抛物线及其标准方程-人教A版高中数学
高中数学人教A版选修-课时作业--抛物线的标准方程含答案
23
14.[解析] 双曲线 3x2-y2=1 的焦点分别为 F1 3 ,0 ,F2 ,0 ,若抛物线的焦
83
-
3
点为 F1,则抛物线的标准方程为 y2=-
3
x;若抛物线的焦点为 F ,则抛物线的标准方程
2
83 为 y2= 3 x.
15.[解析] 设 P(x0,4),因为 P 是抛物线上的一点,所以 3×42=16x0.解得 x0=3,即
2x2+2=x1+1+x +1.即 3
x2=x1+2 x3.
y1+y3
( ) 线段
AD
中点为
x1+x3 y1+y3 2,
,所以
kAD=yx33- -yx11,AD
2 -0
中垂线斜率为 x1+x3
.
-3
2
2
y3-y1
y1+y3
所以x3-x1 · x1+x3-6=-1.
4x3-4x1 即 x23-x21 -6 x3-x1 =-1.
( ) ( ) ( ) y ,M(-x,0),所以PM= -x,-2 ,PF= 1,-2
.
所以→PM·→PF=-x+y2=0⇒y2=4x,所以 N 点的轨迹方程为 y2=4x. 4
(2)如右图所示,|AF|=1x +1,|BF|=x +1,|DF| 2 → →→
=x3+1,因为|AF|, |BF|,|DF|成等差数列,所以
(2)设 A(x1,y1),B(x2,y2),D(x3,y3)是曲线 C 上除原点外的三点,且|AF|,|BF|,| → DF|成等差数列,当 AD 的垂直平分线与 x 轴交于点 E(3,0)时,求 B 点的坐标.
1.[解析]
依题意,抛物线开口向左,焦点在
x
2014-2015学年人教A版选修2-1高中数学《2.4.1抛物线及其标准方程》课件
4
②x=ay2(a≠0).
【解题探究】1.题(1)由圆与抛物线的准线相切,能得出什么结 论? 2.题(2)当抛物线方程中含参数时,如何求焦点和准线? 【探究提示】1.可得出圆心到准线的距离等于圆的半径.
2.如果抛物线方程中含参数,要先把其化成标准方程,对参数应
分类讨论,再求焦点和准线.
4
2.若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为 __________.
【解析】1.因为焦点F为 ( 3 , 所以抛物线方程可设为y2= 0),
4
-2px(p>0),由 p 3 ,所以 p ,
2 4
3 2
故标准方程为y2=-3x. 答案:y2=-3x
2.根据抛物线的定义,点P到抛物线准线的距离为9, 设P(x0,y0),则 x 0 p 9,
(2)若抛物线的方程为x=2ay2(a>0),则焦点到准线的距离 p= . .
(3)焦点坐标为(0,2)的抛物线的标准方程为
【解析】(1)因为y2=4x,所以p=2,所以焦点坐标为(1,0),
准线方程为x=-1.
答案:(1,0)
x=-1
2a
(2)因为x=2ay2(a>0),所以 y 2 1 x,
【微思考】
(1)定义中若去掉条件“l不经过F”,则此时点的轨迹是什么?
提示:若点F在直线l上,满足条件的动点P的轨迹是过点F且垂直
于l的直线,而不是抛物线.
(2)确定抛物线的标准方程时,一般需要确定几个量?
提示:确定两个量,一个是p,另一个是一次项系数的正负.
【即时练】 1.以 F( 3 , 0) 为焦点的抛物线的标准方程是_________.
的直径是24cm,灯深10cm,那么灯泡与反射镜顶点(即截得抛物 线顶点)间的距离是 .
人教A版高中数学选择性必修第一册3-3-1抛物线及其标准方程课件
|素养达成|
1.对抛物线定义的两点说明 (1)定直线l不经过定点F. (2)定义中包含三个定值,分别为一个定点、一条定直线及一个确定 的比值.
2.四种位置的抛物线标准方程的对比 (1)相同点:①原点在抛物线上; ②焦点在坐标轴上; ③焦点的非零坐标都是一次项系数的14.
(2)不同点:①焦点在x轴上时,方程的右端为±2px,左端为y2;焦 点在y轴上时,方程的右端为±2py,左端为x2.
这时点M的纵坐标为2,可设M(x0,2),代入抛 物线方程得x0=2,即M(2,2).
抛物线定义的两种应用 (1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦点的 距离等于它到准线的距离,因此,由抛物线定义可以实现“点点距”与 “点线距”的相互转化,从而简化某些问题. (2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和的最 小值时,往往用抛物线的定义进行转化,即化折线为直线解决最值问 题.
为
()
A.圆
B.椭圆
C.双曲线
D.抛物线
【答案】D
【解析】依题意,点P到直线x=-2的距离等于它到点(2,0)的距
离,故点P的轨迹是抛物线.
微思考 定义中为什么要求直线l不经过点F? 【答案】提示:当直线l经过点F时,点的轨迹是过点F且垂直于直
线l的一条直线,而不是抛物线.
抛物线的标准方程
图形
标准方程 y_2_=__2_p_x(_p_>__0_)
焦点坐标
准线方程 p 的几何
意义
p2,0 x=-p2
_y2_=__-__2_p_x(_p_>__0_) _x_2=__2_p_y_(_p_>_0_)_ x_2_=__-__2_py_(_p_>__0)
-p2,0 x=2p
抛物线及其标准方程 课件
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
[解析] (1)设所求的抛物线方程为 y2=-2px(p>0)或 x2= 2py(p>0),
∵过点(-3,2),∴4=-2p·(-3)或 9=2p·2. ∴p=23或 p=94. 故所求的抛物线方程为 y2=-43x 或 x2=92y, 对应的准线方程分别为 x=13,y=-98.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
[方法规律总结] 利用抛物线的定义可以将抛物线上的点 到焦点的距离转化为到准线的距离,这一相互转化关系会给解 题带来方便.要注意灵活运用定义解题.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
抛物线及其标准方程
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
抛物线的定义及标准方程 思维导航 1.我们已知二次函数的图象为抛物线,生产生活中我们 也见过许多抛物线的实例,如跳绳时绳子的弧线、探照灯的纵 截面,那么抛物线是怎样定义的?有什么特点?如何画出抛物 线?
__F__(0_,__-__p2_) __y_=__p2_____ x_2=__-__2_p_y_(_p_>_0_)
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
5.过抛物线焦点的直线与抛物线相交,被抛物线所截得的 线段,称为抛物线的__焦__点__弦____.
[分析] 图(2)是图(1)中位于直线O′P右边的部分,故O′B为 水池的半径,以抛物线的顶点为原点,对称轴为y轴建立平面 直角坐标系,则易得P点坐标,再由P在抛物线上求出抛物线方 程,再由B点纵坐标求出B点的横坐标即可获解.
(部编版)2020学年高中数学第二章2.3.1抛物线及其标准方程学案含解析新人教A版选修77
2.3.1 抛物线及其标准方程[提出问题]如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.问题1:|DA|是点D到直线EF的距离吗?为什么?提示:是.AB是直角三角形的一条直角边.问题2:点D在移动过程中,满足什么条件?提示:|DA|=|DC|.问题3:画出的曲线是什么形状?提示:抛物线.[导入新知]抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.[化解疑难]对抛物线定义的认识(1)定义的实质可归结为“一动三定”:一个动点,设为M;一个定点F叫做抛物线的焦点;一条定直线l,叫做抛物线的准线;一个定值,即点M与点F的距离和它到直线l的距离之比等于1.(2)注意定点F不在直线l上,否则动点M的轨迹不是抛物线,而是过点F垂直于直线l的一条直线.[提出问题]平面直角坐标系中,有以下点和直线:A(1,0),B(-2,0);l1:x=-1,l2:x=2.问题1:到定点A和定直线l1距离相等的点的轨迹是什么?对应方程是什么?提示:抛物线;y2=4x.问题2:到定点B和定直线l2距离相等的点的轨迹方程是什么?提示:y2=-8x.[导入新知]抛物线标准方程的几种形式1.标准方程特征:等号一边是某个变量的平方,等号的另一边是另一变量的一次项. 2.标准方程中p 表示焦点到准线的距离,p 的值永远大于零.3.四个标准方程的区分:焦点在一次项变量对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口向坐标轴的正方向;当系数为负时,开口向坐标轴的负方向.[例1] (1)y 2=-14x ; (2)5x 2-2y =0; (3)y 2=ax (a >0).[解] (1)因为p =7,所以焦点坐标是⎝ ⎛⎭⎪⎫-72,0,准线方程是x =72. (2)抛物线方程化为标准形式为x 2=25y ,因为p =15,所以焦点坐标是⎝ ⎛⎭⎪⎫0,110,准线方程是y =-110.(3)由a >0知p =a 2,所以焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a4.[类题通法]已知抛物线方程求焦点坐标和准线方程时,一般先将所给方程化为标准形式,由标准方程得到参数p ,从而得焦点坐标和准线方程.需注意p >0,焦点所在轴由标准方程一次项确定,系数为正,焦点在正半轴;系数为负,焦点在负半轴.[活学活用]求抛物线y =ax 2(a ≠0)的焦点坐标和准线方程. 解:把抛物线方程y =ax 2化成标准方程x 2=1ay .当a >0时,焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a ;当a <0时,焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a . 综上知,所求抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,14a ,准线方程为y =-14a .[例2] (1)过点M (-6,6);(2)焦点F 在直线l :3x -2y -6=0上. [解] (1)由于点M (-6,6)在第二象限, ∴过M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在x 轴上, 设其方程为y 2=-2px (p >0),将点M (-6,6)代入,可得36=-2p ×(-6), ∴p =3.∴抛物线的方程为y 2=-6x . 若抛物线开口向上,焦点在y 轴上, 设其方程为x 2=2py (p >0),将点M (-6,6)代入可得,36=2p ×6,∴p =3, ∴抛物线的方程为x 2=6y .综上所述,抛物线的标准方程为y 2=-6x 或x 2=6y . (2)①∵直线l 与x 轴的交点为(2,0), ∴抛物线的焦点是F (2,0), ∴p2=2,∴p =4,∴抛物线的标准方程是y 2=8x . ②∵直线l 与y 轴的交点为(0,-3), 即抛物线的焦点是F (0,-3), ∴p2=3,∴p =6, ∴抛物线的标准方程是x 2=-12y .综上所述,所求抛物线的标准方程是y 2=8x 或x 2=-12y .[类题通法]求抛物线的标准方程的关键与方法(1)关键:确定焦点在哪条坐标轴上,进而求方程的有关参数.(2)方法:①直接法,建立恰当坐标系,利用抛物线的定义列出动点满足的条件,列出对应方程,化简方程; ②直接根据定义求p ,最后写标准方程;③利用待定系数法设标准方程,找有关的方程组求系数. [活学活用]根据下列条件写出抛物线的标准方程: (1)准线方程为y =-1;(2)焦点在x 轴的正半轴上,焦点到准线的距离是3.(1)由准线方程为y =-1知抛物线焦点在y 轴正半轴上,且p2=1,则p =2.故抛物线的标准方程为x 2=4y .(2)设焦点在x 轴的正半轴上的抛物线的标准方程为y 2=2px (p >0),则焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p2,则焦点到准线的距离是-p 2-p2=p =3,因此所求的抛物线的标准方程是y 2=6x .[例3] 平面上动点P [解] 法一:设点P 的坐标为(x ,y ), 则有x -2+y 2=|x |+1.两边平方并化简,得y 2=2x +2|x |.∴y 2=⎩⎪⎨⎪⎧4x x ,x <,∴点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0).法二:由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y =0上的点符合条件;当x ≥0时,题中条件等价于点P 到点F (1,0)与到直线x =-1的距离相等,故点P 的轨迹是以F 为焦点,直线x =-1为准线的抛物线,方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0). [类题通法]求轨迹方程一般有两种方法:一是直接法,根据题意直接列方程确定点P 的轨迹方程;二是定义法,利用抛物线的定义确定轨迹的一部分为抛物线,再根据抛物线的性质写出方程.[活学活用]已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.解:法一:设点P 的坐标为(x ,y ), 由条件知|AP |=r +1(r 为圆P 的半径), 即x +2+y 2=|x -1|+1,化简,整理得y 2=-8x . ∴点P 的轨迹方程为y 2=-8x .法二:如图所示,作PK 垂直于直线x =1,垂足为K ,作PQ 垂直于直线x =2,垂足为Q ,则|KQ |=1,∴|PQ |=r +1.又|AP |=r +1,∴|AP |=|PQ |,故点P 到圆心A (-2,0)的距离和定直线x =2的距离相等,∴点P 的轨迹为抛物线,A (-2,0)为焦点,直线x =2为准线. ∴p2=2,∴p =4.∴点P 的轨迹方程为y 2=-8x .3.研析抛物线定义的应用[典例] 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时的P 点坐标.[解] 如图,作PN ⊥l 于N (l 为准线),作AB ⊥l 于B , 则|PA |+|PF |=|PA |+|PN |≥|AB |,当且仅当P 为AB 与抛物线的交点时,取等号.∴(|PA |+|PF |)min =|AB |=3+12=72.此时y P =2,代入抛物线得x P =2, ∴P 点坐标为(2,2). [多维探究](1)若已知抛物线上点P 到焦点F 的距离(或与此有关),往往转化为点P 到准线的距离,其步骤是: ①过P 作PN 垂直于准线l ,垂足N ;②连接PF ;③|PF |=|PN |=x P +p2(焦点在x 轴正半轴上时).(2)上例中,求|PA |+|PF |的最小值时,结合图形,根据平面几何知识判断|PA |+|PF |=|PA |+|PN |≥|AB |.体现了数形结合的思想.1.若点P 是抛物线y 2=2x 上的一个动点,求点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值. 解:由抛物线的定义可知,抛物线上的点到准线的距离等于它到焦点的距离.由图可知,P 点,(0,2)点,和抛物线的焦点⎝ ⎛⎭⎪⎫12,0三点共线时距离之和最小,所以最小距离d =⎝ ⎛⎭⎪⎫0-122+-2=172.2.若点P 是抛物线y 2=2x 上的一个动点,求点P 到直线3x -4y +72=0的距离与P 到该抛物线的准线的距离之和的最小值.解:如图.|PA |+|PQ |=|PA |+|PF |≥|AF |min .AF 的最小值为F 到直线3x -4y +72=0的距离.d =3×12+7232+42=1.3.若长为3的线段AB 的两个端点在抛物线y 2=2x 上移动,M 为AB 的中点,求M 点到y 轴的最短距离. 解:设抛物线焦点为F ,连接AF ,BF ,如图抛物线y 2=2x 的准线为l :x =-12,过A ,B ,M 分别作AA ′,BB ′,MM ′垂直于l ,垂足分别为A ′,B ′,M ′.由抛物线定义,知|AA ′|=|FA |,|BB ′|=|FB |. 又M 为AB 中点,由梯形中位线定理, 得|MM ′|=12(|AA ′|+|BB ′|)=12(|FA |+|FB |) ≥12|AB |=12×3=32. 则x ≥32-12=1(x 为M 点的横坐标,当且仅当AB 过抛物线的焦点时取得等号),所以x min =1,即M 点到y 轴的最短距离为1. [类题通法]解决此类问题通过回归抛物线定义和运用平面几何知识中的两点之间线段最短、三角形中三边之间的不等关系、点与直线上点的连线中垂线段最短等,使问题化难为易.[随堂即时演练]1.焦点是F (0,5)的抛物线的标准方程是( ) A .y 2=20x B .x 2=20y C .y 2=120xD .x 2=120y解析:选B 由5=p2得p =10,且焦点在y 轴正半轴上,故方程形式为x 2=2py ,所以x 2=20y .2.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8D .12解析:选B 由抛物线的方程得p 2=42=2,再根据抛物线的定义,可知所求距离为4+2=6.3.若双曲线x 2m -y 23=1的右焦点与抛物线y 2=12x 的焦点重合,则m =________.解析:∵抛物线焦点为(3,0), ∴m +3=3且m >0,则m =6. 答案:64.焦点为F 的抛物线y 2=2px (p >0)上一点M 在准线上的射影为N ,若|MN |=p ,则|FN |=________. 解析:由条件知|MF |=|MN |=p ,MF ⊥MN ,答案:2p5.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求点M 的坐标. 解:由抛物线方程y 2=-2px (p >0), 得其焦点坐标为F ⎝ ⎛⎭⎪⎫-p2,0,准线方程为x =p2,设点M 到准线的距离为d , 则d =|MF |=10, 即p2-(-9)=10, 因此p =2.故抛物线的方程为y 2=-4x .将M (-9,y )代入抛物线方程,得y =±6. 故点M 的坐标为(-9,6)或(-9,-6).[课时达标检测]一、选择题1.顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4x B .x 2=4yC .y 2=-4x 或x 2=4y D .y 2=4x 或x 2=-4y解析:选C 设抛物线方程为y 2=-2p 1x 或x 2=2p 2y ,把(-4,4)代入得16=8p 1或16=8p 2,即p 1=2或p 2=2. 故抛物线的标准方程为y 2=-4x 或x 2=4y .2.已知点P (8,a )在抛物线y 2=4px 上,且点P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .16解析:选B 准线方程为x =-p , ∴8+p =10,p =2.∴焦点到准线的距离为2p =4.3.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12 B .1 C .2 D .4解析:选C ∵抛物线y 2=2px 的准线x =-p2与圆(x -3)2+y 2=16相切,∴-p2=-1,即p =2.4.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆解析:选A 由题意知,圆C 的圆心到点(0,3)的距离比到直线y =0的距离大1,即圆C 的圆心到点(0,3)的距离与到直线y =-1的距离相等,根据抛物线的定义可知,所求轨迹是一条抛物线.5.已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取最小值时,点P 的坐标为( )A.⎝ ⎛⎭⎪⎫14,-1B.⎝ ⎛⎭⎪⎫14,1 C .(1,2) D .(1,-2)解析:选A 点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图,|PF |+|PQ |=|PS |+|PQ |,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,点P 坐标为⎝ ⎛⎭⎪⎫14,-1.二、填空题6.抛物线x =14m y 2的焦点坐标是________.解析:方程改写成y 2=4mx ,得2p =4m , ∴p =2m ,即焦点(m,0). 答案:(m,0)7.已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y 2a=1的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.解析:解析:根据抛物线的定义得1+p2=5,p =8.不妨取M (1,4),则AM 的斜率为2,由已知得-a ×2=-1,故a =14.答案:148.对标准形式的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程为y 2=10x 的是________.(要求填写适合条件的序号) 解析:抛物线y 2=10x 的焦点在x 轴上,②满足,①不满足; 设M (1,y 0)是y 2=10x 上一点,则|MF |=1+p 2=1+52=72≠6,所以③不满足;由于抛物线y 2=10x 的焦点为⎝ ⎛⎭⎪⎫52,0,过该焦点的直线方程为y =k ⎝ ⎛⎭⎪⎫x -52,若由原点向该直线作垂线,垂足为(2,1)时,则k =-2,此时存在,所以④满足.答案:②④ 三、解答题9.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.解:法一:如图所示,设抛物线的方程为x 2=-2py (p >0), 则焦点F ⎝ ⎛⎭⎪⎫0,-p 2,准线l :y =p2.作MN ⊥l ,垂足为N , 则|MN |=|MF |=5, 而|MN |=3+p 2,3+p2=5, 即p =4.所以抛物线方程为x 2=-8y , 准线方程为y =2. 由m 2=-8×(-3)=24, 得m =±2 6.法二:设所求抛物线方程为x 2=-2py (p >0), 则焦点为F ⎝⎛⎭⎪⎫0,-p 2.∵M (m ,-3)在抛物线上,且|MF |=5,故⎩⎪⎨⎪⎧m 2=6p ,m 2+⎝ ⎛⎭⎪⎫-3+p 22=5,解得{ p =4,m =±2 6.※ 推 荐 ※ 下 载 ※准线方程为y =2.10.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米.(1)以抛物线的顶点为原点O ,其对称轴所在的直线为y 轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米).解:如图所示:(1)依题意,设该抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上,所以该抛物线的方程为x 2=-5y .(2)设车辆高h ,则|DB |=h +0.5,故D (3.5,h -6.5),代入方程x 2=-5y ,解得h =4.05,所以车辆通过隧道的限制高度为4.0米.。
抛物线及其标准方程 课件-高中数学人教A版(2019)选择性必修第一册
=
− .
2
新知探索
设(, )是抛物线上任意一点,点到准线的距离为.由抛物线的定义,抛物
l
线是点的集合= {||| = }.
l
因为|| =
2
2
2
( − )2 + 2 , = | + |,
2
所以 ( − )2 + 2 = | + |.
将上式两边同时平方并化简,得 2 = 2( > 0).
课堂小结
2.抛物线标准方程的几种形式:
图形
标准方程
焦点坐标
准线方程
2 = 2( > 0)
( , 0)
2
=−
2
2 = −2(
> 0)
(− , 0)
2
=
2
课堂小结
2.抛物线标准方程的几种形式:
图形
标准方程
2
= 2( > 0)
2
= −2(
> 0)
焦点坐标
因为点(−4, 0 )在抛物线上,所以16 = −50 ,
即0 =
16
− ,所以的长为5
5
所以管柱的长为1.8 .
−
16
5
= 1.8().
课堂小结
1.抛物线的定义:
(1)定义:平面内与一个定点和一条定直线(不经过点)的距离相等的点
的轨迹叫做抛物线.
(2)焦点:定点.
(3)准线:定直线.
16
16
2
所以16 = −2 × (−5),2 = ,所以抛物线方程为 = − (−4 ≤ ≤ 4).
人教版高中数学选择性必修第一册3.3.1抛物线及其标准方程
人A数学选择性必修1
返回导航 上页 下页
[解析] (1)根据抛物线的定义,所求点的轨迹是抛物线. (2)因为点(1,1)在直线x+2y=3上,所以所求点的轨迹是过点(1,1)且与 直线x+2y=3垂直的直线.
人A数学选择性必修1
返回导航 上页 下页
在利用到定点的距离与到定直线的距离相等的点的轨迹 为抛物线时,注意先判断定点是否在定直线上.如果在定直线上,则 动点的轨迹为过该点且与已知直线垂直的直线.
返回导航 上页 下页
图形 标准 _y_2_=__2_p_x_(p_>_0_)_ _y_2_=__-__2_p_x_(_p_>_0_) _x_2_=__2_p_y(_p_>_0_)_ _x_2=__-__2_p_y_(_p_>_0_)_ 方程
人A数学选择性必修1
返回导航 上页 下页
焦点 坐标
___p2,__0____
人A数学选择性必修1
返回导航 上页 下页
此时点P的纵坐标为2,代入y2=2x,得x=2,
∴点 P的坐标为(2,2).
人A数学选择性必修1
返回导航 上页 下页
(2)易知点 B12,2在抛物线的外部.设点 P 到准线 l:x=-12的距离为 d. 结合抛物线的定义,得|PB|+d=|PB|+|PF|≥|BF|,当且仅当 B,P,F 三点共线(P 在线段 BF 上)时取等号. 又|BF|= 12-212+2-02=2, ∴所求距离之和的最小值为 2.
何变化.平移后的图象对应的函数解析式为 y=ax2,即 x2=1ay,这个
方程表示的曲线是顶点为原点,焦点为0,41a的抛物线.
人A数学选择性必修1
返回导航 上页 下页
因此,二次函数y=ax2+bx+c的图象是一条抛物线.
人教A版高中数学选择性必修第一册3.3.1抛物线及其标准方程
2.抛物线的标准方程
图形
标准方程
__y_2_=__2_p_x_(p_>_0_)_
焦点坐标
__F_p2_,__0__
准线方程
_x_=__-__p2__
__y_2=__-__2_p_x_(_p_>_0_)
F-2p,0
___x=__p2____
图形
标准方程
_x_2_=__2_p_y(_p_>_0_)__
课堂 小结 提素 养
1 . 焦 点 在 x 轴上的抛 物线, 其标准 方程可 以统设 为 y2= mx(m≠0),此时焦点为 Fm4 ,0,准线方程为 x=-m4 ;焦点在 y 轴上 的抛物线,其标准方程可以统设为 x2= my(m≠0) ,此时焦点为 F0,m4 ,准线方程为 y=-m4 .
2.设 M 是抛物线上一点,焦点为 F,则线段 MF 叫做抛物线的 焦半径.若 M(x0,y0)在抛物线 y2=2px(p>0)上,则根据抛物线的定 义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以 焦半径|MF|=x0+p2.
[跟进训练] 1.根据下列条件分别求出抛物线的标准方程: (1)准线方程为 y=23; (2)焦点在 y 轴上,焦点到准线的距离为 5; (3)经过点(-3,-1); (4)焦点为直线 3x-4y-12=0 与坐标轴的交点.
[解] (1)因为抛物线的准线交 y 轴于正半轴,且p2=23,则 p=43, 所以所求抛物线的标准方程为 x2=-83y.
抛物线定义的两种应用 (1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦 点的距离等于它到准线的距离,因此,由抛物线定义可以实现点点距 与点线距的相互转化,从而简化某些问题. (2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和 的最小值时,往往用抛物线的定义进行转化,即化折线为直线解决最 值问题.
高中数学选修2-1人教A版:.1抛物线及其标准方程ppt课件
.
OF
x
四、点与抛物线的位置关系
y
F
.
o
x
五、抛物线定义的应用
1,求抛物线标准方程 2,涉及抛物线的最值问题
五、抛物线的通径、焦半径、焦点弦
1、通径:
y
通过焦点且垂直对称轴的直线,
P (x0, y0 )
与抛物线相交于两点,连接这 OF
x
两点的线段叫做抛物线的通径。
F
O
x
B (x2, y2)
焦点弦公式: ABx1x2p
焦点弦的性质
y 1、抛物线的焦点弦AB的长是否存
A
在最小值?若存在,其最小值为
多少?
O Fx B
垂直于对称轴的焦点弦最短,叫做抛 物线的通径,其长度为2p.
2、A、B两点的坐标是否存在相关关
系?若存在,其坐标之间的关系如
何?
yA
O Fx B
2
p 1
1 k2
p tan
d 2
1 tan 2
1 1 tan 2
S 2p 2
tan 2
p tan
2
p2
1 tan 2 2 sin
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F , 且与抛物线相交于 A,B 两点,求线段 AB 的长.
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大); 法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:活用定义,运用韦达定理,计算弦长.
法四:纯几何计算,这也是一种较好的思维.
解法1 F1(1 , 0), l的 方 程 为 : yx1 yy2x4x1x26x10
2022年秋高中数学第三章圆锥曲线的方程3.3抛物线3.3.1抛物线及其标准方程课件新人教A版选择性
探究点三 利用抛物线的定义解决轨迹问题
【例3】 已知动点M(x,y)满足5 (-1)2 + 2=|3x-4y+2|,则动点M的轨迹是
(
)
A.椭圆 B.双曲线
C.直线 D.抛物线
答案 D
2
解析 方程 5 (-1) +
2
(-1) +
2 表示点
2 =|3x-4y+2|可化为
2
(-1) +
规律方法 定义法解决轨迹问题
根据动点坐标满足的方程判断其轨迹时,要注意结合两点间的距离公式以
及点到直线的距离公式,对所给方程进行适当变形,分析其几何意义,然后
结合有关曲线的定义作出判定.
变式训练2
一个动圆经过点A(2,0),并且和直线l:x=-2相切,则动圆圆心M的轨迹方程是
.
答案 y2=8
解析 设动圆的半径为R.因为动圆经过点A(2,0),所以|MA|=R.又因为动圆和
离之和最小,最小值为|AF|= √5 .
图①
(2)同理,|PF|与点P到准线x=-1的距离相等.
如图②所示,
过点B作BQ垂直于准线交准线于点Q,交抛物
线于点P1.
由题意知|P1Q|=|P1F|,
所以|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.
所以|PB|+|PF|的最小值为4.
图②
规律方法 求圆锥曲线上到两定点的距离之和最小的点的位置时,通常有
面宽为 2√6 米.
本节要点归纳
2
1
p=6;
若抛物线的标准方程为 x =-2py(p>0),则由(-3) =-2p×(-1),解得
人教A版新教材高中数学选择性必修第一册课件-抛物线及其标准方程
(3)令 x=0 得 y=-5;令 y=0 得 x=-15. ∴抛物线的焦点为(0,-5)或(-15,0). ∴所求抛物线的标准方程为 x2=-20y 或 y2=-60x.
1.用待定系数法求抛物线标准方程的步骤
2.求抛物线的标准方程时需注意的三个问题 (1)把握开口方向与方程一次项系数的对应关系; (2)当抛物线的位置没有确定时,可设方程为 y2=mx(m≠0)或 x2 =ny(n≠0),这样可以减少讨论不同情况的次数; (3)注意 p 与p2的几何意义.
()
(3)以(0,1)为焦点的抛物线的标准方程为 x2=4y.
()
[提示] (1)× (2)× (3)√
2.抛物线 y2=8x 的焦点到准线的距离是( )
A.1
B.2
C.4
D.8
C [由 y2=8x 得 p=4,即焦点到准线的距离为 4.]
3.抛物线 x=4y2 的准线方程是( )
A.y=12
B.y=-1
[跟进训练] 1.根据下列条件分别求出抛物线的标准方程: (1)准线方程为 y=23; (2)焦点在 y 轴上,焦点到准线的距离为 5; (3)经过点(-3,-1); (4)焦点为直线 3x-4y-12=0 与坐标轴的交点.
[解] (1)因为抛物线的准线交 y 轴于正半轴,且p2=23,则 p=43, 所以所求抛物线的标准方程为 x2=-83y.
焦点坐标
__F__0_,_p2___
准线方程
__y_=_-__p2__
_x_2=__-__2_p_y_(p_>_0_)_
__F_0_,__-_2_p__ __y_=__p2___
1.思考辨析(正确的打“√”,错误的打“×”)
(1)平面内到一定点距离与到一定直线距离相等的点的轨迹一定
抛物线及其标准方程(共32张PPT)高中数学人教A版选择性必修第一册
情景导入
02抛物线及其标准方程 P A R T 0 N E
抛物线及其标准方程
,准线为
为F
抛物线及其标准方程 从上述过程可以看到,抛物线上任意一点的坐标(x,y)都是方程①的解,以方 程①的解为坐标的点(x,y)与抛物线的焦点 的距离和它到准线 的 距离相等,即以方程①的解为坐标的点都在抛物线上,我们把方程①叫做抛物线 的标准方程,它表示焦点在x轴正半轴上,焦点是 ,准线是 的抛物线 .
将点(一2,3)代入抛物线方程y 得
抛物线及其标准方程
∴满足条件的抛物线的标准方程为(2)直线x—y+2=0 与两坐标轴的交点为(一2,0),(0,2). 若抛物线的焦点为(一2,0),设其方程为y²=—2px(p>0).
抛物线及其标准方程
抛物线及其标准方程 在建立椭圆、双曲线的标准方程时,选择不同的坐标系我们得到了不同形 式的标准方程,抛物线的标准方程有哪些不同的形式?请探究之后填写下表. 图像 标准方程 焦点坐标 准线方程 y²=2px(p>0) F(2,0) x=-2 y²=-2px(p>0) F(-2,0) x=2 x²=2py(p>0) F(0,2) y=-2 x²=-2py(p>0) F(0,-2 y=2
抛物线及其标准方程
抛物线及其标准方程 求轨迹方程C P_ 建立直角坐标系?使方程形式足够简洁 !
设M(x,y) 是抛物线上一点,则M 到F的距离为则M到直线l的距离为所以上式两边平方,整理可得y²= 2px ①
人教A版高中数学选择性必修第一册课后习题 第3章圆锥曲线的方程 3.3.1 抛物线及其标准方程
3.3.1 抛物线及其标准方程课后·训练提升基础巩固1.若动点P到定点F(1,1)的距离与它到直线l:3x+y-4=0的距离相等,则动点P的轨迹是( )A.椭圆B.双曲线C.抛物线D.直线答案:D解析:因为点F在直线l上,所以动点P的轨迹是过点F且与直线l垂直的直线.2.若抛物线y2=2px的焦点为(3,0),则下列点中,在抛物线y2=2px上的是( )A.(1,2)B.(3,-6)C.(2,-2)D.(1,√6)答案:B解析:由于抛物线y2=2px的焦点为(3,0),则抛物线方程为y2=12x,故点(3,-6)在该抛物线上.3.已知抛物线过原点,焦点在y轴上,其上一点P(m,1)到焦点的距离为5,则抛物线的标准方程是( )A.y2=16xB.x2=16yC.x2=8yD.x2=-8y答案:B解析:由题意,知抛物线开口向上,所以可设抛物线的标准方程为x2=2py(p>0),于是1+p2=5,解得p=8,故抛物线的标准方程是x2=16y.4.(多选题)已知点A(-2,4)在抛物线y2=-2px(p>0)上,抛物线的焦点为F,延长AF与抛物线相交于点B,则下列结论正确的是( )A.抛物线的准线方程为x=2B.抛物线的焦点坐标为(-2,0)C.点B坐标为(-2,-2)D.△OAB的面积为8答案:ABD解析:将点A(-2,4)的坐标代入抛物线方程可得p=4,因此抛物线方程为y2=-8x,于是准线方程为x=2,焦点坐标为(-2,0),故A,B项正确;又易知AF⊥x轴,所以B(-2,-4),故C项错误;又因为|AB|=8,所以S△OAB=12×8×2=8.故D项正确.5.已知F为抛物线y2=12向抛物线的准线作垂线,垂足为N,若|NF|=10,则|MF|=( )A.163B.253C.283D.323答案:B解析:记准线与x轴的交点为A.由题意知,|AF|=6,又|NF|=10,所以|AN|=8,即点M的纵坐标为8或-8,则F|=x M+p2=163+3=253.6.若点P(x,y)到点F(0,-5)的距离比它到直线y=4的距离大1,则点P的轨迹方程为( )A.x2=16yB.x2=-16yC.x2=20yD.x2=-20y答案:D解析:依题意知点P(x,y)到点F(0,-5)的距离与它到直线y=5的距离相等,并且点F(0,-5)不在直线y=5上,所以点P的轨迹是抛物线,并且F是焦点,直线y=5是准线,于是点P的轨迹方程为x2=-20y.7.已知抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,点A(2,2),则|PA|+|PF|的最小值是( )A.4B.3C.2D.1答案:B解析:根据抛物线方程y2=4为垂足,则由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,所以当A,P,M三点共线时,|PA|+|PF|取得最小值,且最小值为|AM|=2-(-1)=3.故选B.8.在平面直角坐标系Oxy 中,双曲线C:x 23-y 2=1的右焦点与抛物线y 2=2px(p>0)的焦点重合,则实数p 的值为 ,抛物线的准线方程为 . 答案:4 x=-2解析:在双曲线C:x 23-y 2=1中,a 2=3,b 2=1,所以c 2=a 2+b 2=4,即c=2.在抛物线y 2=2px(p>0)中,由题意得p2=c=2,即p=4,所以抛物线方程为y 2=8x,准线方程为x=-2.9.已知F 为抛物线y 2=-8x 的焦点,O 为原点,点P 是抛物线准线上一动点,点A 在抛物线上,且|AF|=4,则|PA|+|PO|的最小值是 . 答案:2√13解析:由|AF|=4及抛物线定义得点A 到准线的距离为4,所以点A 的横坐标为-2,所以AF ⊥x 轴,因此不妨设A(-2,4).因为原点关于准线的对称点为B(4,0),所以|PO|=|PB|,所以|PA|+|PO|=|PA|+|PB|,所以当点A,P,B 共线时,|PA|+|PO|最小,且最小值为|AB|=√36+16=2√13.10.一座抛物线形拱桥如图所示,设水面宽|AB|=18 m,拱顶距离水面8 m,一条货船在水面上的部分的横断面为一矩形CDEF.若|CD|=9 m,那么|DE|不超过多少米才能使货船通过拱桥?解:如图所示,设拱顶为点O,以点O 为原点,过点O 且平行于AB 的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则点B(9,-8).因为点B 在抛物线上,所以81=-2p·(-8), 所以p=8116,所以抛物线的方程为x 2=-818y.把).故|DE|不超过6米才能使货船通过拱桥.能力提升1.设抛物线y=14x 2的焦点为F,点P 在抛物线上,则“|PF|=3”是“点P 到x轴的距离为2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案:C解析:抛物线方程化为x 2=4y,所以准线方程为y=-1.因为点P 在抛物线上,所以|PF|=3,即点P 到准线的距离为3,因此P 到x 轴的距离为3-1=2.而当点P 到x 轴的距离为2时,有点P 到准线的距离为3,故|PF|=3.故“|PF|=3”是“点P 到x 轴的距离为2”的充要条件.2.已知F 是抛物线y=2F|+|NF|=174,则线段MN 中点的纵坐标为( )A.32B.2C.52D.3答案:B解析:抛物线方程为N 的中点为Q(,N,Q 分别作准线的垂线,垂足分别为M 1,N 1,Q 1,则有|MF|+|NF|=|MM 1|+|NN 1|=2|QQ 1|=174,所以|QQ 1|=178,因此y 0+18=178,解得y 0=2.3.已知抛物线C:y 2=8x 的焦点为F,准线为l,P 是准线l 上一点,连接PF 并延长交抛物线C 于点Q,若|PF|=45|PQ|,则|QF|=( )A.3B.4C.5D.6答案:C解析:由点Q 向抛物线的准线作垂线,垂足为Q 1(图略),设准线与F ∽△PQ 1Q,所以|MF ||Q 1Q |=|PF ||PQ |=45,因为|MF|=4,所以|Q 1Q|=5.故|QF|=|Q 1Q|=5.4.(多选题)在平面直角坐标系xOy 中,已知抛物线C:y 2=4x 的焦点为F,点P 在抛物线C 上,A (−54,0),若△PAF 为等腰三角形,则直线AP 的斜率可能为( ) A.4√27 B.-2√55 C.√52D.-2√23答案:AB解析:由题意,抛物线C:y 2=4x 的焦点为F(1,0),因为A(-54,0),所以|AF|=94,设P(t 2,2t)(t≠0),由抛物线的定义,可得|PF|=t 2+1,|PA|=√(t 2+54)2+4t 2,当|PF|=|AF|时,可得t 2=54,所以P(54,±√5),则k AP =±2√55,所以B 正确;当|PF|=|PA|时,方程无解;当|AF|=|PA|时,可得t 2=12,或t 2=-7(舍去),所以P(12,±√2),则k PA =±4√27,所以A 正确,故选AB.5.已知P 为抛物线y 2=4x 上的动点,且点P 到抛物线的准线的距离为d,Q 为圆C:(x+2)2+(y-4)2=1上一个动点,则d+|PQ|的最小值为( ) A.5 B.4C.2√5+1D.√13+1答案:B解析:如图,设抛物线的焦点为F,连接PF.由抛物线的定义知,d=|PF|,所以d+|PQ|=|PF|+|PQ|,又点Q 在圆C 上,所以由图可知,当线段FC 与圆C 交于点Q,与抛物线交于点P 时,|PF|+|PQ|最小,此时|PF|+|PQ|=|FC|-1. 所以(d+|PQ|)min =|FC|-1.由题可得点C(-2,4),F(1,0),所以|FC|=√(-2-1)2+(4-0)2=5,所以(d+|PQ|)min =5-1=4.故选B.6.设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上三个不同的点,若FA ⃗⃗⃗⃗⃗ +FB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =0,则|FA ⃗⃗⃗⃗⃗ |+|FB ⃗⃗⃗⃗ |+|FC ⃗⃗⃗⃗ |= . 答案:6解析:因为FA ⃗⃗⃗⃗⃗ +FB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =0,所以A,B,C 三点的横坐标之和为点F 的横坐标的三倍.设点A,B,C 的横坐标分别为x A ,x B ,x C ,则x A +x B +x C =3,故由抛物线的定义,可得|FA ⃗⃗⃗⃗⃗ |+|FB ⃗⃗⃗⃗ |+|FC⃗⃗⃗⃗ |=x A +1+x B +1+x C +1=6. 7.如图,A 地在B 地东偏北45°方向,相距2√2 km 处,B 地与东西走向的高铁线(近似看成直线)l 相距4 km.已知曲线形公路PQ 上任意一点到点B 的距离等于到高铁线l 的距离,现在要在公路旁建造一个变电房M(变电房与公路之间的距离忽略不计),分别向A,B 两地送电.(1)试建立适当的坐标系,求出曲线形公路PQ 所在曲线的方程;(2)变电房M 应建在相对A 地的什么位置(方位和距离),才能使得架设电路所用电线长度最短?并求出最短长度.解:(1)如图,以经过点B且垂直于直线l(垂足为K)的直线为y轴,线段BK 的垂直平分线为x轴,建立平面直角坐标系.由题意可知,公路PQ所在曲线为抛物线.设抛物线方程为x2=2py(p>0),由题可知,p=4,所以抛物线方程为x2=8y,且B(0,2),A(2,4).(2)架设电路所用电线长度最短,即使|MA|+|MB|最小,过点M作MH⊥l,垂足为H,根据抛物线的定义,只需|MA|+|MH|最小,因此只需A,M,H三点共线),且|MA|+|MH|=6,故变电房M应建在A地的正南方向,即可,此时M(2,12km处,才能使得架设电路所用电线长度最短,且最短长度为且距离A地726km.。
2.3.1抛物线及其标准方程
第二章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
课堂典例讲练
第二章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
思路方法技巧
命题方向
[例 1]
求抛物线的焦点及准线
设抛物线的方程为 y=ax2(a≠0),求抛物线的焦点
[解析]
p (1)因为抛物线的焦点在 y 轴的负半轴上, 且- = 2
-2,所以 p=4,所以,所求抛物线的标准方程是 x2=-8y. (2)由焦点到准线的距离为 5,知 p=5,又焦点在 x 轴负半 轴上,所以,所求抛物线的标准方程是 y2=-10x.
第二章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
坐标与准线方程.
第二章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
[解析]
1 抛物线方程 y=ax (a≠0)化为标准形式:x =ay,
2 2
1 1 p 1 当 a>0 时,则 2p=a,解得 p=2a,2=4a, 1 1 ∴焦点坐标是(0,4a),准线方程是 y=-4a. 1 p 1 当 a<0 时,则 2p=- , =- . a 2 4a 1 1 ∴焦点坐标是(0,4a),准线方程是 y=-4a, 1 1 综上,焦点坐标是(0,4a),准线方程是 y=-4a.
b =-2a,它是由 y=ax2(a≠0)平移得到,而 y=ax2 的标准方程 1 1 为 x =ay,当 a>0 时,开口向上,顶点(0,0),焦点(0,4a),对
高中数学(新人教A版)选择性必修一:抛物线及其标准方程课件
y
H
M(x,y)
K-p O
2
x
l
p
2
Fx
(p ,0) 2
想一想?
这种坐标系 下的抛物线 方程情势怎 样?
y2=2px (p>0)
解:取过焦点F且垂直于准线l 的直线
H
为xy轴轴 ,线段KF的中垂线为yx轴轴
y M(x,y)
设︱KF︱= p
则F( p20,,p20),l:yx
=-
p 2
设点M的坐标为(x,y),
MF
|
y0
p 2
( x0 , y0 )
y
M
H
y
( x0 , y0 )
M
F
0, p 2
· ·
O
x=- p 2
F( p ,0) x 2
o
H
x
y p 2
l
请看课本P133:练习
3.填空:
a
a p 2
(6, 6 2 )或 (6, 6 2 )
学以致用:
1.抛物线
x2=1y 4
上的一点
M
到焦点的距离为
焦点坐标是
p ( , 0) ,
准线方程为:
xp
2
2
p的几何意义是:焦点到准线的距离
y
H
M(x,y)
K-p O
2
x
l
p
2
Fx
(p ,0) 2
图形
H
y
M
O Fx
标准方程
y2=2px (p>0)
y
M
H
y2=-2px
F O x (p>0)
yM
F
高中数学第二章2.3抛物线2.3.1抛物线及其标准方程讲义(含解析)新人教A版选修1_1
2.3.1 抛物线及其标准方程预习课本P56~59,思考并完成以下问题1.平面内满足什么条件的点的轨迹叫做抛物线?它的焦点、准线分别是什么?2.抛物线的标准方程有几种形式?分别是什么? [新知初探] 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线标准方程的几种形式图形标准方程焦点坐标准线方程y 2=2px(p >0)⎝ ⎛⎭⎪⎫p 2,0x =-p2y 2=-2px(p >0)⎝ ⎛⎭⎪⎫-p 2,0 x =p 2x 2=2py (p >0)⎝ ⎛⎭⎪⎫0,p 2 y =-p 2x 2=-2py(p >0)⎝⎛⎭⎪⎫0,-p 2 y =p2[小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)平面内到一定点距离与到一定直线距离相等的点轨迹一定是抛物线( ) (2)抛物线y 2=20x 的焦点坐标是(0,5)( ) 答案:(1)× (2)×2.抛物线x =-2y 2的准线方程是( ) A .y =12B .y =18C .x =14D .x =18答案:D3.若抛物线y 2=8x 上一点P 到其焦点的距离为10,则点P 的坐标为( ) A .(8,8) B .(8,-8) C .(8,±8) D .(-8,±8)答案:C4.已知动点P 到定点(2,0)的距离和它到直线l :x =-2的距离相等,则点P 的轨迹方程为________.答案:y 2=8x抛物线的标准方程[典例] (1)过点M (-6,6);(2)焦点F 在直线l :3x -2y -6=0上. [解] (1)由于点M (-6,6)在第二象限, ∴过M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在x 轴上, 设其方程为y 2=-2px (p >0),将点M (-6,6)代入,可得36=-2p ×(-6), ∴p =3.∴抛物线的方程为y 2=-6x .若抛物线开口向上,焦点在y 轴上, 设其方程为x 2=2py (p >0),将点M (-6,6)代入可得,36=2p ×6, ∴p =3,∴抛物线的方程为x 2=6y .综上所述,抛物线的标准方程为y 2=-6x 或x 2=6y . (2)①∵直线l 与x 轴的交点为(2,0), ∴抛物线的焦点是F (2,0),∴p2=2,∴p =4,∴抛物线的标准方程是y 2=8x . ②∵直线l 与y 轴的交点为(0,-3), 即抛物线的焦点是F (0,-3), ∴p2=3,∴p =6, ∴抛物线的标准方程是x 2=-12y .综上所述,所求抛物线的标准方程是y 2=8x 或x 2=-12y .求抛物线的标准方程的方法 定义法 根据定义求p ,最后写标准方程 待定系数法 设标准方程,列有关的方程组求系数直接法 建立恰当的坐标系,利用抛物线的定义列出动点满足的条件,列出对应方程,化简方程[注意] 当抛物线的焦点位置不确定时,应分类讨论,也可以设y 2=ax 或x 2=ay (a ≠0)的形式,以简化讨论过程.[活学活用]1.若抛物线y 2=2px 的焦点坐标为(1,0),则p =______,准线方程为________. 解析:因为抛物线的焦点坐标为(1,0),所以p 2=1,p =2,准线方程为x =-p2=-1.答案:2 x =-12.抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,|AF |=5,求抛物线的标准方程.解:设所求焦点在x 轴上的抛物线的标准方程为y 2=2ax (a ≠0),点A (m ,-3). 由抛物线的定义得|AF |=⎪⎪⎪⎪⎪⎪m +a 2=5,又(-3)2=2am ,∴a =±1或a =±9.∴所求抛物线的标准方程为y 2=±2x 或y 2=±18x .抛物线定义的应用[典例] (1)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8(2)若位于y 轴右侧的动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12.求点M 的轨迹方程.[解析] (1)由题意知抛物线的准线为x =-14.因为|AF |=54x 0,根据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1,故选A.[答案] A(2)解:由于位于y 轴右侧的动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等.由抛物线的定义知动点M 的轨迹是以F 为焦点,l 为准线的抛物线(不包含原点), 其方程应为y 2=2px (p >0)的形式,而p 2=12,所以p =1,2p =2, 故点M 的轨迹方程为y 2=2x (x ≠0). [一题多变]1.[变结论]若本例(2)中点M 所在轨迹上一点N 到点F 的距离为2,求点N 的坐标. 解:设点N 的坐标为(x 0,y 0),则|NF |=2.又点M 的轨迹方程为y 2=2x (x ≠0),所以由抛物线的定义得x 0+12=2,解得x 0=32.因为y 20=2x 0,所以y 0=±3,故点N 的坐标为⎝ ⎛⎭⎪⎫32,3或⎝ ⎛⎭⎪⎫32,-3.2.[变结论]若本例(2)中增加一点A (3,2),其他条件不变,求|MA |+|MF |的最小值,并求出点M 的坐标.解:如图,由于点M 在抛物线上,所以|MF |等于点M 到其准线l的距离|MN |,于是|MA |+|MF |=|MA |+|MN |≥|AN |=3+12=72.当A ,M ,N 三点共线时,|MA |+|MN |取最小值,亦即|MA |+|MF |取最小值72,这时M 的纵坐标为2.可设M (x 0,2),代入抛物线方程得x 0=2,即M (2,2).抛物线定义的两种应用(1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦点的距离等于它到准线的距离,因此,由抛物线定义可以实现点点距离与点线距离的相互转化,从而简化某些问题.(2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和的最小值时,往往用抛物线的定义进行转化,即化折线为直线解决最值问题.抛物线的实际应用[典例] 某大桥在涨水时有最大跨度的中央桥孔,已知上部呈抛物线形,跨度为20米,拱顶距水面6米,桥墩高出水面4米.现有一货船欲过此孔,该货船水下宽度不超过18米,目前吃水线上部中央船体高5米,宽16米,且该货船在现有状况下还可多装1 000吨货物,但每多装150吨货物,船体吃水线就要上升0.04米.若不考虑水下深度, 问:该货船在现在状况下能否直接或设法通过该桥孔?为什么?[解] 如图所示,以拱顶为原点,过拱顶的水平直线为x 轴,竖直直线为y 轴,建立直角坐标系.因为拱顶距水面6米,桥墩高出水面4米,所以A (10,-2). 设桥孔上部抛物线方程是x 2=-2py (p >0), 则102=-2p ×(-2),所以p =25, 所以抛物线方程为x 2=-50y ,即y =-150x 2.若货船沿正中央航行,船宽16米,而当x =8时,y =-150×82=-1.28,即船体在x =±8之间通过,B (8,-1.28),此时B 点距水面6+(-1.28)=4.72(米). 而船体高为5米,所以无法通行.又因为5-4.72=0.28(米),0.28÷0.04=7, 150×7=1 050(吨),所以若船通过增加货物通过桥孔,则要增加1 050吨,而船最多还能装1 000吨货物,所以货船在现有状况下不能通过桥孔.求抛物线实际应用的五个步骤[活学活用]如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:建立如图所示的平面直角坐标系,设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p =1,所以x 2=-2y .当y =-3时,x 2=6,所以水面宽为26米. 答案:2 6层级一 学业水平达标1.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148D.124解析:选C 将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148.2.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12 B .1 C .2D .4解析:选C ∵抛物线y 2=2px 的准线x =-p2与圆(x -3)2+y 2=16相切,∴-p2=-1,即p =2.3.若抛物线y 2=2px (p >0)上横坐标是2的点M 到抛物线焦点的距离是3,则p =( ) A .1 B .2 C .4D .8解析:选B ∵抛物线的准线方程为x =-p 2,点M 到焦点的距离为3,∴2+p2=3,∴p=2.4.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若|AF |=3,则△AOB 的面积为( )A.22 B. 2 C.322D .2 2解析:选C 焦点F (1,0),设A ,B 分别在第一、四象限,则由点A 到准线l :x =-1的距离为3,得A 的横坐标为2,纵坐标为22,直线AB 的方程为y =22(x -1),与抛物线方程联立可得2x 2-5x +2=0,所以点B 的横坐标为12,纵坐标为-2,所以S △AOB =12×1×(22+2)=322.5.已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y解析:选D 双曲线的渐近线方程为y =±b ax ,由于c a =a 2+b 2a 2= 1+⎝ ⎛⎭⎪⎫b a 2=2,所以b a=3,所以双曲线的渐近线方程为y =±3x .抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,所以p22=2,所以p =8,所以抛物线方程为x 2=16y .6.已知抛物线C :4x +ay 2=0恰好经过圆M :(x -1)2+(y -2)2=1的圆心,则抛物线C 的焦点坐标为_______,准线方程为________.解析:圆M 的圆心为(1,2),代入4x +ay 2=0得a =-1,将抛物线C 的方程化为标准方程得y 2=4x ,故焦点坐标为(1,0),准线方程为x =-1.答案:(1,0) x =-17.已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y 2a=1的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.解析:根据抛物线的定义得1+p2=5,p =8.不妨取M (1,4),则AM 的斜率为2,由已知得-a ×2=-1,故a =14.答案:148.对标准形式的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程为y 2=10x 的是________.(要求填写适合条件的序号)解析:抛物线y 2=10x 的焦点在x 轴上,②满足,①不满足;设M (1,y 0)是y 2=10x 上一点,则|MF |=1+p 2=1+52=72≠6,所以③不满足;由于抛物线y 2=10x 的焦点为⎝ ⎛⎭⎪⎫52,0,过该焦点的直线方程为y =k ⎝ ⎛⎭⎪⎫x -52,若由原点向该直线作垂线,垂足为(2,1)时,则k =-2,此时存在,所以④满足.答案:②④9.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.解:法一:如图所示,设抛物线的方程为x 2=-2py (p >0),则焦点F ⎝⎛⎭⎪⎫0,-p 2,准线l :y =p2,作MN ⊥l ,垂足为N ,则|MN |=|MF |=5,而|MN |=3+p 2,3+p2=5,即p =4.所以抛物线方程为x 2=-8y ,准线方程为y =2. 由m 2=-8×(-3)=24,得m =±2 6.法二:设所求抛物线方程为x 2=-2py (p >0),则焦点为F ⎝ ⎛⎭⎪⎫0,-p 2.∵M (m ,-3)在抛物线上,且|MF |=5,故⎩⎪⎨⎪⎧m 2=6p , m 2+⎝ ⎛⎭⎪⎫-3+p 22=5,解得⎩⎨⎧p =4,m =±2 6.∴抛物线方程为x 2=-8y ,m =±26,准线方程为y =2. 10.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米.(1)以抛物线的顶点为原点O ,其对称轴所在的直线为y 轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)?解:如图所示.(1)依题意,设该抛物线的方程为x 2=-2py (p >0), 因为点C (5,-5)在抛物线上, 所以该抛物线的方程为x 2=-5y . (2)设车辆高为h ,则|DB |=h +0.5, 故D (3.5,h -6.5),代入方程x 2=-5y ,解得h =4.05, 所以车辆通过隧道的限制高度为4.0米.层级二 应试能力达标1.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8D .12解析:选B 由抛物线的方程得p 2=42=2,再根据抛物线的定义,可知所求距离为4+2=6.2.抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( )A .2 3B .4C .6D .4 3解析:选D 如图,∵△FPM 是等边三角形. ∴由抛物线的定义知PM ⊥l . 在Rt △MQF 中,|QF |=2, ∠QMF =30°,∴|MF |=4,∴S △PMF =34×42=4 3.故选D. 3.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心的轨迹为( ) A .抛物线 B .双曲线 C .椭圆D .圆解析:选A 法一:设圆C 的半径为r ,则圆心C 到直线y =0的距离为r .由两圆外切,得圆心C 到点(0,3)的距离为r +1,也就是说,圆心C 到点(0,3)的距离比到直线y =0的距离大1,故点C 到点(0,3)的距离和它到直线y =-1的距离相等,符合抛物线的特征,故点C 的轨迹为抛物线.法二:设圆C 的圆心坐标为(x ,y ),半径为r ,点A (0,3),由题意得|CA |=r +1=y +1,∴x 2+y -32=y +1,化简得y =18x 2+1,∴圆心的轨迹是抛物线.4.经过抛物线C 的焦点F 作直线l 与抛物线C 交于A ,B 两点,如果A ,B 在抛物线C 的准线上的射影分别为A 1,B 1,那么∠A 1FB 1为( )A.π6B.π4C.π2D.2π3解析:选C 由抛物线的定义可知|BF |=|BB 1|,|AF |=|AA 1|,故∠BFB 1=∠BB 1F ,∠AFA 1=∠AA 1F .又∠OFB 1=∠BB 1F ,∠OFA 1=∠AA 1F ,故∠BFB 1=∠OFB 1,∠AFA 1=∠OFA 1,所以∠OFA 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.5.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA ―→+FB ―→+FC ―→=0,则|FA ―→|+|FB ―→|+|FC ―→|=________.解析:因为FA ―→+FB ―→+FC ―→=0,所以点F 为△ABC 的重心,则A ,B ,C 三点的横坐标之和为点F 的横坐标的三倍,即x A +x B +x C =3,所以|FA ―→|+|FB ―→|+|FC ―→|=x A +1+x B +1+x C +1=6.答案:66.已知F 1,F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为________.解析:将双曲线方程化为标准方程,得x 2a 2-y 23a2=1,∴其焦点坐标为(±2a,0),(2a,0)与抛物线的焦点重合,联立抛物线与双曲线方程⎩⎪⎨⎪⎧ x 2a 2-y 23a2=1,y 2=8ax⇒x =3a , 而由⎩⎪⎨⎪⎧ |PF 1|+|PF 2|=12,|PF 1|-|PF 2|=2a ⇒|PF 2|=6-a ,∴|PF 2|=3a +2a =6-a ,得a =1,∴抛物线的方程为y 2=8x ,其准线方程为x =-2.答案:x =-27.如图,已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,点A 到抛物线准线的距离等于5,过点A 作AB 垂直于y 轴,垂足为点B ,OB 的中点为M .(1)求抛物线的方程;(2)过点M 作MN ⊥FA ,垂足为N ,求点N 的坐标.解:(1)抛物线y 2=2px 的准线方程为x =-p 2, 于是4+p 2=5,p =2,所以抛物线的方程为y 2=4x . (2)由题意得A (4,4),B (0,4),M (0,2).又F (1,0),所以k AF =43,则直线FA 的方程为y =43(x -1). 因为MN ⊥FA ,所以k MN =-34, 则直线MN 的方程为y =-34x +2. 解方程组⎩⎪⎨⎪⎧ y =-34x +2,y =43x -1得⎩⎪⎨⎪⎧ x =85,y =45,所以N ⎝ ⎛⎭⎪⎫85,45.8.设P 是抛物线y 2=4x 上的一个动点,F 为抛物线的焦点.(1)若点P 到直线x =-1的距离为d ,A (-1,1),求|PA |+d 的最小值;(2)若B (3,2),求|PB |+|PF |的最小值.解:(1)依题意,抛物线的焦点为F(1,0),准线方程为x=-1. 由抛物线的定义,知|PF|=d,于是问题转化为求|PA|+|PF|的最小值.如图,连接AF,交抛物线于点P,则最小值为22+12= 5. (2)把点B的横坐标代入y2=4x中,得y=±12,因为12>2,所以点B在抛物线内部.自点B作BQ垂直准线于点Q,交抛物线于点P1(如图).由抛物线的定义,知|P1Q|=|P1F|,则|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=3+1=4.即|PB|+|PF|的最小值为4.。