=31220322010(cos sin)sin︒-︒°=3602010cos()sin︒+︒°=3(基本过程:切化弦→通分→化同名→拆角80°→和差角公式)【注】无条件三角求值问题,是高考中常见题型,其变换过程是等价转化思想的体现。

此种题型属于三角变换型。

一般对,对于三角恒等变换,需要灵活运用的是同角三角函数的关系式、诱导公式、和差角公式、倍半角公式、和积互化公式以及万能公式,常用的手段是:切割化弦、拆角、将次与升次、和积互化、异名化同名、异角化同角、化特殊角等等。

对此,我们要掌握变换的通法,活用2公式,攻克三角恒等变形的每一道难关。

例4. 已知f(x)=tgx,x∈(0, π2),若x1、x2∈(0,π2)且x1≠x2,求证:12[f(x1)+f(x2)]>f(x x122+) (94年全国高考)【分析】从问题着手进行思考,运用分析法,一步步探求问题成立的充分条件。

【证明】12[f(x1)+f(x2)]>f(x x122+) ⇔12[tgx1+tgx2]>tgx x122+⇔12(sincosxx11+sincosxx22)>sin()cos()x xx x12121+++⇔12sin()cos cosx xx x1212+>sin()cos()x xx x12121+++⇔ 1+cos(x1+x2)>2cosx1cosx2⇔ 1+cosx1cosx2+sinx1sinx2>2cosx1cosx2⇔ cosx1cosx2+sinx1sinx2<1 ⇔ cos(x1-x2)<1由已知显然cos(x1-x2)<1成立,所以12[f(x1)+f(x2)]>f(x x122+)【注】 本题在用分析法证明数学问题的过程中,每一步实施的都是等价转化。

相关文档
最新文档