高等数学测试题1

合集下载

高等数学试题及其参考答案1

高等数学试题及其参考答案1

高等数学试题及其参考答案一、填空题(每小题2分,共10分)11limXsin───=___________。

x→∞ X2.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x23.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y4.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞5.设级数∑ an 发散,则级数∑ an_______________。

n=1 n=1000 二)选择题每小题3分,共30分1.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│2.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)3.设f(X)在X=Xo 的左右导数存在且相等是f(X)在X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d4.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx5.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11x6.lim─── ∫ 3tgt2dt=()x→0 x301① 0② 1③ ── ④ ∞3xy7.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin18.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞9.设幂级数∑ an xn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与a有关nsinx10.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

(完整word版)《高等数学(1)》练习题库

(完整word版)《高等数学(1)》练习题库

华中师范大学网络教育 《高等数学(1)》练习测试题库一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 2 3.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x xk)1(lim e 6 则k=( )A.1B.2C.6D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()aA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x xx 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 xx x x sin 1sin lim20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( ) A 、0 B 、1/2 C 、1 D 、2 43、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、B、2 C、31/2D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56、设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111A.1-──B.1+ ──C. ────D.xxx1-x157、x→0 时,xsin──+1是()xA.无穷大量B.无穷小量C.有界变量D.无界变量58、方程2x+3y=1在空间表示的图形是()A.平行于xoy面的平面B.平行于oz轴的平面C.过oz轴的平面D.直线59、下列函数中为偶函数的是()A.y=e^xB.y=x^3+1C.y=x^3cosxD.y=ln│x│60、设f(x)在(a,b)可导,a〈x_1〈x_2〈b,则至少有一点ζ∈(a,b)使()A.f(b)-f(a)=f'(ζ)(b-a)B.f(b)-f(a)=f'(ζ)(x2-x1)C.f(x2)-f(x1)=f'(ζ)(b-a)D.f(x2)-f(x1)=f'(ζ)(x2-x1)61、设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( ) A.充分必要的条件 B.必要非充分的条件 C.必要且充分的条件 D 既非必要又非充分的条件二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( ) 26、∫49 x 1/2(1+x 1/2)dx=( ) 27、∫49 x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( ) 29、∫49 x 1/2(1+x 1/2)dx=( ) 30、∫49 x 1/2(1+x 1/2)dx=( ) 31、∫49 x 1/2(1+x 1/2)dx=( ) 32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( ) 34、设f(x) = [x] +1,则f (л+10)=( ) 35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( ) 37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46、函数y=arcsin√1-x^2 +──────的定义域为_________√1-x^2_______________。

高等数学1试题(附答案解析)

高等数学1试题(附答案解析)

WORD 文档 可编辑一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。

2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。

3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。

4.11dx =⎰。

5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。

6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。

二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。

A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。

A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )(3.1+∞=⎰C 。

A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。

A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。

A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点? A 。

A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x=和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ). (A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctanln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 1(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+-6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--;3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x<2.4a =3.2x =4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy y y x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++ 3.原式=1221200111(2)(1)222x xe d x e e ==-⎰切线:1,1022y x y x ππ-=---+=即法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]xx e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xxln 2( ). A 、C x ++-22ln 12 B 、 C x ++2)ln 2(1C 、 C x ++ln 2lnD 、 C x x++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=*B 、x e y 73=*C 、x xe y 272=*D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分)1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21x y xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x c o s lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ). A 、C e x +sin B 、C x e x +cos sinC 、C x e x +sin sinD 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ).A 、⎰104dx x πB 、⎰10ydy π C 、⎰-10)1(dy y π D 、⎰-104)1(dx x π 9、设 a ﹥0,则=-⎰dx x a a 022( ). A 、2a B 、22a π C 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'x y y x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ; 2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分)1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21x xy -=的微分;4、求不定积分⎰+dx x x ln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xx e C e C 221+.三、1、31; 2、1arccos 12---x x x; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e - ; 6、x e x y 122-= ;四、1、 29; 2、图略谢谢观看! 欢迎您的下载,资料仅供参考,如有雷同纯属意外。

高等数学(一)试题(附答案)

高等数学(一)试题(附答案)

高等数学(一)试题(附答案)一、填空题(每小题1分,共10分)_________ 11.函数y=arcsin√1-x2+──────的定义域为_______________。

_________√1-x22.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────=___。

h→o h4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是___。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫f(X2+Y2)dy化为极坐标下的累次积分为_______。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞∞10.设级数∑an发散,则级数∑an_______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的○内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=( )x111①1-──②1+──③────④xxx1-x12.x→0 时,xsin──+1是( )x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是( )①若f(X )在X=Xo连续,则f(X )在X=Xo可导②若f(X )在X=Xo不可导,则f(X )在X=Xo不连续③若f(X )在X=Xo不可微,则f(X )在X=Xo极限不存在④若f(X )在X=Xo不连续,则f(X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为( ) ①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则( )①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=( )-1①0②1③2④37.方程2x+3y=1在空间表示的图形是( )①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=( )1①tf(x,y)②t2f(x,y)③t3f(x,y)④──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an( )n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是( )①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是( )①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在X=Xo 的左右导数存在且相等是f(X)在X=Xo 可导的( )①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=( )dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=( )①x4②x4+c③x4+1④x4-11x16.lim─── ∫ 3tgt2dt=( )x→0x301①0②1③──④∞3xy17.limxysin─────=( )x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是( )①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│ ( ) n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=( )D x1 1 sinx①∫ dx∫ ───── dy0 x x1 √ysinx②∫ dy∫─────dx0 y x__1 √x sinx③∫ dx∫─────dy0 x x__1 √xsinx④∫ dy∫─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y' 。

高等数学第一章测试题

高等数学第一章测试题

高等数学第一章测试题测试题一:导数与求导法则1. 求以下函数的导数:(a) $y = 3x^4 - 2x^3 + 5x^2 - 7x + 4$(b) $y = \sqrt{2x^3 + 5x^2 - 3x + 1}$(c) $y = e^x \cdot \ln{x} + \frac{1}{\sqrt{x}}$2. 利用导数的定义计算以下函数在给定点处的导数:(a) $f(x) = 3x^2 + 2x + 1$,在点$x = 2$处的导数(b) $g(x) = \frac{1}{x^2}$,在点$x = -1$处的导数(c) $h(x) = \sin{x}$,在点$x = \frac{\pi}{4}$处的导数3. 根据给定函数的导数,确定函数的表达式:(a) 已知函数$f'(x) = 2x^3 - 3x^2 + 5x - 1$,求$f(x)$。

(b) 已知函数$g'(x) = \frac{1}{x^2} - 3x$,求$g(x)$。

(c) 已知函数$h'(x) = e^x \cdot \cos{x}$,求$h(x)$。

测试题二:微分与应用1. 计算以下函数在给定点处的微分:(a) $y = \sqrt{x^2 + 3x + 2}$,在点$x = 2$处的微分(b) $y = e^x \cdot \ln{x}$,在点$x = 1$处的微分(c) $y = \sin{x} \cdot \cos{2x}$,在点$x = \frac{\pi}{6}$处的微分2. 使用微分,求以下函数的近似值:(a) $f(x) = \sqrt[3]{x}$,当$x$接近于$8$时的近似值(b) $g(x) = \ln{(1 + x)}$,当$x$接近于$0$时的近似值(c) $h(x) = e^{2x}$,当$x$接近于$0$时的近似值3. 利用微分进一步求解以下问题:(a) 当物体从起点开始以速度$v(t) = 5t - 2$移动时,求$t = 3$时的位移。

高等数学1期末试卷(5套)

高等数学1期末试卷(5套)

试卷(一)一、1、下列等式中成立的是( B ).(A) e n nn =⎪⎭⎫⎝⎛+∞→21lim (B) e n n n =⎪⎭⎫ ⎝⎛++∞→211lim (C) e n nn =⎪⎭⎫ ⎝⎛+∞→211lim (D) e n nn =⎪⎭⎫⎝⎛+∞→211lim2、函数()x f 在点0x 处连续是在该点处可导的( ).(A) 必要但不充分条件 (B) 充分但不必要条件 (C)充分必要条件 (D) 既非充分也非必要条件 3、设函数()x f 可导,并且下列极限均存在,则下列等式不成立的是( ).(A) ()()()00limf x f x f x '=-→ (B) ()()()0000lim x f x x x f x f x '=∆∆--→∆(C) ()()()a f h a f h a f h '=-+→2lim(D) ()()()00002lim x f xx x f x x f x '=∆∆--∆+→∆ 4、若(),00='x f 则点0x x =是函数()x f 的( ).(A) 极大值点 (B) .最大值点 (C) 极小值点 (D) 驻点5、曲线12+=x x y 的铅直渐近线是( ).(A )y =1 (B )y =0 (C )1-=x (D )x =0 6、设xe-是)(x f 的一个原函数,则⎰=dx x xf )(( ).(A )c x e x+--)1( (B )c x e x++-)1( (C )c x e x+--)1( (D ) c x e x++--)1( 二、1、当0x →时,(1cos )x -与2sin2xa 是等价无穷小,则常数a 应等于______ _. 2、若82lim =⎪⎭⎫⎝⎛-+∞→xx b x b x ,则=b .3、函数123++=x x y 的拐点是 .4、函数()x y y =是由方程y x y +=tan 给出,则='y ______________________.5、双曲线1xy =在点()1,1处的曲率为 .6、已知)(x f 在),(∞+-∞上连续,且2)0(=f ,且设2sin ()()x xF x f t dt =⎰,则(0)F '= .三、 1、求极限()xx x x x sin tan cos 1lim20-→ .2、设曲线的方程为33190x y (x )cos(y ),π++++=求此曲线在1x =-处的切线方程.3、求不定积分⎰++322x x xdx.4、求不定积分dx x x ⎰+31. 5、求定积分dx x x ⎰22cos π.6、求定积分⎰--+11242dx xx .四、1、求抛物线12+=x y 与直线1-=x y 所围成的图形. 2、设()f x ''连续,()1f π=,()()0sin 3f x f x xdx π''+=⎡⎤⎣⎦⎰,求()0f .试卷(二)一、1、=+→xx x 2)31(lim .2、当=k 时,⎪⎩⎪⎨⎧>+≤=00e)(2x kx x x f x 在0=x 处连续.3、设x x y ln +=,则=dydx. 4、曲线x e y x -=在点)1,0(处的切线方程是 .5、设两辆汽车从静止开始沿直线路径前进,下图中给出的两条曲线)(1t a a =和)(2t a a =分别是两车的速度曲线.那么位于这两条曲线和直线T t = )0(>T 之间的图形的面积A 所表示的物理意义是 .二、1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ).A 、 x 1ln(当+→0x ) B 、x ln (当1→x ) C 、x cos (当0→x ) D 、 422--x x (当2→x ) 3、满足关系式0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、下列函数)(x f 在]1,1[-上适合罗尔中值定理条件的是( ).A 、32)(x x f =B 、x x x f 2)(=C 、32)(+=x x fD 、x x f sin )(= 5、下列无穷积分收敛的是( ).A 、⎰∞+ 0sin xdx B 、dx x ⎰∞+ 01C 、dx e x ⎰∞+- 0 2D 、dx x⎰∞+ 0 1三、1、求极限 xx x 2sin 24lim-+→ . 2、求极限 2cos 2cos 0lim x dte xx t x ⎰-→.3、设)1ln(25x x e y +++=,求y '.4、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx y d . 5、求不定积分dx xx x ⎰+)sin (ln 2.6、设⎪⎩⎪⎨⎧≥<+=-0011)(2x xe x x x f x , 求⎰-20d )1(x x f .四、1、设函数21)(xxx f +=,分别求其单调区间、极值、凹凸性与拐点. 2、设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导)0(>a .试证在),(b a 内至少存在一点ξ满足:)(][)]()([2012201220122011ξξf a b a f b f '-=-.试卷(三)一、1.设)sin (cos )(x x x x f +=,则在0=x 处有( ).(A)2)0(='f (B) 1)0(='f (C) 0)0(='f (D) )(x f 不可导 2.设333)(,11)(x x xxx ⋅-=+-=βα,则当1→x 时( ). (A) )(x α与)(x β是同阶无穷小,但不是等价无穷小; (B) )(x α与)(x β是等价无穷小; (C) )(x α是比)(x β高阶的无穷小; (D) )(x β是比)(x α高阶的无穷小.3.函数2)4(121++=x xy 的图形( ). (A) 只有水平渐近线; (B) 有一条水平渐近线和一条铅直渐近线; (C) 只有铅直渐近线; (D) 无渐近线.4.设函数nn x xx f 211lim)(++=∞→,则下列结论正确的为( ).(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x .5.设函数)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则)(x f = ( ).(A) 22x (B)222+x (C) 1-x (D) 2+x 6.广义积分)0( >⎰∞+a xdxap 当( )时收敛. (A) 1>p (B) 1<p (C) 1≥p (D) 1≤p二、1.=+→xx x sin 20)31(lim .2.曲线⎩⎨⎧=+=321ty t x 在t=2处的切线方程为 . 3.方程0162=-++x xy e y 确定隐函数)(x y y =,则)0(y '= .4.⎰--+2121 2211arcsin dx xx x = .5.已知x x cos 是)(x f 的一个原函数,则dx xxx f ⎰cos )(= . 6.=⎰→22 0sin lim2xtdt e xt x .三、1.(6分)已知tt t x x f ⎪⎪⎭⎫⎝⎛+=+∞→2sin 1lim )(,求)(x f '. 2.(6分)求不定积分dx xx⎰++cos 1sin 1. 3.(8分)设函数⎩⎨⎧≤<-≤=-1010)(2x x x xe x f x ,,,求dx x f ⎰-1 3 )(. 4.(8分)已知2)3(lim 2=++-∞→c bx ax x x ,求常数b a ,.5.(8分)求由曲线)1(2,4,22≥===x x y x y xy 所围图形的面积.6.(8分)由方程)ln(arctan22y x x y +=确定隐函数)(x f y =,求0=y dx dy . 7.(8分)设函数)(x f 在[0,1]上连续且单调递减,证明:对任意的],1,0[∈q ⎰⎰≥qdx x f q dx x f 01)()(.试卷(四)一、1.方程23cos2x y y y e x '''--=的特解形式为( )(A )cos 2xaxe x ; (B )cos 2sin 2xxaxe x bxe x +; (C )cos 2sin 2xxae x be x +; (D )22cos 2sin 2xxax e x bx e x +.2. 设a 不是π的整数倍,极限ax a x a x -→⎪⎭⎫⎝⎛1sin sin lim 的值是( ).(A ) 1 (B )e (C )a e cot (D )ae tan3. 函数⎪⎩⎪⎨⎧=≠-+=0 ,0 ,1sin )(2x a x xe x xf ax 在0=x 处连续,则=a ( ). (A )1 (B ) 0 (C )e (D )1-4. 设2()()lim1()x af x f a x a →-=--,则在x a =处有( ) (A )()f x 的导数存在,且()0f a '≠; (B )()f x 取得极大值; (C )()f x 取得极小值; (D )()f x 取得最大值.5. 设函数)(x f 在点0=x 的某个邻域内连续,且0)0(=f ,2cos 1)(lim0=-→xx f x ,则点0=x ( ).(A )是)(x f 的极大值点(B )是)(x f 的极小值点(C)不是)(x f 的驻点(D )是)(x f 的驻点但不是极值点二、1. 设tan 21, 0sin 2(), 0xx e x x f x ae x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =连续,则a =____________.2. 极限xaa x x ln )ln(lim0-+→(0>a )的值是 .3. 设()(1)(2)(99)f x x x x x =---L ,则(0)f '=____________.4. 曲线21x xe y =的铅直渐近线是 . 5. 函数)4ln(x x y -=的单调递增区间为 .三、1. 计算极限412921612lim 2332-+-+-→x x x x x x . 2. 求不定积分10arctan d x x x ⎰. 3. 求定积分⎰+41)1(x x dx . 4. 求函数122+=x xy 的极值与拐点.5. 求微分方程52d 2(1)d 1y y x x x -=++的通解. 6. 设1>a ,函数a a x x a x a x y +++=,求dxdy . 四、证明题(本题8分)证明:当02x <<时,有24ln 240x x x x --+>.试卷(五)一、 1. 下列各式正确的是( ).(A)1)11(lim 0=++→x x x (B) e x x x =++→)11(lim 0(C) e x x x -=-∞→)11(lim (D)e xxx =+-∞→)11(lim 2. 设()f x 可导,()()(1sin )F x f x x =+,若欲使()0F x x =在可导,则必有 ( ).(A )(0)0f '=(B )(0)0f = (C )(0)(0)0f f '+=(D )(0)(0)0f f '-=3.为,则 又设已知 )()20( d )()(21 110 )(12x F x t t f x F x x x x f x ⎰≤≤=⎩⎨⎧≤≤<≤=( ).⎪⎩⎪⎨⎧≤≤<≤21 10 31)(3x x x x A ⎪⎩⎪⎨⎧≤≤<≤-21 10 3131)(3x x x x B ⎪⎩⎪⎨⎧≤≤-<≤21 110 31)(3x x x x C ⎪⎩⎪⎨⎧≤≤-<≤-21 1103131)(3x x x x D 4.当0→x 时,与x ex cos 22-等价的无穷小是( ).(A )2x . (B )223x . (C )22x . (D )225x . 5.x e y y y x2cos 52=+'-''的一个特解应具有形式( ).(A )x Ae x2cos (B ))2sin 2cos (x B x A e x+(C ))2sin 2cos (x B x A xe x+ (D ))2sin 2cos (2x B x A e x x+ 二、1. 已知2sin ()d x f x x e C =+⎰,则()f x =____________.2.设函数22, 1()ln(1), 1a x x f x x x x ⎧+>-=⎨++≤-⎩在1x =-处连续,则a = . 3. 设),tan ln(sec x x y +=则='y .4. 设()f x 是连续函数,则dt t f a x x xaa x ⎰-→ )(lim= .5. 已知⎰+=C x dx x f arcsin )(,则=-⎰dx x f x )(12. 6. 由0 , 0)( , , =≥===y x f y b x a x 所围曲边梯形绕x 轴旋转而成的旋转体的体积公式为:V = . 则(应用你给的公式计算)由],[,)(22R R x x R x f y -∈-==与x 轴所围成的图形绕x 轴旋转而成的立体的体积=V . 三、1. (6分) 1.求函数22(,)(2)ln f x y x y y y =++的极值.2. (6分)设arctany x= 求dx dy .3.(6分)求微分方程满足初始条件的特解1,sin ==+=πx y xx x y dx dy . 4. (6分) 设由方程2cos()1x y e xy e +-=-确定y 是x 的函数,求d .0d yx x =5. (7分) 求函数22(,)(2)ln f x y x y y y =++的极值. 6 若函数)(x f 在]1,0[上连续,证明:=⎰π)(sin dx x xf ⎰)(sin 2ππdx x f ,并计算dx xxx ⎰+π2cos 1sin . 8. 过原点(0,0)O 作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成一平面图形,求此平面图形的面积.《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为( ) (A )6π; (B )4π; (C )3π; (D )2π. 4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7. 级数1(1)(1cos ) (0)nn n αα∞=-->∑是( )(A )发散; (B )条件收敛; (C )绝对收敛; (D )敛散性与α有关.8.幂级数∑∞=1n n n x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________.4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d Lxy y x xx y -+-=⎰Ñ____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________.三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4..计算1d d yxy x x⎰.试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121. 5.()x e x C Cy 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷7(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 4.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续 (3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在. 若用“P Q ⇒”表示有性质P 推出性质Q ,则有( )(A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒ (C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒ 二.填空题(4分⨯5)1. 级数1(3)nn x n ∞=-∑的收敛区间为____________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题(10分⨯2) 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4. ⎪⎭⎫ ⎝⎛-3223323πa . 5.xx e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( )A 、一阶B 、二阶C 、三阶D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

2024年全国高等数学考试真题

2024年全国高等数学考试真题

2024年全国高等数学考试真题一、选择题(共 8 小题,每小题 5 分,共 40 分)1、设函数$f(x)=\frac{1}{x}+\ln x$,则$f(x)$的定义域为()A $(0,+\infty)$B $(\infty,0)$C $(\infty,0)\cup(0,+\infty)$D 以上都不对2、已知函数$f(x)=x^3-3x^2+2$,则$f'(1)$的值为()A 0B -1C -2D -33、曲线$y=x^3$在点$(1,1)$处的切线方程为()A $y=3x-2$B $y=2x-1$C $y=x$D $y=3x-3$4、下列定积分的值为 0 的是()A $\int_{-1}^{1}x^2dx$B $\int_{-1}^{1}xdx$C $\int_{-1}^{1}\sin xdx$ D $\int_{-1}^{1}\cos xdx$5、设向量$\vec{a}=(1,2)$,$\vec{b}=(2,-1)$,则$\vec{a}\cdot\vec{b}$的值为()A 0B 3C 4D 56、设函数$f(x)=\sin x+\cos x$,则$f(x)$的最大值为()A 1B $\sqrt{2}$C 2D 无法确定7、已知空间直角坐标系中,点$A(1,2,-1)$,$B(2,-1,3)$,则向量$\overrightarrow{AB}$的模为()A $\sqrt{11}$B $\sqrt{14}$C $\sqrt{19}$D $\sqrt{26}$8、下列级数收敛的是()A $\sum_{n=1}^{\infty}\frac{1}{n}$B $\sum_{n=1}^{\infty}\frac{(-1)^n}{n}$C $\sum_{n=1}^{\infty}\frac{1}{n^2}$ D 以上都不对二、填空题(共 6 小题,每小题 5 分,共 30 分)9、函数$f(x)=x^2-2x+3$的最小值为________。

高等数学单元测试题1

高等数学单元测试题1

高等数学测试题(一)极限、连续部分(答案)一、选择题(每小题4分,共20分)分) 1、 当0x ®+时,(A )无穷小量。

)无穷小量。

A 1sin x x B 1x e C ln x D 1sin x x2、点1x =是函数311()1131x x f x x x x -<ìï==íï->î的(C )。

A 连续点连续点 B 第一类非可去间断点第一类非可去间断点 C 可去间断点可去间断点 D 第二类间断点第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。

A 充分非必要条件充分非必要条件 B 必要非充分条件必要非充分条件 C 充要条件充要条件 D 无关条件无关条件4、已知极限22lim()0x x ax x®¥++=,则常数a 等于(A )。

A -1 B 0 C 1 D 2 5、极限21lim cos 1x x e x ®--等于(D )。

A ¥ B 2 C 0 D -2 二、填空题(每小题4分,共20分)分)1、21lim(1)x x x®¥-=22e -2、 当0x ®+时,无穷小ln(1)Ax a =+与无穷小sin 3x b =等价,则常数A=3 3、 已知函数()f x 在点0x =处连续,且当0x ¹时,函数21()2x f x -=,则函数值(0)f =0 4、 111lim[]1223(1)n n n ®¥+++··+=1 5、 若lim ()x f x p®存在,且sin ()2lim ()x xf x f x xp p®=+-,则lim ()x f x p ®=1 二、解答题二、解答题1、(7分)计算极限分)计算极限 222111lim(1)(1)(1)23n n ®¥---解:原式=132411111lim()()()lim 223322n n n n n n n n ®¥®¥-++···=·=2、(7分)计算极限分)计算极限 30tan sin lim x x x x®- 解:原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x x x x x x x x x ®®®--===3、(7分)计算极限分)计算极限 123lim()21x x xx x +®¥++ 解:原式= 11122112221lim(1)lim(1)121211lim(1)lim(1)1122x x x x x x x x x e x x +++®¥®¥+®¥®¥+=+++=+·+=++ 4、(7分)计算极限分)计算极限 201sin 1lim 1x x x x e ®+-- 解:原式=201sin 12lim 2x x xx ®=5、(7分)设3214lim 1x x ax x x ®---++ 具有极限l ,求,a l 的值的值 解:因为1lim(1)0x xx ®-+=,所以,所以 321lim(4)0x x ax x ®---+=, 因此因此 4a = 并将其代入原式并将其代入原式321144(1)(1)(4)limlim 1011x x x x x x x x l x x ®-®---++--===++6、(8分)设3()32,()(1)nx x x x c x a b =-+=-,试确定常数,c n ,使得()()x x a b解:解: 32221()32(1)(2)(1)(2)3lim ,3,2(1)x x x x x x x x c n c x ca ®=-+=-+-+=\==- 此时,()()x x ab 7、(7分)试确定常数a ,使得函数21sin 0()0x x f x x a x x ì>ï=íï+£î在(,)-¥+¥内连续内连续解:当0x >时,()f x 连续,当0x <时,()f x 连续。

高等数学考试题和答案

高等数学考试题和答案

高等数学考试题和答案一、单项选择题(每题3分,共30分)1. 极限lim(x→0) (sin x)/x 的值为()。

A. 0B. 1C. 2D. 3答案:B2. 函数f(x) = x^2 + 3x - 4的导数为()。

A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 函数y = ln(x)的不定积分为()。

A. x + CB. x^2 + CC. e^x + CD. ln(x) + C答案:D4. 曲线y = x^3 - 3x^2 + 2在点(1,0)处的切线斜率为()。

A. 0B. 1C. -2D. 2答案:C5. 微分方程dy/dx = 2x的通解为()。

A. y = x^2 + CB. y = 2x + CC. y = x^2 + 2x + CD. y = 2x^2 + C答案:A6. 函数f(x) = e^x - e^(-x)的二阶导数为()。

A. e^x + e^(-x)B. e^x - e^(-x)C. 2e^xD. -2e^x答案:A7. 函数y = x^2 - 4x + 4的极值点为()。

A. x = 2B. x = -2C. x = 0D. x = 4答案:A8. 曲线y = x^2 + 2x + 1与直线y = 3x + 2相切的切点为()。

A. (1, 5)B. (2, 6)C. (-1, 1)D. (0, 1)答案:A9. 函数f(x) = x^3 - 3x^2 + 2x的拐点为()。

A. x = 1B. x = 2C. x = 0D. x = -1答案:B10. 函数y = ln(x)的二阶导数为()。

A. 1/x^2B. 1/xC. x^2D. x答案:A二、填空题(每题4分,共20分)11. 函数f(x) = x^2 - 4x + 4的最小值为_________。

答案:012. 函数f(x) = e^x的n阶导数为_________。

大学高等数学A1期末综合测试1试题与答案

大学高等数学A1期末综合测试1试题与答案

1《高等数学A1》测试题1一、填空、选择题(24%)1. 21lim __________;1xx x x →∞-⎛⎫= ⎪+⎝⎭2.若0(),0x f x a x ⎧≠==⎩在0x =处连续,则______;a =3. 设函数()f x 可导,且(1)2f '=,则0(1)(1)lim()2x f x f x∆→-∆-=∆(A) 1; (B) 1-; (C) 2; (D) 2-。

4. 223_______________;310x dx x x +=++⎰5.22(cos )__________;2x xe ex dx ππ---+=⎰6. 设21()txF x te dt =⎰,则()_______________;dF x = 7. 若12lim (),lim (),x ax af x k f x k +-→→==其中12,k k 是确定的常数,则x a =不可能是()f x 的( )(A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 无穷间断点。

8.设曲线()y f x =上任一点切线斜率为这点横坐标的3次方,并且曲线经过点(1,1),则该曲线方程为( ) (A) 41344y x =+(B) 41344y x =-(C) 443y x =+ (D) 443y x =-二、解答下列各题(30%) 1. 3tan sin lim;1xx x x e→--2. 0limxx →3. 21sinxy e=,求y ';4. 3();(1).tx f t y f e π=-⎧⎨=-⎩其中f 可导,且(0)0f '≠,求0t dydx =;5. y e xy e +=,求(0)y ''.三、解答下列题(30%) 1. 22322x dxx x +++⎰; 2. 1arctan x xdx ⎰;3. 设(0)(3)(3)3f f f '===,()f x 二阶导数连续,求3()xf x dx ''⎰;4.求微分方程2321xy y x x '+=++的通解;5.求微分方程32x y y y xe '''-+=的通解. 四、解答下列各题(16%)1.已知函数32()f x x ax bx =++在1x =处有极小值2-,(1).求a 与b 的值; (2). 求()f x 的极大值点与极大值。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)一、选择题1. 设函数 $ f(x) = x^3 3x + 2 $,则 $ f'(0) $ 的值为多少?A. 0B. 1C. 1D. 3答案:A2. 设 $ f(x) = e^x $,则 $ f''(x) $ 等于多少?A. $ e^x $B. $ e^x + x $C. $ e^x x $D. $ e^x + 2 $答案:A3. 设 $ y = \ln(x + 1) $,则 $ y' $ 等于多少?A. $ \frac{1}{x + 1} $B. $ \frac{1}{x} $C. $ \frac{1}{x 1} $D. $ \frac{1}{x + 2} $答案:A4. 设 $ y = x^2 $,则 $ y'' $ 等于多少?A. 2B. 4D. 1答案:B5. 设 $ y = \sin(x) $,则 $ y' $ 等于多少?A. $ \cos(x) $B. $ \cos(x) $C. $ \tan(x) $D. $ \tan(x) $答案:A二、填空题1. 设函数 $ f(x) = x^4 2x^3 + x^2 $,则 $ f'(x) $ 的表达式为______。

答案:$ 4x^3 6x^2 + 2x $2. 设 $ y = \ln(x) $,则 $ y' $ 的表达式为______。

答案:$ \frac{1}{x} $3. 设 $ y = e^x $,则 $ y'' $ 的表达式为______。

答案:$ e^x $4. 设 $ y = \cos(x) $,则 $ y' $ 的表达式为______。

答案:$ \sin(x) $5. 设 $ y = \sqrt{x} $,则 $ y' $ 的表达式为______。

答案:$ \frac{1}{2\sqrt{x}} $三、解答题1. 求函数 $ f(x) = x^3 3x + 2 $ 在点 $ x = 1 $ 处的切线方程。

《高等数学1(一)》课程考试试卷A及答案

《高等数学1(一)》课程考试试卷A及答案

《高等数学1(一)》课程考试试卷(A 卷参考答案)注意:1、本试卷共3页; 2、考试时间:120分钟; 3、姓名、学号必须写在指定地方。

一. 单项选择题,请将答案填入题后的方括号内(每小题2分, 共20分)1.与函数2()f x ln x =相同的函数是[ C ]. A .lnx B .21()2ln x C .lnx D .ln x2.若(1)(2)(3)(4)(5)lim (32)x x x x x x x αβ→∞-----=-,则α与β的值为[ D ]. A .11,3αβ== B .15,3αβ== C .511,3αβ== D .515,3αβ==3.设函数()y f x =在点0x 处可导,dy 为()f x 在0x 处的微分,当自变量x 由0x 增加到0x x +∆时, 极限0limx y dyx∆→∆-∆等于[ B ].A .-1B .0C .1D .∞4.若()f x 在x a =的某个邻域内有定义,则()f x 在x a =处可导的一个充分条件是[ D ].A .1lim [()()]h h f a f a h →+∞+-存在B .0(2)()lim h f a h f a h h→+-+存在C .0()()lim2h f a h f a h h →+--存在 D .0()()lim h f a f a h h→--存在5.已知函数1sin ,0(),0x x f x xax b x ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续,则a 与b 等于[ C ].A .1,1a b ==B .0,a b R =∈C .,0a R b ∈=D .,a R b R ∈∈6.若函数32()f x x ax bx =++在1x =处取得极值2-,则下列结论中正确的是[ B ].A .3,0a b =-=,且1x =为函数()f x 的极小值点B .0,3a b ==-,且1x =为函数()f x 的极小值点C .1,0a b =-=,且1x =为函数()f x 的极大值点D .0,3a b ==-,且1x =为函数()f x 的极大值点7.设1()1f x x =-,其n 阶麦克劳林展开式的拉格朗日型余项()n R x 等于[ C ]. A .11,(01)(1)(1)n n x n x θθ++<<+- B .11(1),(01)(1)(1)n n n x n x θθ++-<<+-C .12,(01)(1)n n x x θθ++<<-D .11(1),(01)(1)n n n x x θθ++-<<-8.若sin 2x 为函数()f x 的一个原函数,则()xf x dx ⎰等于[ D ]. A .sin 2cos 2x x x C ++ B .sin 2cos 2x x x C -+C .1sin 2cos 22x x x C -+ D .1sin 2cos 22x x x C ++9.若非零向量,,a b c满足0a b ⋅= 与0a c ⨯= ,则b c ⋅ 等于[ A ].A .0B .-1C .1D .310.直线2020x y z x y z -+=⎧⎨+-=⎩与平面1x y z ++=的位置关系是[ C ].A .直线在平面内B .平行C .垂直D .相交但不垂直二.填空题(每小题2分,共10分)1.一质点作直线运动,其运动规律为426s t t t =-+,则速度增加的时刻t = 1 . 2.若21arctan (1)2y x x ln x =-+,则dy =arctan xdx . 3.已知21adx x π+∞-∞=+⎰,则a = 1 .4.已知()xf x e =,则()f lnx dx x'=⎰ x C + . 5.设向量,,m n p 满足0m n p ++=,且6m = ,8n = ,10p = ,则m n n p p m ⨯+⨯+⨯=144 .三.求解下列各题(每小题5分,共10分)阅卷人 得分阅卷人 得分阅卷人 得分三峡大学试卷 教学班号 序号 班级学号 姓名密 封 线1.11lim(1)21n n n +→∞-+解:原式=((21)(1)1)/21lim(1)21n n n -+-+→∞-+ 2=(21)(1/2)(1/2)11lim(1)lim(1)2121n n n n n -+-→∞→∞-⋅-++ 41/2e -= 52.20(13)lim (sec cos )x ln x x x →+-解:原式=203cos lim (1cos )(1cos )x x xx x →-+ 2=223cos lim1(1cos )2x x x x x →+ 4=6 5四. 求解下列各题(每小题6分,共12分)1.若方程arctan 1xyy e =+确定了y 是x 的函数,求函数y 的微分dy . 解:原方程两边同时对x 求导,有2()1xyy e y xy y ''=++ 则22(1)1(1)xy xyy y e y x y e+'=-+ 4 则22(1)1(1)xyxyy y e dy dx x y e +=-+ 62.设参数方程21cos x t y t⎧=+⎨=⎩确定了y 是x 的函数,求22d ydx .解:sin 2dy tdx t-= 3 222cos sin 122t t td y t dx t-=- 5 3sin cos 4t t tt-= 6五.求解下列各题(每小题6分,共18分)1.222()lnx dx xlnx +⎰解:原式=212()()d xlnx xlnx ⎰ 42C xlnx-=+ 6 2.222max{,}x x dx -⎰解:原式=0122221x dx xdx x dx -++⎰⎰⎰ 4323012201[][][]323x x x -=++ 5=11/2 63.设21sin ()x tf x dt t =⎰,求10()xf x dx ⎰解:21100()()()2x xf x dx f x d =⎰⎰ 2221100[()](())22x x f x d f x =-⎰ 422112200sin 02sin 2x x xdx x x dx x =-=-⎰⎰ 2101[cos ]2x =cos112-= 6六. (本题10分)y阅卷人 得分阅卷人 得分阅卷人 得分已知星形线33cos sin x a ty a t⎧=⎨=⎩如右图所示,其中0a >, a 1) 计算星形线的全长; a - 0 a x 2) 求星形线与坐标轴所围成图形的面积.解:1)长度 2224()()dy dx L dt dt dtπ=+⎰2 a - 222249sin cos a t tdt π=⎰46a = 52)面积024202443sin cos a S ydx a t tdt π==-⎰⎰ 82422012sin cos at tdt π=⎰238a π= 10七. (本题7分)已知某直角三角形的边长之和为常数,求该直角三角形面积的最大值. 解:设两直角边与斜边分别为,,x y z ,其和为常数k ,所求面积为S因x y z k ++=及222x y z +=,则222()kx k y x k -=- 3则221224()kx xk S xy x k -==-,且222(24)()4()k x kx k S x x k -+'=- 有驻点222x k -= 5 则22max132241282S k k -==+为所求 7八. (本题7分)求过点(2,1,3)M 且与直线11321x y z+-==-垂直相交的直线方程. 解:记直线111:321x y zL +-==-,设过点(2,1,3)M 且垂直相交于直线1L 的平面为π 则平面π方程为3(2)2(1)(3)0x y z -+---= 2令11321x y zt +-===-则13,12,x t y t z t =-+=-+=- 代入平面π得3/7t =,即交点为2133(,,)777A - 4以12624(,,)777MA --= 为所求直线的方向向量得到 所求直线为:213214x y z ---==- 7九. (本题6分)设函数()f x 在闭区间[0,1]上连续且0()1f x <<,试判断方程02()1x x f t dt -=⎰在(0,1)内有几个实根,并证明你的结论. 证:记0()2()1x g x x f t dt =--⎰则10(0)10,(1)1()0g g f t dt =-<=->⎰2且0()1f x <<知()2()0g x f x '=->,即在闭区间[0,1]上单调增加 4 故02()1x x f t dt -=⎰在(0,1)内有一个实根 6阅卷人 得分阅卷人 得分阅卷人 得分。

高等数学试题及答案 (1)

高等数学试题及答案 (1)

《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2ln 2x x x dx C =+⎰B )、sin cos tdt tC =-+⎰C )、2arctan 1dx dx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11cos 2y -B )、11cos 2x - C )、22cos y - D )、22cos x- 14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D 14. A 15. B二.填空题1. 21e 2. 2π3. C x+1 4. 412x x + 5. (0,0) 三.判断题1. T2. F3. F4. T5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 极限与连续 第一节 极限的定义思考题:1. 在)(lim 0x f x x →的定义中,为何只要求)(x f 在0x 的空心邻域),ˆ(0δxN 内有定义? 答:因为0x x →表示x 无限接近0x 而不等于0x ,故)(lim 0x f x x →与)(x f 在0x 点有无定义无关.2. xx x sin lim+∞→是否存在,为什么?答:存在且为0.因为01lim=+∞→xx ,且1sin ≤x ,由无穷小的性质知0sin lim=+∞→xx x .习作题:1. 设⎩⎨⎧><+=,0,,0,1)(2x x x x x f 画出)(x f 的图形,求)(lim 0x f x -→及)(lim 0x f x +→并问)(lim 0x f x →是否存在.解:)(x f 的图像如下: )(lim 0x f x -→=)1(lim 2+-→x x =1,)(lim 0x f x +→=x x +→0lim =0,)(lim 0x f x -→≠)(lim 0x f x +→.)(lim 0x f x →不存在.2. 函数11)(-+=x x x f 在什么条件下是无穷大量,什么条件下是无穷小量?为什么?答:)(x f 当1→x 时是无穷大量, 当1-→x 时是无穷小量. 011lim1=-+-→x x x , ∞=-+→11lim1x x x .3.举例说明A x f A x f A x f x x x ===∞→-∞→+∞→)(lim ,)(lim ,)(lim 的几何意义.解:例如:对xy 1=, 01lim=+∞→xx 表示当x 沿x 轴的正向远离原点时, 曲线xy 1=无限靠近直线y =0; 01lim=-∞→xx 表示当x 沿x 轴的负方向远离原点时, 曲线xy 1=无限靠近直线0=y ; 01lim=∞→xx 表示当x 沿x 轴远离原点时, 曲线xy 1=无限靠近直线0=y .4. 举例说明+∞=→)(lim 0x f x x ,-∞=→)(lim 0x f x x ,+∞=-→)(lim 0x f x x ,-∞=+→)(lim 0x f x x 的几何意义.解:例如:对21xy =, +∞=→21limxx 表示当x 沿x 轴无限接近0时,曲线21xy =向上无限远离原点; 对21xy -=, -∞=-→21limxx 表示当x 沿x 轴无限接近0时,曲线21xy -=向下无限远离原点,对xy 1-=, +∞=--→)1(lim 0xx 表示当x 沿x 轴负向无限接近0时,曲线xy 1-=向上无限远离原点; -∞=-+→)1(lim 0xx 表示当x 沿x 轴正方向无限接近0时,曲线xy 1-= 向下无限远离原点.第二节 极限的运算思考题:1.下列运算错在何处?(1)01coslim 01coslim sin lim 1cossin lim 0=⋅=⋅=→→→→xxx xx x x x x .答:xx xx x x x 1coslim sin lim 1cossin lim 0→→→⋅≠ (xx 1coslim 0→不存在).(2)∞=-=-→→→)2(lim lim 2lim22222x x x xx x x .答:)2(lim lim 2lim22222x xxxx x x -≠-→→→ (0)x 2(lim 2x =-→).2. 两个无穷大的和仍为无穷大吗?试举例说明. 答:不一定. 如:x1是+→0x 时的无穷大量, x11-也是+→0x 时的无穷大量, 但其和为1,不是+→0x 时的无穷大量.习作题:1. 求下列极限: (1)123lim21-+-→x x x x , (2)652134lim2434-++-∞→x x x x x ,解:原式=1)1)(2(lim1---→x x x x 解: 原式=424652134limxxxx x -++-∞→=)2(lim 1-→x x =2.= 1-. (3)xx x -+-→222lim2, (4)330sin tan limxx x →,解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~s i n x x ,=41. ∴原式=330limxx x →=1lim 0→x =1.(5)2)1(lim 20-+→xx x , (6))100sin (lim +∞→xx x ,解:令u =2x , 解:原式=100lim sin lim∞→∞→+x x xx则当0→x 时 0→u , =0 + 100∴原式=u u u 1)1(lim +→= e . = 100.(7) xxx 2tan lim→.解: 当0→x 时x x 2~2tan ,∴ 原式=xx x 2lim→=21lim→x =21.2.试证0→x 时,2sin x 是比x tan 高阶的无穷小.证明: 当0→x 时 2sin x ~ 2x , x t a n ~ x ,∴xxx tan sin lim2→=xxx 2lim→ = x x 0lim →=0,∴0→x 时, 2sin x 是比x tan 高阶的无穷小.3. 试证0→x 时,1e -x与x 是等价无穷小.证明:令1e -x= u , 则)1ln(+=u x ,于是有:xxx 1e lim-→ = )1l n(lim0+→u u u = 11limln(1)u uu →+=eln 1=1,故0→x 时, 1e -x 与x 是等价无穷小.第三节 函数的连续性思考题:1.如果)(x f 在0x 处连续,问|)(x f |在0x 处是否连续? 答:若)(x f 在0x 处连续,则|)(x f |在0x 处连续.2.区间],(b a 上的连续函数一定存在最大值与最小值吗?举例说明? 答:区间],(b a 上的连续函数不一定存在最大值与最小值. 如:x y ln = 在]1,0(上连续,但不存在最小值; xy 1= 在]1,0(上连续,但不存在最大值.习作题:1. 求下列极限:(1)x x 3sin lim π3→, (2)x x 3cos lim π3→,解:x x 3sin lim π3→ 解:x x 3cos lim π3→=)π3(3sin = 0. =)π3(3cos = 1-.(3))123(lim 232-+-→x x x x , (4))12e(lim 20++→xxx ,解 :)123(lim 232-+-→x x x x 解:)12e(lim 20++→xxx=12222323-+⋅-⋅ =12e 0++ =17. =3.(5)xx x ln lim e→, (6)x x arctan lim 1→.解: x x x ln lime→ 解:x x arctan lim 1→=ee ln =1arctan=e1. =4π.2. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→x x x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→xx x f x 1lim)(0∴0=x 为)(x f 的无穷间断点.综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.。

相关文档
最新文档