阻垢剂在工业循环水处理工艺中的应用
循环水主要化工原料原理和作用
循环水处理循环水处理是用物理的或化学的方法,使循环水既不产生结垢,也不发生腐蚀,同时去除循环水中悬浮杂质,杀灭循环水中微生物,以保持整个循环水系统正常运行。
A 、阻垢处理针对水垢形成的原因,在循环水处理工艺中,一方面通过排污或补加低硬度水降低成垢离子的浓度,使其保持在允许的浓度范围内以避免结垢。
另一方面,通过投加阻垢剂,破坏结垢离子的结晶长大而达到阻垢的目的。
B 、缓蚀处理在循环水系统中,主要是通过投加缓蚀剂在金属表面形成一层致密的保护膜以阻止电化学反应发生的方法来控制腐蚀,系统开工初期都要投加高浓度的缓蚀剂进行预膜,正常运行后按要求连续投加进行补膜。
C 、污垢、微生物的控制循环水中悬浮物,浊度物质可通过旁滤处理进行去除,微生物可通过投加杀菌剂来得到控制,一般要求是两种以上的杀菌剂混合使用。
1.2.3 全自动无阀滤器工作原理:含有一定浊度的循环热水通过高位进水分配槽由进水管经挡板进入滤料层,自上而下的过滤,过滤后的水由连通渠进入水箱并从出水管排出净化水。
由于滤层不断截留进水中的悬浮物,滤层的水头损失逐渐增加,使得虹吸上升管水位上升,当水位上升进入虹吸辅助管内的水射器时,由于水力作用将虹吸管内的空气带走,形成负压。
当负压到达设计值时,便发生虹吸现象,此时水箱中的水自下而上地反洗滤层,使吸附在滤料上的悬浮物被清洗而得以“再生”。
由于不断反洗滤层,水箱中水位下降至规定值时,虹吸作用被破坏,反洗结束,过滤装置又重新开始工作。
主要化工原料原理和作用1.2.4.1缓蚀、阻垢剂缓蚀剂又叫腐蚀抑制剂。
凡是添加到腐蚀介质中能干扰腐蚀电化学作用,阻止或降低金属腐蚀速度的一类物质都称为缓蚀剂。
其作用均是通过在金属表面上形成保护膜来防腐蚀的。
阻垢剂是能够控制产生水垢和污泥的水处理药剂。
常将阻垢剂与缓蚀剂共同称为循环冷却水的水质稳定剂,或缓蚀阻垢剂。
聚磷酸盐是传统的、广泛应用的缓蚀剂,同时具有阻垢作用。
聚合磷酸盐结构通式为:NaO PO PONaO ONaO ONan聚磷酸盐是阴极、沉淀膜型缓蚀剂。
阻硫酸钙垢缓蚀阻垢剂在发电循环水中的研究及应用
当代化工研究Modem Chemical Research145 2021・03科研开发阻硫酸钙垢缓蚀阻垢剂在发电循环水中的研究及应用*刘向朝I宫继勇2聂明I许跃I曹宏伟I王明珠I(1.中海油天津化工研究设计院有限公司天津3001312.中国石油天然气股份有限公司锦州石化分公司辽宁121000)摘耍:循环水系统换热设备出现换热效率降低、设备腐蚀、结垢现象是普遍存在的;结垢物质一般有碳酸钙垢、锌垢、磷酸钙垢、硅酸盐垢、硫酸钙垢,而硫酸钙垢是比较难处理的.当补水中硫酸根离子浓度过高时就会产生硫酸钙垢,而且可能会引起垢下腐蚀;因此研发出高效的阻硫酸钙垢缓蚀阻垢剂应用在硫酸根离子含量高的冷却水系统中具有重要的意义.关键词:硫酸钙垢;换热效果;填料坍塌;缓蚀阻垢剂中国分类•号:TQ文献标识码:AStudy on the Application of High-efficiency Calcium Sulfate Scale Inhibitor in CirculatingWater of Power PlantLiu Xiangzhao1,Gong Jiyong2,Nie Ming1,Xu Yue1,Cao Hongwei1,Wang Mingzhu1(OOC Tianjin Chemical Research and Design Institute Co.,Ltd.,Tianjin,3001312.PetroChina Jinzhou Petrochemical Company,Liaoning,121000)Abstract z The main causes of h eat exchange efficiency reduction and leakage of h eat exchange equipment in circulating water system are scaling and corrosion.The scaling substances generally include calcium carbonate scale,zinc scale,calcium phosphate scale,silicate scale and calcium sulfate scale.When the concentration of s ulfuric acid ions in the rehydration water is too high,calcium sulfate scale will be p roduced,and it may cause scale corrosion.Therefore,it is ofgreat importance to develop effective calcium sulphate scale inhibitor f or cooling water system with high content of s ulfate ions.Key words i calcium sulphate scale;heat exchange effects packing collapsei corrosion inhibitor1.成垢机理循环冷却水处理系统应用在工业生产中所使用的大部分换热设备都会出现结垢的问题。
工业循环冷却水用阻垢缓蚀剂的研究进展
工业循环冷却水用阻垢缓蚀剂的研究进展张盼盼;蒋利辉;孙军萍;吴玉锋;许英【摘要】随着工业循环冷却水浓缩倍数的不断提高,结垢和腐蚀问题已严重影响工业的发展.向工业循环冷却水中投加水处理剂是解决结垢、腐蚀以及提高水资源利用率的重要手段.前期水处理药剂多以磷系为主,随着公众环保意识不断增强,近年来,以高效、绿色为目的的水处理剂的开发与改性研究得到学者们的广泛关注.本文主要综述了近年来研究人员通过接枝改性、复配等手段,制备一系列多功能、环保高效的水处理剂的方法、阻垢缓蚀性能及在应用方面的探索等进展.【期刊名称】《化学研究》【年(卷),期】2018(029)006【总页数】5页(P642-646)【关键词】阻垢缓蚀剂;接枝改性;复配【作者】张盼盼;蒋利辉;孙军萍;吴玉锋;许英【作者单位】河南大学化学化工学院,河南省工业冷却水循环利用工程技术研究中心,河南开封475004;漯河市久隆液压科技有限公司,河南漯河462000;河南省通许县水利局,河南开封475004;河南大学化学化工学院,河南省工业冷却水循环利用工程技术研究中心,河南开封475004;河南大学化学化工学院,河南省工业冷却水循环利用工程技术研究中心,河南开封475004【正文语种】中文【中图分类】O631.4我国经济与工业化程度的迅速发展对水资源产生了巨大的需求. 据统计,工业生产用水量约占总用水量的30%,冷却循环水约占工业用水量的80%[1]. 冷却水在循环过程中,随着浓缩倍数的提升,水中无机盐离子的浓度不断提高,当达到临界浓度时以沉淀物的形式从水中析出形成水垢. 水垢在管道中不断沉积,会引发管道堵塞、换热效率下降和加剧腐蚀等一系列问题[2]. 工业上常采用化学和物理的方法来解决上述问题.物理处理方法主要包括电解法、电场法、磁场法、超声波法及光化学法等[3],该类方法操作简单、成本低且无二次污染,但一般仅能处理钙、镁离子浓度较低即硬度较小的水质,而多次循环使用的冷却水的水质成分较复杂,硬度也较高,不能普遍应用于工业循环冷却水处理行业[4]. 化学方法的阻垢原理一般是在冷却水处理过程中产生螯合增溶、吸附与分散、晶格畸变等作用[5],其缓蚀机理则是在金属阴极表面生成难溶沉淀或是阳极表面形成致密氧化膜使其钝化[6]. 近几年来,随着科技的进步以及民众对环保意识的增强,水处理技术得到了较快的发展,本文总结了近年来工业循环冷却水处理剂的现状和研究进展,着重叙述了绿色环保类水处理剂.1 常用阻垢缓蚀剂1.1 天然高分子类阻垢缓蚀剂天然高分子类阻垢缓蚀剂来源广泛、廉价易得、易生物降解且无毒无污染. 其主要包括单宁、木质素、纤维素、壳聚糖、淀粉、腐殖酸钠等. 胡新华等[7]研究表明腐殖酸钠具有较好的阻垢缓蚀性能,当药剂的添加量为30 mg/L时,其阻垢效率高达85%. SEM结果表明腐殖酸钠可使CaCO3垢晶型由最稳定的方解石向亚稳态结构球霰石转变,从而可以抑制垢晶的生长. WANG等[8]研究了烟草的水提取物在模拟海水中对Q235钢片的阻垢缓蚀性能. 当烟草提取物的浓度为100 mg/L时,其对Q235钢片的缓蚀率为83.9%;浓度为140 mg/L时,其阻垢率为100%. 动电位极化曲线表明该提取物为混合型阻垢药剂. ABDEL等[9]将橄榄叶水提取物用于盐水中碳钢片的阻垢缓蚀剂,使用电化学阻抗谱和动电位极化曲线测量技术研究了橄榄叶水提取物的阻垢缓蚀性能. 极化曲线表明橄榄叶水提取物是一种主要控制阳极反应的混合型缓蚀剂,推测其阻垢机理为橄榄叶水提取物可吸附于碳钢表面,占据垢晶体表面活性生长点,从而抑制垢晶体正常有序的生长.天然高分子类阻垢缓蚀剂在水处理剂发展的初期,起到了至关重要的作用,但其在工业使用过程中存在用量大且性质不稳定、成本较高、产量少、难以满足工业生产所需等缺点.1.2 有机膦酸类阻垢缓蚀剂有机膦酸类水处理药剂具有化学性质稳定、较宽的pH应用范围、能有效抑制菌藻繁殖、可与多种药剂发生协同作用等优点,广泛应用于循环冷却水系统中. 该类阻垢缓蚀剂主要包括氨基三亚甲基膦酸(ATMP)、己二胺四亚甲基膦酸(HDTMP)、乙二胺四亚甲基膦酸(EDTMP)、2-膦酸基-1,2,4-三羧酸丁烷(PBTC)、羟基亚乙基二膦酸(HEDP)、二亚乙基三胺五亚甲基膦酸(DTPMPA)等. 许妍等[10]采用静态阻垢法和动态模拟实验比较了多氨基多醚基甲叉膦酸(PAPEMP)、膦酰基羧酸共聚物(POCA)、二亚乙基三胺五亚甲基膦酸(DTPMPA)、羟基亚乙基二膦酸(HEDP)、2-膦酸基-1,2,4-三羧酸丁烷(PBTC)、乙二胺四亚甲基膦酸钠(EDTMPS)及二己烯三胺五亚甲基膦酸(BHMTPMPA)等7种有机膦酸阻垢剂的阻垢性能. 结果表明:相对于其他几种阻垢剂,PAPEMP阻垢性能最佳,在15 mg/L时,其阻垢效率为98.1%. 且SEM结果表明加入PAPEMP阻垢剂后,垢晶体结构松散,晶体表面粗糙,晶格尺寸明显减少. 这表明PAPEMP的加入可改变垢晶的形貌结构,从而抑制垢的生长. ZEINO等[11]研究了ATMP与DTPMPA的协同作用,实验表明,当ATMP和DTPMPA的物质的量之比为1∶1时,其阻垢效率最佳,在10 mg/L时阻垢率为100%. 作者将诱导时间和饱和指数作为ATMP与DTPMPA协同作用评价的指标,综合考察了两者之间的协同效果. 方健等[12]通过量子化学计算,比较了乙烷-1,1-二膦酸(1,1-EDPA)、乙烷-1,2-二膦酸(1,2-EDPA)与羟基亚乙基二膦酸(HEDP)的分子结构与阻垢缓蚀性能之间的构效关系. 计算结果显示,三种膦酸分子中均含有呈负电性的氧原子,使得其可与Ca2+离子发生相互作用,且1,1-EDPA和HEDP分子结构中的两个氧离子之间的间距和方解石晶体中钙离子间距相匹配,因而可显著增强两种离子之间的吸附作用.有机膦酸类阻垢缓蚀剂含有大量的磷元素,长期使用该类药剂将造成水体中磷元素大量富集,导致水体中藻类植物大量繁殖,造成水体富营养化,严重污染环境. 随着民众环保意识的增强,该类药剂的应用受到极大的限制.1.3 聚羧酸类阻垢缓蚀剂1.3.1 聚丙烯酸类聚丙烯酸具有较好的阻碳酸钙和硫酸钙垢性能,并且还具有一定的缓蚀和分散性能,可有效地分散水中的粉尘和腐蚀物等. 王虎传等[13]制备了丙烯酸-丙烯酰胺-聚丙二醇/马来酸酐(AA-AM-PPGAZMA)三元共聚物. 该共聚物是一种不含磷的绿色经济型水处理剂,文中利用SEM技术探究其阻垢机理,采用控制变量法研究了反应原料用量对AA-AM-PPGAZMA阻垢效率的影响. 实验结果表明,当AA、PPGAZMA和AM的物质的量之比为4∶3∶1,药剂用量为3 mg/L时,其阻硫酸钙垢率可达98%. 赵向阳等[14]研发了新型水处理剂聚酰胺酯-2-丙烯酰胺-2-甲基丙磺酸(HBPAE-AMPS). 对所得产物性能分析可知,其最佳反应比为:AMPS与HBPAE质量之比为5.5∶1,且最终聚合物的相对分子质量在1~1.5万之间时,其阻垢性能最优. 孙琪娟等[15]合成了马来酸酐-丙烯酸-丙烯酸甲酯(MAH-AA-MA)三元共聚物阻垢剂,并确定了最佳反应条件为n(MAH)∶n(AA)∶n(MA)=2∶2∶1,引发剂的用量为4%时,可得到阻垢性能在88%以上的聚合物. 符嫦娥等[16]制得了丙烯酸-聚氧乙烯醚(AA-APEC)共聚物阻垢剂,该共聚物阻垢剂可改变垢晶体的晶型,从而达到阻垢目的,其药量为20 mg/L时阻垢效率可达91%.1.3.2 聚马来酸类聚马来酸类水处理剂化学性质较稳定,有较好的耐高温性,近年来得到较为广泛的应用. LIU等[17]研发了马来酸酐-烯丙氧基聚乙二醇/缩水甘油(MA-APEG-PG-(OH)n)(n = 3,5,7,9,11)共聚物水处理剂. 实验结果表明共聚物中n的数值与其阻垢效率有着密切的关系,当n为5时,其效率最高,在用量为8 mg/L时,其效率高达97%. 杨祥晴等[18]制得了低膦马来酸酐-尿素(PMASU)共聚物. 当聚合温度为95 ℃,SHP、MA和UREA的物质的量之比为2∶10∶1,聚合反应时间为4 h,引发剂量占总反应量的4%时所得产物阻垢性能最优. 当PMASU用量为25 mg/L 时综合性能最优,阻垢和缓蚀效率均高于80%. YOUSEF等[19]合成了马来酸酐-丙烯酰胺共聚物. 实验数据表明在pH为10.45,加热温度为70 ℃,用药量为9 mg/L时此药剂的阻垢率高达99.5%.1.4 环境友好型阻垢缓蚀剂自20世纪90年代提出“绿色化学”的理念以来,如何研发并使用无磷、无毒、高效及可生物降解的阻垢缓蚀剂成为了人们关注的焦点. 目前该类药剂主要包括聚天冬氨酸类(PASP)和聚环氧琥珀酸类(PESA).1.4.1 聚环氧琥珀酸类聚环氧琥珀酸(PESA)是一种不含磷、氮的环境友好型化合物,可生物降解,兼具阻垢缓蚀多重功效,并能较好的适应高碱、高硬度水体系. GU等[20]将PESA与咪唑啉复配,取得了较好的协同效果. 当PESA与咪唑啉的配比为25∶4时,其缓蚀率可达90.42%,阻垢率为96.74%. 熊蓉春等[21]将葡萄酸钠、Zn2+离子和PESA复配,复配产物具有极强的协同效果. 当PESA用量为30~50 mg/L,葡萄酸钠和Zn2+离子的用量为5~8 mg/L时具有最佳的协同效果,其对碳钢的缓蚀率可达96%以上. PESA缓蚀机理一般认为是因为分子链中插入了氧原子,使其更容易形成稳定的五元环螯合物. PESA虽具有较好的阻垢缓蚀性能,但目前关于PESA的研究大多数集中在其合成方法以及应用方面,对其螯合金属离子的能力以及机理的研究较少,从而限制了PESA的进一步应用.1.4.2 聚天冬氨酸类20世纪90年代初,聚天冬氨酸(PASP)作为水处理剂被研发出来,以其高效的优势,尤其是可生物降解的特性,迅速在冷却水处理行业得到广泛应用.聚天冬氨酸类水处理剂一般分为两类,一类是以聚天冬氨酸为单体,对其进行接枝得到聚天冬氨酸接枝共聚物,以期提高PASP的综合性能;另一类则是将聚天冬氨酸与其他阻垢缓蚀剂进行复配,发挥其协同效果,以拓宽其应用范围.李彬等[22]制得了聚天冬氨酸-丝氨酸(PASP/SE)接枝物. 研究表明,当反应时间为18 h、反应温度为55 ℃及原料配比为n(PSI)∶n(SE)= 1∶1时,PASP/SE的性能最佳. 同时其阻垢率与温度、时间、水系统中与m(Ca2+)之比呈负相关. 杨星等[23]合成了聚天冬氨酸/2-噻吩甲胺(PASP/2-TPMA)接枝物. 实验结果表明,2-噻吩甲胺可明显改善PASP阻垢缓蚀性能,当PASP/2-TPMA用量为1.3 mg/L时,其阻CaCO3、CaSO4垢率均为100%. 在相同实验条件下,PASP/2-TPMA缓蚀能力较PASP高出近20%. MIGAHED等[24]制备了甘氨酸-天冬氨酸(Gly-PASP)共聚物. 结果表明当Gly-PASP浓度为125 mg/L时,其对硫酸钙垢的抑制率达90.2%. 王谦等[25]将L-肌肽接枝到PASP上. 实验结果表明,当PASP/L-肌肽浓度为8 mg/L时,其阻磷酸钙垢效率即可达到90%以上. 通过对不同温度和不同PO43-离子浓度条件下PASP/L-肌肽阻垢效率的测定可知,PASP/L-肌肽有较好的耐高温和耐高磷酸根浓度的特性.程玉山等[26]制备了聚天冬氨酸、苯并三氮唑(BTA)、钨酸钠、葡萄糖酸钠四元复配水处理剂,并通过正交实验对四种药剂不同复配比例进行分析,结果显示该四元复合配方的最佳复配比例为PASP∶BTA∶钨酸钠∶葡萄糖酸钠为10∶0.5∶20∶10,在此配比条件下其对铜的缓蚀效果最为显著. ZHANG等[27]研究了PASP、聚环氧琥珀酸(PESA)、葡萄糖酸钠(Glu)和聚氨基聚醚基亚甲基膦酸(PAPEMP)以及Zn2+离子复配水处理剂. 利用失重法和电化学实验法研究了复配药剂对碳钢腐蚀作用的协同效应. 电化学实验表明,该复合配方中,PASP、PESA、PAPEMP和Glu为混合抑制剂,而锌离子表现为阴极抑制剂,其协同效应表现为抑制金属溶解的阴极反应,并且在碳钢表面可形成保护膜以达到缓蚀目的;利用正交试验得出该复合药剂中PASP、PESA、PAPEMP、Gln和Zn2+离子的最佳复合配比分别为12∶12∶4∶2∶2. 在该配比下药剂的缓蚀效率高达99%.本课题组在聚天冬氨酸复配方面开展了一系列相关性的研究. 将自制的一系列聚天冬氨酸接枝物如聚天冬氨酸/氨基甲磺酸(PASP/ASA)、聚天冬氨酸/糠胺(PASP/FA)[28]、聚天冬氨酸/4-甲氨基吡啶(PASP/4-AMPY),分别与2-膦酸基-1,2,4-三羧酸丁烷(PBTCA)、ZnSO4、聚环氧琥珀酸(PESA)进行复配,并利用正交实验得到最佳复配比. 含PASP/ASA接枝物的复合型药剂最佳复配比为:PASP/ASA为10 mg/L,PESA为20 mg/L,ZnSO4为2 mg/L,PBTCA为8 mg/L. 含PASP/FA接枝物的复合型药剂最佳复配比为:PASP/FA为30 mg/L,PESA为40 mg/L,ZnSO4为4 mg/L,PBTCA为8 mg/L. 含PASP/4-AMPY接枝物的复合型药剂最佳复配比为:PASP/4-AMPY为20 mg/L,PESA为30mg/L,ZnSO4为4 mg/L,PBTCA为15 mg/L. 采用静态阻垢法、失重法以及动电位极化法等研究了复合型阻垢缓蚀剂的性能. 实验结果表明复合药剂性能较PASP均有较大提升,其中PASP/ASA复合型药剂的阻CaCO3垢率为91.2%,阻CaSO4垢率为100%,阻Ca3(PO4)2垢率为88%,PASP/FA复合型药剂的阻垢率为92.3%,缓蚀率高达96.4%,PASP/4-AMPY复合型药剂在保持较高阻垢率的基础上,其缓蚀率高达98.1%. 同时利用智能动态模拟装置考察了上述三种复合型阻垢缓蚀剂的工业应用前景,结果表明复合型药剂的污垢热阻值和年腐蚀速率均满足国家标准(GB/T50050-2007)的要求,该类复合型阻垢缓蚀剂具有较好的工业应用前景.2 结论工业循环冷却水用阻垢缓蚀剂的研究,近几年发展较快,但工业社会和经济的高速发展对水处理剂的研究工作提出了更高的要求,如何提升水处理剂的综合性能仍然是今后研发工作的重点.在未来的水处理剂研发工作中,应当通过对当前性能较好的水处理剂进一步深入研究,开拓思路,寻找更为高效环保的功能基团,通过接枝改性、复配等手段,对其综合性能进行不断完善,以便使其能更好地适应新形势下水处理剂的发展趋势. 参考文献:【相关文献】[1] MASSEOUD O, ABDALLAH A, HASSEN B, et al. Surface modification of calcium-copper hydroxyapatites using polyaspartic acid [J]. Applied Surface Science, 2013, 264: 886-891.[2] MITHIL K N, SANJAY K G, VARAPRASAD K, et al. Development of anti-scalepoly(aspartic acid-citric acid) dual polymer systems for water treatment [J]. Environmental Technology, 2014, 35(23): 2903-2909.[3] 陈静, 王毓芳. 循环冷却水的物理法处理原理及应用[J]. 上海化工, 2002, 27(Z2): 4-7.CHEN J, WANG Y F. The principle and application of the physical method of circulating cooling water [J]. Shanghai Chemical Industry, 2002, 27(Z2): 4-7.[4] JUNEJA H D, JOSHI M, KHATI N T. Synthesis and structural studies of some inorganic polymers of succinoylcarboxymethylcellulose [J]. E-Journal of Chemistry, 2011, 8(4): 1993-1999.[5] LIU D, DONG W, LI F, et al. Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods[J]. Desalination, 2012, 304: 1-10.[6] GAO Y H, FAN L H, WARD L, et al. Synthesis of polyaspartic acid derivative and evaluation of its corrosion and scale inhibition performance in seawater utilization[J].Desalination, 2015, 365: 220-226.[7] 胡新华, 马良杰, 高红斌. 腐殖酸钠阻垢性能评价方法研究[J]. 山西化工, 2014, 34(01): 13-16. HU X H, MA L J, GAO H B. Research on scale inhibition performance assessment of humic acid sodium [J]. Shanxi Chemical Industry, 2014, 34(01): 13-16.[8] WANG H, GAO M, GUO Y, et al. A natural extract of tobacco rob as scale and corrosion inhibitor in artificial seawater [J]. Desalination, 2016, 398: 198-207.[9] GABER A M, NABEY B A, KHAMIS E, et al. A natural extract as scale and corrosion inhibitor or steel surface in brine solution [J]. Desalination, 2011, 278: 337-342.[10] 许妍, 李逢阳, 徐开熠. 有机膦酸盐阻垢性能对比研究[J]. 广州化工, 2017, 45(15): 88-90.XU Y, LI F Y, XU K Y. Study on performance of organic phosphonic acid on scale inhibition [J]. Guangzhou Chemical Industry, 2017, 45(15): 88-90.[11] AASEM Z, MUHAMMED A, MAZEN K, et al. Comparative study of the synergistic effect of ATMP and DTPMPA on CaSO4scale inhibition and evaluation of induction time effect[J]. Journal of Water Process Engineering, 2018, 21: 1-8.[12] 方健, 李杰. 有机膦酸化合物阻垢缓蚀性能的量子化学研究[J]. 同济大学学报(自然科学版), 2002, 30(04): 522-528.LI J, LI J. Quantum chemistry study on microscopic mechanism of scale and corrosion inhibition for organic phosphonic acid [J]. Journal of Tongji University, 2002, 30(04): 522-528.[13] 王虎传, 彭成军, 吴淑敏, 等. 制药循环水用无磷阻垢剂的阻硫酸钙垢性能[J]. 精细化工, 2017, 34(12): 1423-1426+1440.WANG H C, PENG C J, WU S M, et al. Inhibition of calcium sulfate precipitation by a kind of phosphorus-free antiscalant in pharmaceutical cooling water system [J]. Fine Chemicals, 2017, 34(12): 1423-1426+1440.[14] 赵向阳, 袁小静, 朱敏, 等. 超支化缓蚀阻垢剂HBPAE-AMPS的微波合成及其性能研究[J]. 当代化工, 2016, 45(12): 2747-2750.ZHAO X Y, YUAN X J, ZHU M, et al. Study on microwave synthesis and performance ofhyperbranched corrosion inhibitor HBPAE-AMPS [J]. Contemporary Chemical Industry, 2016, 45(12): 2747-2750.[15] 孙琪娟, 徐军礼, 孙长顺. 马来酸酐/丙烯酸/丙烯酸甲酯共聚阻垢剂的合成及应用性能研究[J].当代化工, 2015, 44(08): 1745-1747+1751.SUN Q J, XU J L, SUN C S. Study on synthesis and application of maleicanhydride/acrylic acid/methyl acrylate copolymer scale inhibitor [J]. Contemporary Chemical Industry, 2015, 44(08): 1745-1747+1751.[16] 符嫦娥, 张晓, 向奇志, 等. 羧酸盐封端聚氧乙烯醚及其聚合物阻碳酸钙垢性能[J]. 高分子材料科学与工程, 2015, 31(02): 145-150.FU C E, ZHANG X, XIANG Q Z, et al. Performance of carboxylate polyoxyethylene etherand its polymer resistance to calcium carbonate [J]. Polymer Materials Science and Engineering, 2015, 31(02): 145-150.[17] LIU G Q, XUE M W, LIU Q P, et al. Linear-dendritic block copolymers as a green scale inhibitor for calcium carbonate in cooling water systems[J]. Designed Monomers and Polymers, 2017, 20(1): 397-405.[18] 杨祥晴, 奚长生, 冯霞, 等. 低膦马来酸酐-尿素三元共聚物的合成与研究[J]. 工业水处理, 2016, 36(02): 71-74.YANG X Q, XI C S, FENG X, et al. Synthesis and study of low phosphine maleic anhydride-urea ternary copolymer [J]. Industrial Water Treatment, 2016, 36(02): 71-74.[19] YOUSEF M, ROOMI A, KANEEZ F H. Assessment of novel maleic anhydride co-polymers prepared via nitroxide-mediated radical polymerization as CaSO4 crystal growth inhibitors [J]. Environmental Technology, 2017, 38(8): 985-995.[20] GU T, SU P, LIU X, et al. A composite inhibitor used in oilfield: MA-AMPS and imidazoline [J]. Journal of Petroleum Science & Engineering, 2013, 102(1): 41-46.[21] 熊蓉春, 周庆, 魏刚. 绿色阻垢剂聚环氧琥珀酸的缓蚀协同效应[J]. 化工学报, 2003, 54(09): 1323-1325.XIONG R C, ZHOU Q, WEI G. Corrosion inhibition and synergistic effect of green scale inhibition polyepoxysuccinic acid [J]. Journal of Chemical Industry and Engineering (China), 2003, 54(09): 1323-1325.[22] 李彬, 宋文文, 张娟涛, 等. 聚天冬氨酸-丝氨酸接枝聚合物的合成及阻垢性能[J]. 装备环境工程, 2017, 14(12): 24-29.LI B, SONG W W, ZHANG J T, et al. Poly(aspartic acid)-serine grafted copolymer and its scale-inhibition performance [J]. Equipment Environmental Engineering, 2017, 14(12): 24-29.[23] 杨星, 柴春晓, 李冬伊, 等. 聚天冬氨酸/2-噻吩甲胺接枝共聚物的制备及阻垢缓蚀性能[J]. 化学研究, 2017, 28(04): 482-486.YANG X, CHAI C X, LI D Y, et al. Synthesis and evaluation of polyaspartic acid/2-thiophenemethylamine graft copolymer as scale and corrosion inhibitor [J]. Chemical Research, 2017, 28(04): 482-486.[24] MIGAHED M A, RASHWAN S M, KAMEL M M, et al. Synthesis, characterization of polyaspartic acid-glycine adduct and evaluation of their performance as scale and corrosion inhibitor in desalination water plants [J]. Journal of Molecular Liquids, 2016, 224: 849-858.[25] 王谦, 田玉平, 石澍晨, 等. 聚天冬氨酸/L-肌肽接枝共聚物的制备及其阻垢性能[J]. 石油化工, 2017, 46(01): 103-109.WANG Q, TIAN Y P, SHI S C, et al. Synthesis and scale inhibition efficiencyof polyaspartic acid/L-muscle graft copolymer [J]. Petrochemical Technology, 2017, 46(01): 103-109.[26] 程玉山, 邢乃豪, 张蕾, 等. 环境友好型聚天冬氨酸水处理剂配方研究[J]. 清洗世界, 2018, 34(01): 20-24.CHENG Y S, XING N H, ZHANG L, et al. Study on formula of environment-friendly polyaspartic acid water treatment agent [J]. Cleaning World, 2018, 34(01): 20-24. [27] ZHANG B, HE C, WANG C, et al. Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water [J]. Corrosion Science, 2015, 94: 6-20.[28] SHI S C, ZHAO X W, WANG Q, et al. Synthesis and evaluation of polyaspartic acid/furfurylamine graft copolymer as scale and corrosion inhibitor [J]. RSC Advances, 2016, 6: 102406-102412.。
循环水处理工艺在循环水排污水回用方面的应用探析
循环水处理工艺在循环水排污水回用方面的应用探析摘要:当前,我国化工行业面临的水资源短缺问题越来越突出。
因此,要想有效地解决这个问题,可以采用循环水排污水回用措施进行解决。
通过这种方法,可以使废水得到充分的回收,从而达到对水资源的再利用,无论对国家的经济发展,还是对生态环境都有着重要的影响。
关键词:循环水处理工艺;循环水排污水回用;应用策略引言:随着我国工业的快速发展,工业技术的发展也在飞速发展,为国民经济的发展作出了重大的贡献。
工业循环水在生产和运营中起着重要作用,以提高用水效率和节约用水效率。
在工业生产中,利用水质稳定技术对废水进行循环冷却,可以有效地降低水资源的浪费,并从某种意义上解决工业用水的紧缺问题,对经济的可持续发展起到积极的作用。
因此,本文通过对循环水处理工艺进行了总结和探讨,并根据实际情况,根据企业的实际情况,选择了适合于本公司实际情况的再生水处理技术。
一、循环水处理回用技术相关概述(一)排污水回用技术的工艺选择常规污水的深度处理技术包括过滤、沉淀、消毒、混凝等工序,其处理的时间都比较长,从而能够将含有的悬浮物质等全部去除,其使用效果非常好。
但同时,它也不能及时有效的处理和去除相应的有机污染物。
因此,除了常规的工艺外,目前普遍采用的是膜技术、生物炭和活性炭进行处理。
其中,最普遍的深度处理技术是利用活性炭进行处理,这主要是因为它的内部结构中存在着很多细小的孔隙,所以能够有效地去除色度、气味以及大部分大颗粒的无机物和有机物质。
然而,由于其不能再循环使用,从上个世纪起,越来越多的污水处理技术被开发和应用。
循环水排污水回用工作复杂,仅采用一种方法进行污水处理,难以达到预期的效果,目前该技术还不能达到人们对水质的期望。
为了使污水得到科学、公正和有效的解决,必须采取不同的工艺措施。
一方面,在对污水处理工艺进行综合评价的过程中,要充分考虑污水的品质和处理后的利用,并注重经济效益和可行性。
(二)常见的循环水处理工艺简介由于水分蒸发和风吹损失等因素,造成了循环水水体含盐量超过标准,造成了水的阴阳平衡和pH的改变,进而使得水体受到污染。
水处理中阻垢剂的作用机理及区别
水处理中阻垢剂的作用机理及区别什么是阻垢剂?阻垢剂(Scale Inhibitor),是具有能分散水中的难溶性无机盐、阻止或干扰难溶性无机盐在金属表面的沉淀、结垢功能的一类药剂。
阻垢剂作用机理螯合作用:中低硬度水中,起重要作用的是阻垢剂的螯合作用。
分散作用:中高硬度水中,阻垢剂的分散功能起主要作用。
晶格畸变作用:阻止成垢粒子在其规则的晶格点阵上排列。
常用阻垢剂分类1、有机膦系列阻垢剂具有良好的螯合、低限抑制及晶格畸变作用。
可阻止水中成垢盐类形成水垢,特别是碳酸钙垢的形成。
在水中化学性质稳定,不易水解。
在水中浓度较高时,有良好的缓蚀效果。
2、有机膦盐系列阻垢剂是有机膦系列阻垢剂的中性钠盐,可阻止水中成垢盐类形成水垢,特别是碳酸钙垢的形成。
适用于火力发电厂、炼油厂的循环冷却水、油田回注水系统。
对于其他一些添加剂也有很好的相容性,特别适用于中性到酸性配方,无氨味产生氧化物。
3、聚羧酸类阻垢分散剂无毒,易溶于水,可在碱性和中浓缩倍数条件下运行而不结垢。
PAAS能将碳酸钙、硫酸钙等盐类的微晶或泥沙分散于水中不沉淀,从而达到阻垢目的。
4、复合阻垢剂由有机膦酸和聚羧酸等高聚物组成的复合品,具有很高的缓蚀和阻垢性能,其耐温性特别好,可有效地应用于低压锅炉的炉内水处理。
5、RO阻垢剂适用于反渗透系统及纳滤和超滤系统,可防止膜面结垢,能提高产水量和产水质量,降低运行费用。
如何正确选择和使用反渗透阻垢剂反渗透阻垢剂的主要成分有哪些?反渗透阻垢剂主要包括一些天然分散剂、膦酸、膦羧酸及膦磺酸和高分子聚合物等,而目前使用的绝大多数阻垢分散剂是高分子聚合物。
它们能分散水中的难溶性无机盐、阻止或干扰难溶无机盐的沉积、结垢。
反渗透阻垢剂和循环水阻垢剂的区别?由于二者所面临情况的不同,对于二者的要求是有差别的:循环水的运行环境要求长效,耐菌,可以使用大量的聚合物分散剂,提供对悬浮物的分散作用来增加阻垢效果,循环水系统体积大,露天运行,对于药剂的纯度要求不高。
工业循环水系统中结垢和腐蚀现象分析及控制方案
工业循环水系统中结垢和腐蚀现象分析及控制方案摘要:工业水处理是使用化学和物理方法去除水中杂质的过程。
电石生产的特点是很复杂的过程,生产环节与水密不可分。
电石炉是将电能转化为热能的设备,这就决定了它时刻处在高温环境状态下运行。
为了保证电石炉长周期安全运行,对设备各系统进行冷却必不可少。
循环冷却水的再利用尤其可以提高用水过程的效率,循环水的再利用将产生盐分积聚的问题,这些问题会污染并损坏热交换器,降低传热效率并增加设备成本和安全隐患。
关键词:工业循环水系统;结垢;腐蚀前言工业循环水系统中传热面上的结垢现象一直被人们关注,有效降低管线中的结垢速率,实现持续的稳产高产,已成为电石生产领域研究的热点之一。
为保持油藏压力,提高采收率。
为了节约水资源,多数企业目前采用循环冷却水代替普通工业用水,冷却水在对设备降温的同时,其自身温度也在不断上升,有时在夏季设备冷却水出口温度高达60℃以上,这样的工作温度极易形成水垢粘接在设备内壁,从而造成设备换热效果差,而且水垢还会局部脱落、堆积阻塞管路和阀门,导致水流阻力增加,设备壁厚被腐蚀减薄,另一方面会造成垢下腐蚀,甚至穿孔,必须每隔一段时间对结垢严重的管段进行酸洗或停产维修,增加了管线维护费用,严重影响了电石的正常生产和经济效益。
1产生结垢的原因1.1硬垢天然水中溶解有各种盐类物质,有重碳酸盐、硫酸盐、氯化物、硅酸盐等。
其中溶解的重碳酸盐为最多,也最不稳定,容易分解成碳酸盐。
在使用重碳酸盐含量较多的水作为冷却水时,当通过换热器传热面时会受热分解。
当循环水经过冷却塔冷却时,溶解在水中的CO2会逸出,水的PH会升高。
重碳酸盐在碱性条件下会发生以下反应。
Ca(HCO3)2+2OH-=CaCO3↓+2H2O+CO2-3当水中溶解有氯化钙时,还会产生置换反应。
CaCl2+CO2-3=CaCO3↓+2Cl-当水中溶解有磷酸盐时,磷酸根和钙离子还会生成磷酸钙。
3Ca2++2PO3-4=Ca3(PO4)2↓当循环水在冷却蒸发过程中,水分不断蒸发而浓缩,浓缩倍数提高,原来溶解于水中的盐类浓度会不断增加,当其浓度超过同等条件下的饱和溶解度时就会出现结晶析出,形成水垢。
循环水中各种缓蚀阻垢剂的用量及配方
1)聚磷酸盐(六偏磷酸钠、三聚磷酸钠)阻垢剂。
使用时加入水中浓度为~10ppm,适合于低压锅炉。
①六偏磷酸钠(NaPO3)6,由磷酸二氢钠脱水经高温(600~650℃)处理后,急剧冷却而制得。
②三聚磷酸钠,即三磷酸钠(Na5P3O10),由磷酸二氢钠和磷酸氢二钠充分混合,加热脱水,再高温熔融而成。
(2)膦酸盐阻垢剂常用的药剂有以下几种:①羟基乙叉二膦酸,结构式为:别名为HEDP,含量为50%,为**透明粘稠液体,显强酸性(pH=2~3),具腐性。
羟基乙叉二膦酸多由三氯化磷与醋酸等原料制成,其合成反应如下:【用途】HEDP为阴极型缓蚀剂。
在水溶液中,HEDP可解离成5个正、负离子,可与金属离子形成六员环螯合物,尤其是与钙离子可以形成胶囊状大分子螯合物,阻垢效果较佳。
HEDP与其它缓蚀剂、阻垢剂配合使用,具有协同效应,可提高药效。
例如与铬酸盐、钼酸盐、硅酸盐、亚硝酸盐、聚丙烯酸盐、锌盐等配合使用,多用于锅炉水处理、冷却水的处理,使用量一般低于1~3ppm,适用于低、中压锅炉用水的处理。
②乙二胺四甲叉四膦酸,其结构式为:别名为EDTMP,其钠盐为棕**透明粘稠液体,含量为28%~30%,pH=9~10。
EDTMP多由甲醛、乙二胺、三氯化磷为原料制成。
其合成反应如下:【用途】EDTMP为有机多元膦酸阴极缓蚀剂。
在水中,EDTMP能解离成8个正、负离子,可以和两个或多个金属离子螯合,形成两个或多个立体结构大分子粘状络合物,松散地分散于水中,使钙垢的正常结晶破坏,减少垢的形成。
EDIMP多用于锅炉水的阻垢。
加入水中浓度为1ppm,适用于中、低压锅炉。
③氨基三甲叉膦酸,其结构式为:别名为ATMP,含量为50%,为淡**液体。
本品多由三氯化磷、铵盐、甲醛等原料反应制得,其反应原理为:PCl3+3H2O→H3PO3+3HCl3H3PO3+NH4Cl+HCHO→ATMP+CO2+3H2O【用途】ATMP为阴型缓蚀剂。
阻垢剂
概述阻垢剂、分散剂是循环水化学日常处理中一类占较大比重的化学药剂。
例如羟基亚乙基二膦酸(HEDP)和氨基三亚甲基膦酸(ATMP)等,都是由其分子中的部分官能团、通过静电力吸附于致垢金属盐类正在形成的晶体(晶核)表面的活性点上,抑制晶体增长,从而使形成的许多晶体保持在微晶状态,这等于增加了致垢金属盐类在水中的溶解度;与此同时,由于阻垢剂分子在晶体表面上的吸附,晶体即使增长,也只能畸形地增长,这就使晶体产生畸变。
畸变后的晶体与金属表面的粘附力减弱,因此不易沉积于金属表面上;由于吸附于晶体表面上的官能团只是阻垢剂分子中的部分官能团,那些未参加吸附的官能团,就会对晶体呈现离子性,因电荷的排斥力增大而使晶体处于分散状态。
以上三种作用同时存在,使得在水中阻止相同量的致垢金属盐不在金属表面结垢所需的阻垢剂的量,远低于将同样量的致垢金属盐螯合在水中使其不沉淀所需的螯合剂的量。
这一现象,叫做“阈值效应”(Threshold effect),也叫“低限量效应”,或叫做“亚化学计量效应”(sub-stoichiometry effect)。
因此它们能分散水中的难溶性无机盐、阻止或干扰难溶无机盐在金属设备表面的沉积、结垢,维持金属设备有良好的传热效果,保证生产正常进行。
阻垢剂主要包括一些天然分散剂、膦酸、膦羧酸及膦磺酸和高分子聚合物等,而目前使用的绝大多数阻垢分散剂是高分子聚合物。
水处理中最早得到应用的阻垢剂大约要算聚合磷酸盐。
聚合磷酸盐除具有阻垢作用外,还兼具缓蚀作用。
但其缺点是易水解为正磷酸盐,如果控制失当,会使本来不太严重的碳酸钙垢问题转变为十分严重的磷酸钙垢问题。
20世纪60年代有机磷酸(盐)阻垢剂的问世,表明水中碳酸钙的阻垢技术取得了突破性的进展。
也使循环冷却水的超低铬处理配方得以应用。
这种超低铬配方在7.5-8.5的pH值范围内使用。
高pH值的运用使得对用于缓蚀的铬酸根量的要求从传统铬-磷-锌配方的15-25mg/L降至5-10mg/L,大大减轻了对环境的不利影响。
循环冷却水系统排污水处理工艺
循环冷却水系统排污水处理工艺采用增大水处理剂用量和投加合适的高性能分散剂、阻垢剂的方法可以改善阻垢效果,但这只是一种适合于较低浓缩倍数系统的、暂时的、消极的处理方法,对在高浓缩倍数下运行的冷却水系统,应选择适当的工艺进行旁流处理,将系统中不断增多的有害成分除去,这样相当于将排污水经再生处理后作为补充水回用到循环冷却水系统中,是真正意义上的“零排放”。
1 旁流处理工艺1.1 过滤法过滤是最常用的旁流处理方式(通称旁滤),其处理量通常为循环水量的2%~5%,可以去除水中大部分悬浮固体、粘泥和微生物等,但不能降低水的硬度和含盐量,反冲洗时杂质将随反洗水排出系统。
由于反洗水中杂质浓度比排污水高得多,所以系统排出的杂质多而消耗的水量少,即通过旁滤可使排污量显著降低。
大型循环冷却水系统一般采用以石英砂或无烟煤为滤料的重力无阀旁滤池,其滤速只能控制在10m/h以下,而冷却水的悬浮物浓度只能控制在10mg/L以下,过滤及占地面积的增大导致基础投资较大。
与石英砂相比,纤维滤料具有孔隙率高、孔隙分布合理和比表面积大等特点,采用纤维滤料时滤速可高达20~85m/h。
由于纤维具有柔软性和可压缩性,故随着水流阻力的增大而逐渐被压缩,使滤料上层受力小、孔隙大,下层受力大、孔隙小,充分体现出纤维滤料纳污量大、过滤周期长的特点。
纤维滤料过滤器通常需采用气水反冲,借助气体的搅动使截留的悬浮物与滤料分离,再随反洗水排出。
纤维过滤器对悬浮物、铁、锰、微生物粘泥都具有良好的截留作用,其过滤精度高,通常出水浊度<1NTU。
近几年来,新型的离子交换纤维滤料过滤器在循环冷却水旁流处理中的作用正在逐步引起人们的重视,除具有过滤作用外,还可与水中钙、镁离子进行离子交换,具有软化水质的功能。
.2 膜分离法反渗透法和电渗析法是常见的两种膜分离方法,可以有效去除冷却水中的硬度、微生物等有害成分,有较高的脱盐率,水回收率可以达到75%~90%。
由于渗透膜易被污染导致运行成本不断增大,通常先采用石灰软化法去除大部分硬度和悬浮物后,再采用反渗透法做进一步的降硬处理,以达到循环水补充水的水质要求。
工业循环水处理技术研究
工业循环水处理技术研究发布时间:2021-08-09T15:33:33.027Z 来源:《中国科技信息》2021年9月中作者:谢计秀[导读] 近年来,随着工业的发展和人类生活水平的提高,水的用量急剧增加。
在化工行业,循环冷却水已得到普遍的应用。
兖矿新疆煤化工有限公司谢计秀新疆乌鲁木齐市 830000摘要:近年来,随着工业的发展和人类生活水平的提高,水的用量急剧增加。
在化工行业,循环冷却水已得到普遍的应用。
文章通过阐述工业循环水运行中经常遇到的问题以及水处理的机理和技术,为循环水系统的稳定运行提供一定的技术支持。
工业循环水是一个艰巨而又复杂的工程,在工业生产中,必须针对循环水系统设备发生的问题,采取适当的处理措施。
关键词:工业循环;水处理技术引言在日常的生活与工作中,水资源都是不可或缺的自然条件资源之一。
水资源具有可再生、能循环的特点。
纵观我国现阶段有关水资源的利用问题,发现仍旧有很多地区出现了水资源严重紧缺的问题,而部分地区则出现了水资源严重浪费问题,导致我国的水资源利用效率不高,部分地区在工业发展时存在着工业排放污水循环利用质量较差的问题。
我国针对这一问题提出了相关的政策,并且对水循环处理以及工业污水排放提出了全新的要求。
在这一阶段下,如何做好工业循环水的处理技术则成为工业企业在发展中的重中之重。
1工业循环水处理技术要点1.1化学法为提高冷却水的重复使用率,在工业上,一般应用以下方法来进行循环水处理,例如定时在工业用水中投放阻垢剂、杀生剂、缓腐蚀剂等,这样不仅能减少水垢的形成和对设备的腐蚀,还能提高设备使用期限,更重要的是,还能大大提高冷却水的使用率,减少工业浪费,增加经济效益。
以下重点对杀生剂和复合水处理剂进行重点阐述。
(1)杀生剂。
所谓杀生剂,就是加入氧化杀生剂和非氧化杀生剂对微生物进行处理的一种方法,氧化杀生剂中包含氯、臭氧、溴、次氯酸盐等物质。
氯具有价格低、使用方便和杀菌力强的优点。
我厂循环水装置之前使用液氯经过蒸发器,通过加氯机进行连续投加,杀菌效果良好。
1种新型低硬度循环冷却水阻垢缓蚀剂的应用
pW N 一0 ) m ( D 4 8/ g・L ( 一 )
40
阻垢 率/ %
8 34 0. 8 76 8. 9 1 5. 2
9 89 5-
6O 8 0
1 00
因为水 的硬度 和碱度 越 高越容 易结 垢 .水 的硬
度和碱 度越低 越容 易腐蚀 设备 ,当水 的硬度 和碱 度
1 实 验 部 分
11 材 料 和 仪 器 设 备 .
材 料 : 氧 化钾 、 氢 硼砂 、 乙二 胺 四乙 酸 ( D A) E T 、
盐 酸 、 指示剂 、 酸氢钠 、 化钙 、 钙 碳 氯 丙酮 、 乙醇 等 ; 腐
蚀 挂 片 , 格 为 5 nx 5mmx 规 0mi 2 2mm: N 一 0 W D 4 8阻
Ta The s ae i hiii n pe om a c fCa b2 c l n b to r r n e o CO3 f
仪 器 设 备 : 温 水 浴 、 形 瓶 、 析 天 平 、 燥 恒 锥 分 干
器 、 气机 、 拌机 等 。 通 搅
12 试 验 方 法 .
很 高或很 低 时 , 阻垢缓 蚀剂 的要 求也 就很 高 , 以 对 所
在 阻垢 性 实验 中采用 高硬 度 的水 质 作为 实 验用 水 , 而 在腐 蚀 率实 验 中 采用 低 硬 度水 质 作 为实 验 用水 . 这样 可 以检测 水处 理剂 在较差 环境 下 的阻垢 和缓 蚀 性 能。 水处 理剂 阻垢性 能 的检测 , 酸钙沉 积法 : 碳 水处 理剂 缓蚀性 能 的测定 , 转挂 片法 I 旋 。
蚀 率< .0 00 5mm/ 铜 腐 蚀 率< .0 / 钙 硬 度 + 度 < 8 / a. 00 5mm a; 碱 4 0 mgL时 , 阻垢 数 可 以达 到 5 ~ . 具 有 良好 的 缓 蚀 性 能 和 阻垢 性 能 , 节 约 用水 , 少 系统 排 污。 .7 0 0 可 减
工业循环水处理的机理与方法
工业循环水处理的机理与方法摘要:化工企业循环水的处理效果直接影响化工企业的污水排放,因此有效解决化工企业循环水处理中存在的问题十分重要。
在化工企业的发展中,循环水处理是化工企业发展的关键因素。
大多数化工企业已经意识到循环水处理在企业运营中的重要性,并积极采用先进的新技术处理循环水,以减少循环水对化工企业造成的危害。
关键词:工业;循环水处理;机理与方法前言化学工业的废水处理没有得到有效改善。
与其他行业排放的废水相比,化工废水的成分复杂,含有重金属等有害物质,因此化工废水的排放一直是社会关注的焦点。
如果不加限制地排放,将对地表水和周围环境产生不可逆转的影响。
1化工企业循环水处理问题1.1工艺介质发生泄漏在化工生产过程中,在所用到的化工水循环装置中,设备的内部会有工艺介质,这些工艺介质存在泄漏的风险,工艺设备的泄漏会导致换热设备的表面形成一层油膜,这种物质的产生会给一些微生物提供生存的条件,尤其适应藻类的生存,如果不能够有效地对这一问题进行控制,那么将会给设备带来负面的影响,不利于设备的正常运行,甚至这些介质的泄漏还会对循环水造成污染,这对循环用水的出路也是非常不利的。
1.2浓缩倍数不够高现阶段的化学企业的生产运行过程中,需要利用大量的水资源,但在实际的循环冷却水系统中,主要存在的问题是热负荷不够高,但是循环水的保有量比循环水量高得多,这种按情况容易引发循环水的浓度系数不够高的现象,不能够降低水循环的腐蚀性的问题,导致水循环系统水质被污染。
想要有效地缓解这种现象,需要使用稳定剂对循环水的浑浊度进行控制,而这将会加大循环水成本的投入,同时也要保障水循环系统的正常运行不会受到影响,减少因为水循环系统中水质浑浊比较严重而导致滋生大量细菌的现象,大量的细菌滋生又会产生生物黏泥,这些黏泥会黏附在换热管道设备上,影响换热设备的运行功率,同时也会影响工作的运行。
2化工企业循环水污染的危害2.1腐蚀铁质设备循环水中存在有泄漏物,这些泄漏物会给一些细菌微生物提供良好的栖息环境,浑浊水中大量的营养物质使得微生物的生长迅速,那么会导致水质的黏泥量大量增长,发生出水口、吸收口堵塞的现象从而导致循环水工作受限,还会对铁质的管道等零件造成腐蚀,根据不同的现象要制定不同的解决处理方式,根据泄漏物的不同以及其化学性质的不同,可以制定针对性的解决方案。
阻垢剂在工业水处理中的应用
【 关键词 】 工业水处理 阻垢机理 阻垢剂
工 业水 处 理是 通过 物 理化 学 的 手段 去 除 水 中一 些杂 质 的水 处理 过 程 ,主 要包 括 锅炉 用 水 和冷却 用水 的水处 理 过程 。在水 资 源 日 益 紧张 的今 天 , 为有 效 降低 水 资源 需求 , 缓 解
的 结垢 和腐 蚀 , 使热 交 换器 的传 导 效 率 降低 ,
甚 至堵 塞管 路或 换 热器 , 引起垢 下 腐 蚀 , 从 而 增 加能 耗 和维修 费 用 , 甚 至会 带来 安 全 隐患 , 因此换 热设 备 的结 垢 问题 成 为工 业 水处 理 的 难 题 。所 以说 缓蚀 和 阻垢 剂 的研 究成 为 目前 市 场 的迫切 需求 , 也成 为我们 研究 的重 点 。 目前常 用 的 阻垢或 除垢方 法 主要 包 括两 类: 物理 除垢 法 和化学 除垢 法 。 物 理除 垢法 是 利 用机 械 的方 法 , 通 过 对 结垢 层 的物 理作 用 , 使 成垢 物质 失 去或 暂 时失 去结 垢 能 力 ,主要 包 括机 械 除垢 法 、 磁 场 除垢 法 和 电场 除垢 法 ; 化 学 除垢 法 是 利用 化学 方 法 ,来 预 防或 去 除
垢。 1 . 2 晶格 畸变
污 垢 的方法 , 主 要 包 括 阻垢 剂 法 、 加酸法 、 二
氧 化碳 法 、 离 子交换 法 和石灰 软化 法等 。阻垢 剂 法是 利用 在 工业 冷 却水 中添加 化 学 阻垢 剂 来 达 到阻垢 防垢 目的 的水 处 理方 法 ,具 有设
晶格 畸 变作 用 主要 是 由于 阻垢 剂 的官 能
区域 供 热
2 0 1 3 . 2期
阻垢 剂在 工业水处理 中的应用
循环水阻垢剂标准
循环水阻垢剂标准循环水阻垢剂是一种应用广泛的化学添加剂,用于防止循环水系统中的水垢形成和堆积。
循环水阻垢剂的标准是用于指导其生产和应用的参考文档,确保其质量和性能能够满足用户的需求。
一、循环水阻垢剂的概述循环水阻垢剂是一类专门用于防止循环水系统中水垢形成和堆积的化学添加剂。
它可以通过改变水中矿物盐的结晶过程,抑制水垢的生成,从而减少循环水系统的堵塞和损害。
循环水阻垢剂主要用于工业生产中的循环水系统,如冷却水循环系统、锅炉循环系统等。
它可以有效地控制水垢的形成,延长设备的使用寿命,提高设备的效率。
二、循环水阻垢剂的标准制定的必要性循环水阻垢剂的标准制定对于行业的发展和用户的利益具有重要意义。
以下是标准制定的必要性:1. 保证循环水阻垢剂的质量:标准制定可以规范循环水阻垢剂的生产过程和质量要求,确保产品具有一定的稳定性和性能。
2. 提供选择依据:标准可以为用户提供选购循环水阻垢剂的依据,根据不同的需求选择适合的产品。
3. 促进行业发展:标准可以推动循环水阻垢剂行业的发展,提高产品的技术水平和竞争力。
三、循环水阻垢剂的标准制定内容循环水阻垢剂的标准制定应该包括以下内容:1. 产品分类和名称:标准应该明确循环水阻垢剂的分类和命名规范,便于用户进行选择和购买。
2. 物理化学性质:标准应该对循环水阻垢剂的物理化学性质进行要求和测试方法的规定,包括密度、溶解度、粘度等。
3. 强效成分含量:标准应该规定循环水阻垢剂中强效成分的含量范围,确保产品的有效性。
4. 使用方法和注意事项:标准应该提供循环水阻垢剂的使用方法和注意事项,以确保产品能够正确使用并发挥最佳效果。
5. 检测方法和评价指标:标准应该制定循环水阻垢剂的检测方法和评价指标,对产品性能进行评估和检测。
6. 包装和储存:标准应该规定循环水阻垢剂的包装和储存要求,确保产品的质量和稳定性。
四、循环水阻垢剂标准的制定过程循环水阻垢剂标准的制定应该经过以下步骤:1. 建立标准制定小组:确定参与标准制定的机构和人员,建立标准制定小组。
循环水阻垢缓蚀剂在新昌电厂的应用
机磷 酸盐 、 有机 羧 酸盐 、 聚物 的高 效 阻垢 性 能 , 共 通
过药 剂 的 “ 限 ” 应 稳定 钙 硬 度 。 高水 中钙 离子 溶 效 提 和碳 酸 根 的过饱 和度 . 通过 药 剂 的 品格 畸 变作 用 并 改变 碳 酸钙 的正 常结 晶生 长 , 碳 酸 钙形 成 不 规则 使 的小颗 粒 。 过共 聚 物 的分 散作 用 均 匀地 悬 浮 在水 通 中, 使复 合药剂 达 到 良好 的 阻垢效 果 。 来自HUANG n Ho g
( aca gP w r l tN n hn 30 6 J nx Poic, h a N n h n o e a , aca g3 0 7 ,i gi rvne C i ) Pn a n
Ab t a t o s ei g lw h r n s n l ai i ic lt g wae n N n h n o e l n ,a c r so n c l s r c :C n i r o a d e s a d ak l t c ru a i tr i a c a g P w r P a t or in a d s ae d n n y n o
《工业循环水系统水质规范与要求》
温馨小提示:本文主要介绍的是关于《工业循环水系统水质规范与要求》的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇《工业循环水系统水质规范与要求》能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)《工业循环水系统水质规范与要求》一、工业循环水系统概述工业循环水系统定义工业循环水系统是指在工业生产过程中,为了满足生产设备冷却、洗涤、加热等需求,通过循环使用水资源,达到节水、节能、减少污染的目的。
它主要由水泵、管道、冷却塔、换热器、过滤器等设备组成,通过水处理技术维持水质稳定,确保系统安全运行。
工业循环水系统组成工业循环水系统主要由以下几部分组成:1)水泵:用于为系统提供动力,将水从水源输送到需要的地方。
2)管道:用于输送循环水,连接各个设备。
3)冷却塔:用于散发热量,降低水温。
4)换热器:用于在设备间进行热量交换。
5)过滤器:用于过滤水质,防止水质恶化。
6)水处理设备:用于处理水质,维持水质稳定。
工业循环水系统分类根据用途和运行方式,工业循环水系统可分为以下几类:1)封闭式循环水系统:水质不易受到外部污染,运行较为稳定。
2)开放式循环水系统:易受到外部污染,需加强水质处理。
3)直流式循环水系统:水在系统中不断更换,适用于水质较差的环境。
4)混合式循环水系统:结合封闭式和直流式的特点,适用于水质要求较高的环境。
综上所述,工业循环水系统在工业生产中起着至关重要的作用。
了解其定义、组成和分类,有助于我们更好地设计和运行循环水系统,提高生产效率,节约水资源,减少环境污染。
二、工业循环水系统水质指标水质指标分类工业循环水系统的水质指标主要分为以下几类:pH值、溶解氧、总硬度、总碱度、悬浮物、溶解固体、氨氮、磷、硫化物、氰化物等。
美国纳尔科阻垢剂在循环水处理中的应用
美国纳尔科阻垢剂在循环水处理中的应用美国纳尔科阻垢剂即为缓解腐蚀,减少水处理设备表面结垢。
其化学名称为乙二胺四亚甲基膦酸钠,为阴极型缓蚀剂。
美国纳尔科阻垢剂应用于锅炉水处理及循环冷却水处理。
锅炉美国纳尔科阻垢剂概述
锅炉在我们生活中并不陌生,运行中的锅炉常常有坚硬的水垢及腐蚀,这不但浪费燃料,影响锅炉出力,严重时会炸管,造成停炉事故,影响其使用寿命。
大中小型锅炉防止结垢及腐蚀,常用炉内化学处理方法,在锅炉用水内加入防腐阴垢剂,降低炉水硬度软化水质,减少结垢及腐蚀,这种方法简便实用,深受用户欢迎。
锅炉美国纳尔科阻垢剂原理
药剂由碱性物质和有机物复配而成,本剂中加油缓蚀剂,防止受热面腐蚀。
本剂中的碱性物质,在炉内通过化学反应,于水中的钙镁盐类反应生成水渣沉淀,通过排污排出炉外,降低水中钙镁离子浓度,使其不形成水垢。
本剂中的有机物,会增加水渣的流动性,使之容易排出,同时有机物还会在金属表面形成阻止层及保护膜,阻止受热面形成水垢,保护受热面不受腐蚀,保证了锅炉无腐蚀下正常运行。
美国纳尔科阻垢剂因其使用范围广,作用效果好,处理效果稳定,而得到业界的一致好评。
工业循环水处理的机理与方法
工业循环水处理的机理与方法摘要:随着我国社会不断进步,经济水平也在不断提高,促进工业生产规模的增大,水污染成为人们迫切需要解决的问题。
对于企业的管理者来说,在治理水污染时,应落实对污水的有效净化手段,并充分利用水循环,从而缓解严重的水污染问题。
运用科学合理的治理手段,使得循环水的处理问题得到解决,促进工业的健康可持续发展。
关键词:工业循环水处理;机理;方法1现阶段国内外循环水处理情况在当前,工业循环水冷却处理技术已经在国外得到了广泛应用以及良好的发展,但由于多方面重大因素的制约和限制,暴露出了诸多问题和缺陷。
自上世纪末期循环水冷却处理技术被引进到了我国之后,但经过漫长的发展历程之后才逐步成熟起来。
近几年,我国循环水冷却处理的效率相比以往有了较大的提升,并且处理的过程当中也逐步加入了处理剂,已经逐步发展出了更具规模化以及国际化的处理剂产品。
2工业循环水处理对策2.1化学处理方法当前工业循环水处理中主要采用阻垢剂和杀生剂等方式开展工作,意在延缓工业循环水的水垢形成时间,避免因为水垢问题引发设备腐蚀问题,是对循环水设备使用寿命进行延长的重要手段。
上文提出的处理方法被统一划分为化学处理方法。
在工业循环水工作中对化学处理法的正确应用,可以为工业发展提供更大效益优势。
2.1.1复合水处理剂化学处理方法中复合水处理剂可以充分发挥处理剂优势,能对多种金属腐蚀问题进行有效控制。
目前常见的复合水处理剂包含分散剂、缓蚀剂等多种物料,在多种处理剂联合应用过程中,能充分发挥元素优势的多样性特点。
在复合处理过程中,还涵盖了多种元素的处理配方,比如铬系配方的主要作用就是降低工业循环水中微生物的腐蚀影响,从而实现循环水中锌元素的稳定不受到影响。
铬系配方原材料来源比较丰富,配方的成熟性和稳定性更强,所以近年来也在循环水处理中得到了广泛应用。
在工厂水循环系统运行中适当增加缓蚀剂、氧化杀菌剂等专业制剂,可以有效发挥制剂优势,在相互作用和干预下,消除水垢,并有效预防和控制腐蚀问题的发生。