福建莆田中考数学试卷及答案(word解析版)
莆田中考数学试题及答案
莆田中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的比例关系?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 8:9 = 16:18答案:C2. 如果一个数的平方等于这个数本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D3. 一个圆的直径是10厘米,那么它的周长是:A. 31.4厘米B. 62.8厘米C. 314厘米D. 628厘米答案:B4. 下列哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 5 = 1C. 4x = 8D. 5x - 10 = 0答案:C5. 一个班级有40名学生,其中20名男生和20名女生。
随机选择一名学生,是男生的概率是:A. 0.5B. 0.4C. 0.25D. 0.8答案:A6. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,那么它的体积是:A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米答案:A7. 如果一个角的补角是120度,那么这个角的度数是:A. 60度B. 30度C. 90度D. 120度答案:B8. 下列哪个选项是正确的三角函数关系?A. sin(30°) = 1/2B. cos(45°) = √2/2C. tan(60°) = √3D. All of the above答案:D9. 一个等腰三角形的两个底角相等,如果其中一个底角是40度,那么顶角的度数是:A. 100度B. 80度C. 60度D. 40度答案:B10. 如果一个数的立方等于8,那么这个数是:A. 2B. -2C. 1/2D. -1/2答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 如果一个数的绝对值是7,那么这个数可能是________或________。
2024年福建莆田中考数学试题及答案(1)
2024年福建莆田中考数学试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列实数中,无理数是( )A .3-B .0C .23D 2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110´B .2696.110´C .46.96110´D .50.696110´3.如图是由长方体和圆柱组成的几何体,其俯视图是( )A .B .C .D .4.在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD ^DE )按如图方式摆放,若AB P CD ,则1Ð的大小为( )A .30°B .45°C .60°D .75°5.下列运算正确的是( )A .339a a a ×=B .422a a a ¸=C .()235a a =D .2222a a -=6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A .14B .13C .12D .237.如图,已知点,A B 在O e 上,72AOB Ð=°,直线MN 与O e 相切,切点为C ,且C 为»AB 的中点,则ACM Ð等于( )A .18°B .30°C .36°D .72°8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是( )A .()1 4.7%120327x +=B .()1 4.7%120327x -=C .1203271 4.7%x=+D .1203271 4.7%x=-9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB V 与ODC V 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ^.下列推断错误的是( )A .OB OD ^B .BOC AOBÐ=ÐC .OE OF =D .180BOC AOD Ð+Ð=°10.已知二次函数()220y x ax a a =-+¹的图象经过1,2a A y æöç÷èø,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <二、填空题:本题共6小题,每小题4分,共24分.11.因式分解:x 2+x = .12.不等式321x -<的解集是 .13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是 .(单位:分)14.如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为 .15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O e 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为 .16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA Ð为70°,帆与航行方向的夹角PDQ Ð为30°,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD == .(单位:N )(参考数据:sin400.64,cos400.77°=°=)三、解答题:本题共9小题,共86分。
福建省莆田市中考数学试卷含答案解析
2016年福建省莆田市中考数学试卷一、精心选一选:本大题共10小题,每小题4分,共40分1.的绝对值是()A.B. C.2 D.﹣22.下列运算正确的是()A.3a﹣a=0 B.a•a2=a3C.a4÷a3=a2 D.(a3)2=a53.一组数据3,3,4,6,8,9的中位数是()A.4 B.5 C.5.5 D.64.图中三视图对应的几何体是()A. B.C.D.5.菱形具有而一般平行四边形不具有的性质是()A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直6.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD7.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A.B.C.D.10.如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线 B.抛物线C.双曲线D.双曲线的一支二、细心填一填:本大题共6小题,每小题4分,共24分11.莆田市海岸线蜿蜒曲折,长达217000米,用科学记数法表示217000为______.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度得到的点的坐标是______.13.已知直线a∥b,一块直角三角板如图所示放置,若∠1=37°,则∠2=______.14.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为______人.15.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则的长为______(结果保留π).16.魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理.若图中BF=1,CF=2,则AE的长为______.三、耐心做一张:本大题共10小题,共86分17.计算:|﹣3|﹣+.18.先化简,再求值:﹣÷,其中x=﹣1.19.解不等式组:.20.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)21.在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.22.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.23.如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:EF2=4BP•QP.24.如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.25.若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为h a,h b,h c,各边上的内接正方形的边长分别记为x a,x b,x c(1)模拟探究:如图,正方形EFGH为△ABC的BC边上的内接正方形,求证: +=;(2)特殊应用:若∠BAC=90°,x b=x c=2,求+的值;(3)拓展延伸:若△ABC为锐角三角形,b<c,请判断x b与x c的大小,并说明理由.26.如图,抛物线C1:y=﹣x2+2x的顶点为A,与x轴的正半轴交于点B.(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,点P在抛物线C2上,满足S△PAC=S△ABC,且∠APC=90°.①当k>1时,求k的值;②当k<﹣1时,请直接写出k的值,不必说明理由.2016年福建省莆田市中考数学试卷参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分1.的绝对值是()A.B. C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A.3a﹣a=0 B.a•a2=a3C.a4÷a3=a2 D.(a3)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据合并同类项、同底数幂的乘除法和幂的乘方分别计算即可得出答案.【解答】解:A、3a﹣2a=a,故A不正确;B、a•a2=a3,故B正确;C、a4÷a3=a,故C不正确;D、(a3)2=a6,故D不正确;故选B.【点评】本题主要考查幂的运算,掌握同底数幂的运用性质是解题的关键.3.一组数据3,3,4,6,8,9的中位数是()A.4 B.5 C.5.5 D.6【考点】中位数.【专题】统计与概率.【分析】根据题目中的数据,可以求得这组数据的中位数.【解答】解:数据3,3,4,6,8,9的中位数是:=5,故选B.【点评】本题考查中位数,解题的关键是明确中位数的定义,可以将一组数据按照从小到大的顺序排列,找出这组数据的中位数.4.图中三视图对应的几何体是()A. B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图可判断出此上面是圆柱体,由此即可得出结论.【解答】解:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度相同,从俯视图推出上面是圆柱体,直径等于下面柱体的宽.由此可以判断对应的几何体是C.故选C.【点评】不同考查三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.5.菱形具有而一般平行四边形不具有的性质是()A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直【考点】菱形的性质;平行四边形的性质.【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.6.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD【考点】角平分线的性质;全等三角形的判定.【分析】要得到△POC≌△POD,现有的条件为有一对角相等,一条公共边,缺少角,或着是边,根据全等三角形的判定定理即可得到结论.于是答案可得.【解答】解:A.PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理成立,B.OC=OD,根据SAS判定定理成立,C.∠OPC=∠OPD,根据ASA判定定理成立,D.PC=PD,根据SSA无判定定理不成立,故选D.【点评】本题考查了角平分线的定义,全等三角形的判定,熟记全等三角形的判定定理是解题的关键.7.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先计算判别式的值,然后非负数的性质和判别式的意义判断方程根的情况.【解答】解:∵△=a2+4>0,∴,方程有两个不相等的两个实数根.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.8.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形【考点】旋转对称图形.【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A.B.C.D.【考点】翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.【分析】由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.【解答】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4﹣3=1,∴在直角△ECD中,sin∠CDE==.故选:A.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.10.如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线 B.抛物线C.双曲线D.双曲线的一支【考点】二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.【分析】按照给定的作图步骤作图,根据图形中曲线的特征即可得出该曲线为抛物线.【解答】解:根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B/【点评】本题考查了二次函数图象上点的坐标特征、线段的垂直平分线的性质以及基本作图,解题的关键是按照给定的作图步骤完成作图.本题属于基础题,难度不大,解决该题型题目时,熟悉各曲线的图形是关键.二、细心填一填:本大题共6小题,每小题4分,共24分11.莆田市海岸线蜿蜒曲折,长达217000米,用科学记数法表示217000为 2.17×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将217000用科学记数法表示为:217000=2.17×105.故答案为:2.17×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度得到的点的坐标是(2,2).【考点】坐标与图形变化-平移.【分析】将点P的横坐标加3,纵坐标不变即可求解.【解答】解:点P(﹣1,2)向右平移3个单位长度得到的点的坐标是(﹣1+3,2),即(2,2).故答案为(2,2).【点评】此题主要考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.已知直线a∥b,一块直角三角板如图所示放置,若∠1=37°,则∠2=53°.【考点】平行线的性质.【分析】首先作平行线,然后根据平行线的性质可得到∠1+∠2=90°,据此求出∠2的度数.【解答】解:作直线AB∥a,∵a∥b∴AB∥a∥b,∵AB∥a,∴∠1=∠3,∵AB∥b,∴∠2=∠4,∵∠3+∠4=90°,∴∠1+∠2=90°,∵∠1=37°,∴∠2=90°﹣37°=53°,故答案为53°.【点评】本题考查了平行线的性质,构成直线AB∥a是解题的关键,熟练掌握两直线平行,内错角相等.14.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为480人.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】首先由第二小组有10人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则的长为π(结果保留π).【考点】弧长的计算;垂径定理.【分析】连接AC,由垂径定理的CE=DE,根据线段垂直平分线的性质得到AC=AD,由等腰三角形的性质得到∠CAB=∠DAB=30°,由圆周角定理得到∠COB=60°,根据弧长的计算公式即可得到结论.【解答】解:连接AC,∵CD为⊙O的弦,AB是⊙O的直径,∴CE=DE,∵AB⊥CD,∴AC=AD,∴∠CAB=∠DAB=30°,∴∠COB=60°,∴的长==π,故答案为:π.【点评】本题考查的是垂径定理,线段的垂直平分线的判定,等腰三角形的性质,熟练掌握垂径定理是解答此题的关键.16.魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理.若图中BF=1,CF=2,则AE的长为3.【考点】勾股定理的证明.【专题】证明题;等腰三角形与直角三角形.【分析】由BF+CF求出BC的长,即为正方形ABCD的边长,由AB与CE平行,得比例求出CE 的长,由DC+CE求出DE的长,在直角三角形ADE中,利用勾股定理求出AE的长即可.【解答】解:∵BF=1,CF=2,∴BC=BF+CF=1+2=3,∵AB∥EC,∴=,即=,解得:CE=6,在Rt△ADE中,AD=3,DE=DC+CE=3+6=9,根据勾股定理得:AE==3,故答案为:3【点评】此题考查了勾股定理的证明,以及相似三角形的判定与性质,熟练掌握勾股定理是解本题的关键.三、耐心做一张:本大题共10小题,共86分17.计算:|﹣3|﹣+.【考点】实数的运算;零指数幂.【专题】计算题.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解:原式=3﹣﹣4+1=﹣.【点评】本题考查了绝对值的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.注意零指数幂的意义.18.先化简,再求值:﹣÷,其中x=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】先把x2﹣4分解因式和除法运算化为乘法运算,再约分后进行同分母的减法运算得到原式=,然后把x的值代入计算即可.【解答】解:原式=﹣•(x+2)=﹣==,当x=﹣1时,原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.解不等式组:.【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式,再求出它们的公共解即可.【解答】解:.由①得x≤1;由②得x<4;所以原不等式组的解集为:x≤1.【点评】考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【考点】解直角三角形的应用.【分析】过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin∠OAB=,求得OE,即可作出判断.【解答】证明:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA•sin∠OAB=140×sin59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.【点评】本题考查了解直角三角形的应用,解题的关键是构造直角三角形和三角函数的定义的综合运用.21.在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.【考点】列表法与树状图法.【专题】概率及其应用.【分析】列出得出所有等可能的情况数,找出抽取2张牌的数字之和为偶数的情况数,即可求出所求的概率.【解答】解:列表如下:3 4 5 63 ﹣﹣﹣﹣(4,3)(5,3)(6,3)4 (3,4)﹣﹣﹣﹣(5,4)(6,4)5 (3,5)(4,5)﹣﹣﹣﹣(6,5)6 (3,6)(4,6)(5,6)﹣﹣﹣﹣所有等可能的情况数有12种,抽取2张牌的数字之和为偶数的有4种,则P==.【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.22.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【考点】分式方程的应用;函数的图象.【专题】方程与不等式.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=78是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23.如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:EF2=4BP•QP.【考点】切线的判定;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD 是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到∴PA2=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.【解答】证明:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴PA2=PB•PQ,在△AFP与△CEP中,,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴EF2=4BP•QP.【点评】本题考查了切线的判定,平行四边形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.24.如图,反比例函数y=(x >0)的图象与直线y=x 交于点M ,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A ,B ,四边形OAMB 的面积为6.(1)求k 的值;(2)点P 在反比例函数y=(x >0)的图象上,若点P 的横坐标为3,∠EPF=90°,其两边分别与x 轴的正半轴,直线y=x 交于点E ,F ,问是否存在点E ,使得PE=PF ?若存在,求出点E 的坐标;若不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)过点M 作MC ⊥x 轴于点C ,MD ⊥y 轴于点D ,根据AAS 证明△AMC ≌△BMD ,那么S 四边形OCMD =S 四边形OAMB =6,根据反比例函数比例系数k 的几何意义得出k=6;(2)先根据反比例函数图象上点的坐标特征求得点P 的坐标为(3,2).再分两种情况进行讨论:①如图2,过点P 作PG ⊥x 轴于点G ,过点F 作FH ⊥PG 于点H ,交y 轴于点K .根据AAS 证明△PGE ≌△FHP ,进而求出E 点坐标;②如图3,同理求出E 点坐标.【解答】解:(1)如图1,过点M 作MC ⊥x 轴于点C ,MD ⊥y 轴于点D ,则∠MCA=∠MDB=90°,∠AMC=∠BMD ,MC=MD ,∴△AMC ≌△BMD ,∴S 四边形OCMD =S 四边形OAMB =6,∴k=6;(2)存在点E ,使得PE=PF .由题意,得点P 的坐标为(3,2).①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0).【点评】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,有一定难度.利用数形结合与分类讨论是解题的关键.25.若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为h a,h b,h c,各边上的内接正方形的边长分别记为x a,x b,x c(1)模拟探究:如图,正方形EFGH为△ABC的BC边上的内接正方形,求证: +=;(2)特殊应用:若∠BAC=90°,x b=x c=2,求+的值;(3)拓展延伸:若△ABC为锐角三角形,b<c,请判断x b与x c的大小,并说明理由.【考点】三角形综合题;相似三角形的判定与性质.【分析】(1)先根据EH∥FG,判定△AEH∽△ABC,再根据相似三角形对应边成比例,列出比例式变形即可得到+=;(2)先根据(1)中的结论得出,再将h b=c和x b=2代入变形,即可求得+的值;(3)先根据(1)中的结论得出和,变形得出,,再根据△ABC得到bh b=ch c,h b=csinA,h c=bsinA,最后代入代数式进行变形推导,即可得出x b与x c的大小关系.【解答】解:∵正方形EFGH中,EH∥FG,∴△AEH∽△ABC,∵AD⊥BC,∴,即,∴+=;(2)由(1)得:,∵∠A=90°,∴h b=c,又∵x b=2,∴;(3)x b>x c.证明:由(1)得:,,∴,,∵S=bh b=ch c,∴2S=bh b=ch c,又∵h b=csinA,h c=bsinA,∴===,∵b<c,sinA<1,∴<0,即<0,∴x b>x c.【点评】本题主要考查了三角形的综合运用,难度较大,解决问题的关键是掌握相似三角形的判定与性质.解题时注意,当三角形的高出现时,可以考虑相似三角形的对应高之比等于相似比;其中第(2)个问题也可以运用相似三角形的性质进行计算求解.此外,特殊应用和拓展延伸部分的解答都运用了模拟探究中的结论.26.如图,抛物线C1:y=﹣x2+2x的顶点为A,与x轴的正半轴交于点B.(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,点P在抛物线C2上,满足S△PAC=S△ABC,且∠APC=90°.①当k>1时,求k的值;②当k<﹣1时,请直接写出k的值,不必说明理由.【考点】二次函数综合题.【分析】(1)由抛物线C1解析式求出A、B及原点坐标,将三点坐标都扩大到原来的2倍,待定系数求解可得;(2)①如图1中,当k>1时,与(1)同理可得抛物线C2的解析式为y=﹣x2+2x及顶点C 的坐标,根据S△PAC=S△ABC知BP∥AC,继而可得△ABO是边长为2的正三角形,四边形CEBP 是矩形,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;②如图2中,当k<﹣1时,作△ABO关于y轴对称的△A′B′O,OE′⊥A′B′,同理可得四边形CEBP 是矩形,先求出抛物线C2解析式,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣1)2+,∴抛物线C1经过原点O,点A(1,)和点B(2,0)三点,∴变换后的抛物线经过原点O,(2,2)和(4,0)三点,∴变换后抛物线的解析式为y=﹣x2+2x;(2)①如图1中,当k>1时,。
福建省莆田市中考数学试卷及答案
福建省莆田市中考数学试卷及答案(满分:150分,考题时间:120分钟)一、细心填一填(本大题共10小题,每小题4分,共40分.直接把答案填在题中的横线上.)1.3-的相反数是 .2.莆田市参加初中毕业、升学考题的学生总人数约为43000人,将43000用科学记数法表示是___________.3.在组成单词“Probability ”(概率)的所有字母中任意取出一个字母,则取到字母“b ”的概率是 .4.如图,A B 、两处被池塘隔开,为了测量A B 、两处的距离,在AB 外选一适当的点C ,连接AC BC 、,并分别取线段AC BC 、的中点E F 、,测得EF =20m ,则AB =__________m .5.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为__________克.6.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使得该菱形为正方形.7.甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122O O =,则1O ⊙和2O ⊙的位置关系是 .9.出售某种文具盒,若每个获利x 元,一天可售出()6x -个,则当x = 元时,一天出售该种文具盒的总利润y 最大.10.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 .二、精心选一选(本大题共6小题,每小题4分,共24分,每小题给出的四个选项中有且只有一个是正确的,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或(第4题图) A BDD C BA O (第6题图)O(第10题图)2答案超过一个的一律得0分).11x 的取值范围是( )A .x ≥0B .0x <C .0x ≠D .0x > 12.下列各式运算正确的是( )A .22a a a ÷= B .()2224aba b =C .248a a a ·= D .55ab b a -= 13.如图是一房子的示意图,则其左视图是( )A .B .C . D. 14.某班5位同学参加“改革开放30周年”系列活动的次数依次为12333、、、、,则这组数据的众数和中位数分别是( )A .22、B . 2.43、 C.32、 D .33、15.不等式组2410x x <⎧⎨+>⎩,的解集在数轴上表示正确的是( )A .CD16.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处三、耐心做一做(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(8分)计算:0133⎛⎫ ⎪⎝⎭.(第16题图)(图1)18.(8分)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.19.(8分)已知:如图在ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、.(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明; (2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?20.(8分)(1)根据下列步骤画图..并标明相应的字母:(直接在图1中画图) ①以已知线段AB (图1)为直径画半圆O ;②在半圆O 上取不同于点A B 、的一点C ,连接AC BC 、; ③过点O 画OD BC ∥交半圆O 于点D . (2)尺规作图..:(保留作图痕迹,不要求写作法、证明) 已知:AOB ∠(图2). 求作:AOB ∠的平分线.图2OBABA图1 (第20题图)E B M OD N FC (第19题图) A21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A B C D 、、、四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的百分比b =___________; (2)补全条形统计图;(3)若该校九年级共有400名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)约有___________名. 22.(10分)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,不必证明); (2)A ∠=30°,CD,求O ⊙的半径r .(第22题图)(第21题图)23.(10分)面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的.....13%...给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.24.(12分)已知:等边ABC △的边长为a . 探究(1):如图1,过等边ABC △的顶点A B C 、、依次作AB BC CA 、、的垂线围成MNG △,求证:MNG △是等边三角形且.MN =;探究(2):在等边ABC △内取一点O ,过点O 分别作OD AB OE BC OF CA ⊥⊥⊥、、,垂足分别为点D E F 、、.①如图2,若点O 是ABC △的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1.OD OE OF ++=;结论2.32AD BE CF a ++=; ②如图3,若点O 是等边ABC △内任意一点,则上述结论12、是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.NM A G CB A FC E BD A F CE B D(图1) (图2) (图3) (第24题图)O A F CE BD (图4)O O25.(14分)已知,如图1,过点()01E -,作平行于x 轴的直线l ,抛物线214y x =上的两点A B 、的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A B 、分别作直线l 的垂线,垂足分别为点C 、D ,连接CF DF 、.(1)求点A B F 、、的坐标; (2)求证:CF DF ⊥;(3)点P 是抛物线214y x =对称轴右侧图象上的一动点,过点P 作PQ PO ⊥交x 轴于点Q ,是否存在点P 使得OPQ △与CDF △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(图1)备用图(第25题图)参照答案说明:(一)考生的解法与“参照答案”不同时,可参照“答案的评分标准”的精神进行评分 (二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位是1分,得分或扣分都不能出现小数. 一、细心填一填(本大题共10小题,每小题4分,共40分.)1.3 2.44.310⨯(不必考虑有效数字) 3.2114.40 5.2 6.AB BC ⊥或AC BD =或AO BO =等 7.甲 8.相交 9.3 10.15二、精心选一选(本大题共6小题,每小题4分,共24分.) 11.A 12.B 13.C 14.D 15.A 16.C 三、耐心做一做(本题共9小题,共86分)17.(1)解:原式=341+ ························ 6分=···························· 8分注:33=(2分)4=(2分),13⎛⎫ ⎪⎝⎭=1(2分)18.解:原式=()()()222222x x x x x x +-⨯-+-+···················· 6分=1x - ····························· 7分当1x =时原式=110-= ························ 8分 注:()()()22222442422?22x x x x x x x x x x +-++=+-=+-÷=⨯-+、、?(各2分) 19. (1)DOE BOF ①△≌△; ······ 2分证明:∵四边形ABCD 是平行四边形∴AD BC ∥ ··········· 3分 ∴EDO FBO E F ∠=∠∠=∠, ········ 4分又∵OD OB =∴()DOE BOF AAS △≌△ ····················· 5分BOM DON ②△≌△ ························ 2分证明:∵四边形ABCD 是平行四边形∴AB CD ∥ ···························· 3分∴MBO NDO BMO DNO ∠=∠∠=∠, ················ 4分 又∵BO DO =EB M O DNFC(第19题图)A∴()BOM DON AAS △≌△ ····················· 5分ABD CDB ③△≌△; ······················· 2分证明:∵四边形ABCD 是平行四边形∴AD CB AB CD ==, ······················· 3分又∵BD DB = ··························· 4分∴()ABD CDB SSS △≌△ ······················ 5分 (2)绕点O 旋转180°后得到或以点O 为中心作对称变换得到. ········ 8分 20.(1)正确完成步骤①、②、③,各得1分,字母标注完整得1分,满分4分.(2)说明:①以点O 为圆心,以适当长为半径作弧交OA OB 、于两点C D 、 ··· 5分②分别以点C D 、为圆心,以大于12CD 长为半径作弧, 两弧相交于点E ······················· 7分③作射线OE ························· 8分21.(1)80 ······················ 2分40% ························· 4分 (2)补全条形图(如右图) ··············· 6分(3)380 ························ 8分 22.(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△, BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等 (每写出一个正确结论得1分,满分4分.) (2)解:AB 是O ⊙的直径90ADB ∴∠=° ········ 5分又30E ∠=°30A ∴∠=° ····················· 6分12BD AB r ∴== ··················· 7分 又BC 是O ⊙的切线90CBA ∴∠=° ····················· 8分 60C ∴∠=︒在Rt BCD △中,3CD =(第22题图)B A 图1 (第20题图) 图2 O B A E D OC CD(第21题图)tan 602BD rDC ∴==° ···························· 9分 2r ∴= ··································· 10分 23(2)解:依题意得2x -65x= ················ 7分解得10x = ·································· 8分经检验10x =是原分式方程的解 ························· 9分220x ∴=. 答:冰箱、电视机分别购买20台、10台 ·········· 10分 24.证明:如图1,ABC △为等边三角形 60ABC ∴∠=°BC MN BA MG ⊥⊥,∴90CBM BAM ∠=∠=° 9030ABM ABC ∴∠=∠=︒°- ············· 1分9060M ABM ∴∠=︒∠=︒- ·············· 2分 同理:60N G ∠=∠=︒ MNG ∴△为等边三角形. ··························· 3分 在Rt ABM △中,sin sin 603AB a BM a M ===︒在Rt BCN △中,tantan 60BC a BN N ===︒ ················· 4分 MNBM BN ∴=+= ·························· 5分(2)②:结论1成立.证明;方法一:如图2,连接AO BO CO 、、 由ABC AOB BOC AOC S S S S =++△△△△=()12a OD OE OF ++ ··· 7分 作AH BC ⊥,垂足为H ,则sin sin 60AH AC ACB a =∠=⨯︒= 11222ABC S BC AH a ∴==△·· N MA G CB (图1) A FCE BD(图2)OH()11222a OD OE OF a ∴++=·2OD OE OF ∴++=···························· 8分 方法二:如图3,过点O 作GH BC ∥,分别交AB AC 、于点G H 、,过点 H 作HM BC ⊥于点M , 6060DGO B OHF C ∴∠=∠=∠=∠=°,° AGH ∴△是等边三角形GH AH ∴= ···················6分 OE BC ⊥ OE HM ∴∥∴四边形OEMH 是矩形HM OE ∴= ··················· 7分在Rt ODG △中,sin sin 602OD OGDGO OG =∠=︒=·· 在Rt OFH △中,sin sin 602OF OHOHF OH =∠=︒=·· 在Rt HMC △中,sin sin 602HM HCC HC HC ==︒=··OD OE OF OD HM OF HC ∴++=++=++)GH HC AC =+== ······· 8分 (2)②:结论2成立.证明:方法一:如图4,过顶点A B C 、、依次作边AB BC CA 、、的垂线围成MNG △,由(1)得MNG △为等边三角形且MN = ············· 9分 过点O 分别作OD MN '⊥于D ',OE NG '⊥于NG 于点E OF MG ''⊥,于点F ' 由结论1得:32OD OE OF a '+'+'=== ·················· 10分 又OD AB AB MG OF MG ⊥⊥'⊥,,90ADO DAF OF A ∴∠=∠'=∠'=︒A F CEBD(图4)O F 'D 'MGNE 'AF CE BD (图3)OM HG∴四边形ADOF '为矩形 OF ∴'=AD同理:OD BE '=,OE CF '= ························· 11分32AD BE CF OD OE OF a ∴++='+'+'= ··················· 12分方法二:(同结论1方法二的辅助线) 在Rt OFH △中,tan 3OF FH OHF ==∠在Rt HMC △中,sin HM HC C == ······ 9分CF HC FH ∴=+=+同理:3333AD OF OD BE =+=+, ············· 10分 AD BE CF ∴++=+++=)OD OE OF ++ ····························· 11分由结论1得:OD OE OF ++=32AD BE CF a ∴++== ······················· 12分 方法三:如图5,连接OA OB OC 、、,根据勾股定理得:22222BE OE OB BD OD +==+① 22222CF OF OC CE OE +==+②22222AD OD AO AF OF +==+③ ······················· 9分①+②+③得:222222BE CF AD BD CE AF ++=++ ····················· 10分()()()222222BE CF AD a AD a BE a CF ∴++=-+-+-222222222a AD a AD a BE a BE a CF a CF =-++-++-+ ··········· 11分A FC EBD(图5)OAF CBD(图3)OHG整理得:()223a AD BE CF a ++=32AD BE CF a ∴++= ···························· 12分25.(1)解:方法一,如图1,当1x =-时,14y = 当4x =时,4y =∴1A ⎛⎫- ⎪⎝⎭1,4 ····················· 1分()44B , ······················· 2分设直线AB 的解析式为y kx b =+ ············ 3分则1444k b k b ⎧-+=⎪⎨⎪+=⎩ 解得341k b ⎧=⎪⎨⎪=⎩ ∴直线AB 的解析式为314y x =+ ············ 4分 当0x =时,1y =()01F ∴, ··································· 5分 方法二:求A B 、两点坐标同方法一,如图2,作FG BD ⊥,AH BD ⊥,垂足分别为G 、H ,交y 轴于点N ,则四边形FOMG 和四边形NOMH 均为矩形,设FO x = ·············· 3分BGF BHA △∽△BG FGBH AH ∴=441544x -∴=- ································· 4分解得1x =()0F ∴,1 ·································· 5分(2)证明:方法一:在Rt CEF △中,1,2CE EF ==22222125CF CE EF ∴=+=+=CF ∴= ·································· 6分(图1)(图2)在Rt DEF △中,42DE EF ==,222224220DF DE EF ∴=+=+=DF ∴=由(1)得()()1141C D ---,,,5CD ∴=22525CD ∴==222CF DF CD ∴+= ··························· 7分90CFD ∴∠=°∴CF DF ⊥ ······························· 8分方法二:由 (1)知5544AF AC ===,AF AC ∴= ······························· 6分同理:BF BD = ACF AFC ∴∠=∠ AC EF ∥ACF CFO ∴∠=∠AFC CFO ∴∠=∠ ···························· 7分 同理:BFD OFD ∠=∠90CFD OFC OFD ∴∠=∠+∠=°即CF DF ⊥ ······························· 8分(3)存在.解:如图3,作PM x ⊥轴,垂足为点M ··· 9分 又PQ OP ⊥Rt Rt OPM OQP ∴△∽△ PM OMPQ OP∴= PQ PMOP OM∴= ·············· 10分 设()2104P x x x ⎛⎫> ⎪⎝⎭,,则214PM x OM x ==, ①当Rt Rt QPO CFD △∽△时,12PQ CF OP DF ===··························· 11分图321142xPM OM x ∴== 解得2x =()121P ∴, ································· 12分 ②当Rt Rt OPQ CFD △∽△时,2PQ DF OP CF === ···························13分 2142xPM OM x ∴== 解得8x =()2816P ∴,综上,存在点()121P ,、()2816P ,使得OPQ △与CDF △相似. ········· 14分。
2020年福建省莆田市中考数学试题(word版及答案)
初中毕业、升学考试试卷数学试题(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得0分.1.2-的倒数是().A.2 B.1 2C.12-D.15-2.若式子1x-有意义,则x的取值范围是().A.1x≥B.1x≤C.0x>D.1x>3.下列图形中,是中心对称图形的是().4.下列计算正确的是().A.325()a a=B.23a a a+=C.33a a a÷=D.235a a a=·5.已知1O⊙和2O⊙的半径分别是3cm和5cm,若12O O=1cm,则1O⊙与2O⊙的位置关系是().A.相交B.相切C.相离D.内含6.如图是由五个小正方体搭成的几何体,它的左视图...是().第3题第6题7.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ).A .(1)10x x -=B .(1)102x x -= C .(1)10x x += D .(1)102x x +=8.11()A x y ,、22()B x y ,是一次函数2(0)y kx k =+>图象上不同的两点,若1212()()t x x y y =--,则( ).A .0t <B .0t =C .0t >D .0t ≤ 二、细心填一填:本大题共8小题,每小题4分,共32分.9.化简:22(1)(1)a a +--=________.10.2009年我国全年国内生产总值约335000亿元,用科学记数法表示为________亿元. 11.如图,D 、E 分别是ABC △边AB 、AC 的中点,BC =10,则DE =________.12.一个n 边形的内角和是720°,则n =________.13.已知数据1,3,2,x ,2的平均数是3,则这组数据的众数是________.14.如果关于x 的方程220x x a -+=有两个相等的实数根,那么a =________.15.若用半径为20cm ,圆心角为240°的扇形铁皮,卷成一个圆锥容器的侧面(接缝忽略不计),则这个圆锥容器的底面半径是________cm.16.某同学利用描点法画二次函数2(0)y ax bx c a =++≠的图象时,列出的部分数据如下表:x 0 1 23 4 y32-3经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:____________________________.三、耐心做一做:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分8分)计算:2|32|2.3-+-第11题解不等式213436x x --≤,并把它的解集在数轴上表示出来.19.(本小题满分8分)如图,四边形ABCD 的对角线AC 、DB 相交于点O ,现给出如下三个条件:AB DC AC DB OBC OCB ==∠=∠①②③.(1)请你再增加一个..条件:________,使得四边形ABCD 为矩形(不添加其它字母和辅助线,只填一个即可,不必证明);(2)请你从①②③中选择两个条件________(用序号表示,只填一种情况),使得AOB DOC △≌△,并加以证明.第19题如图,在边长为1的小正方形组成的网格中,AOB △的三个顶点均在格点上,点A 、B 的坐标分别为(23)31.A B --,、(,)(1)画出AOB △绕点O 顺时针...旋转90°后的11A OB △; (2)点1A 的坐标为_______; (3)四边形11AOA B 的面积为_______.21.(本小题满分8分)如图,A 、B 是O ⊙上的两点,120AOB ∠=°,点D 为劣弧AB 的中点. (1)求证:四边形AOBD 是菱形;(2)延长线段BO 至点P ,交O ⊙于另一点C ,且BP =3OB ,求证:AP 是O ⊙的切线.第20题第21题在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数4yx=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x、y满足4yx<的概率.23.(本小题满分10分)一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现在甲、乙两车要从M地沿同一公路运输救援物资往玉树灾区的N地,乙车比甲车先行1小时,设甲车与乙车之间的路程..........为y(km),甲车行驶时间为t(h),y(km)与t(h)之间函数关系的图象如图所示.结合图象解答下列问题(假设甲、乙两车的速度始终保持不变):(1)乙车的速度是_________km/h;(2)求甲车的速度和a的值.第23题如图1,在Rt ABC △中,9068ACB AC BC ∠===°,,,点D 在边AB 上运动,DE 平分CDB ∠交边BC 于点E ,CM BD ⊥垂足为M EN CD ⊥,,垂足为N.(1)当AD=CD 时,求证:DE AC ∥;(2)探究:AD 为何值时,BME △与CNE △相似?(3)探究:AD 为何值时,四边形MEND 与BDE △的面积相等?第24题如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =1,OC =2,点D 在边OC 上且54OD =. (1)求直线AC 的解析式;(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得DMC △为等腰三角形?若存在,直接写出....所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线2y x =-经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且ODE △沿DE 折叠后点O 落在边AB 上O ′处?第25题2010年莆田市初中毕业、升学考试试卷数学参考答案及评分标准说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分. (二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位1分,得分或扣分都不能出现小数点. 一、精心选一选(本大题共8小题,每小题4分,共32分) 1.C 2.A 3.B 4.D 5.D 6.A 7.B 8.C二、细心填一填(本大题共8小题,每小题4分,共32分)9.4a 10. 53.3510⨯ 11. 5 12. 6 13. 2 14. 1 15.40316. 243y x x =-+ 三、耐心做一做(本大题共9小题,共86分) 17.(本小题满分8分)解:原式=2334-+- ··································································· 6分 =2- ································································································ 8分 注:2|32|2323(2)24(2)-=-==3(分)分分318.(本小题满分8分)解:去分母,得2(21)34x x --≤ ························································ 2分去括号,得4234x x --≤ ·································································· 4分 移项,合并同类项,得2x -≤ ∴不等式的解集为2x -≤···································································· 6分 该解集在数轴上表示如下:······································································································· 8分 19.(本小题满分8分) (1)AD BC =(或AO OC =或BO OD =或90ABC ∠=°等) 3分 (2)解法1:②③ ········································ 4分 证明:OBC OCB ∠=∠OB OC ∴= ················································ 5分 第19题又AC DB OA OD =∴= ······························································· 6分 又AOB DOC ∠=∠AOB DOC ∴△≌△ ·········································································· 8分 解法2:①② ····················································································· 4分证明:∵AB=DC ,DB=AC ,AD=DA∴ABD DCA △≌△ ·········································································· 6分 ∴∠ABO=∠DCO ········································································································· 7分 又∵∠AOB=∠DOC AOB DOC ∴△≌△ ············································ 8分 (注:若选①③第(2)小题得0分) 20.(本小题满分8分) (1)正确画出1OA 、1OB 、11A B 各得1分 ·············································· 3分 (2)(3,2) ····················································································· 5分 (3)8 ······························································································ 8分 21.(本小题满分8分) 证明:(1)连接OD . ··························· 1分D 是劣弧AB 的中点,120AOB ∠=°60AOD DOB ∴∠=∠=°···················· 2分 又∵OA=OD ,OD=OB∴△AOD 和△DOB 都是等边三角形 ········ 3分 ∴AD=AO=OB=BD∴四边形AOBD 是菱形 ························ 4分(2)连接AC.∵BP =3OB ,OA=OC=OB ∴PC=OC=OA ··················································································· 5分12060AOB AOC ∠=∴∠=°°OAC ∴△为等边三角形 ∴PC=AC=OC ···················································································· 6分 ∴∠CAP =∠CP A又∠ACO =∠CP A +∠CAP30CAP ∴∠=°90PAO OAC CAP ∴∠=∠+∠=° ························································ 7分 又OA 是半径AP ∴是O ⊙的切线 ············································································ 8分 22.(本小题满分10分)解:(1)x y 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)第21题······································································································· 3分 (2)可能出现的结果共有16个,它们出现的可能性相等. ·························· 4分 满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316. ······················································· 7分 (3)能使x ,y 满足4y x<(记为事件B )的结果有5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (B )=516·························································· 10分23.(本小题满分10分) (1)40 ···························································································· 3分 (2)解法1:设甲车的速度为x km/h ,依题意得12(121)40200x =+⨯+ ····································································· 5分 解得x =60 ·························································································· 6分 又(1)4060a a +⨯=⨯ ········································································· 8分 ∴a =2 ······························································································· 9分答:甲车的速度为每小时60千米,a 的值为2. ······································ 10分 解法2:设甲车的速度为x km/h ,依题意得40(1)(12)(40)200ax a a x =+⎧⎨--=⎩ ······································································ 7分 解得602.x a =⎧⎨=⎩····················································································· 9分 答:甲车的速度为每小时60千米,a 的值为2. ······································ 10分 24.(本小题满分12分) (1)证明:AD CD DAC DCA =∴∠=∠2BDC DAC ∴∠=∠ ·························· 1分 又∵DE 是∠BDC 的平分线 ∴∠BDC=2∠BDE ∴∠DAC =∠BDE ································ 2分 ∴DE ∥AC ········································· 3分(2)解:(Ⅰ)当BME CNE △∽△时,得MBE NCE ∠=∠ ∴BD=DC∵DE 平分∠BDC ∴DE ⊥BC ,BE=EC.又∠ACB =90° ∴DE ∥AC . ··································································· 4分 ∴BE BD BC AB =即2211522BD AB AC BC ==+=∴AD =5 ···························································································· 5分第24题(Ⅱ)当BME ENC △∽△时,得EBM CEN ∠=∠∴EN ∥BD又∵EN ⊥CD∴BD ⊥CD 即CD 是△ABC 斜边上的高 ··················································· 6分 由三角形面积公式得AB ·CD=AC ·BC ∴CD=245 ∴22185AD AC CD =-= ································································· 7分 综上,当AD =5或185时,△BME 与△CNE 相似. (3)由角平分线性质易得12MDE DEN S S DM ME ==△△· BDE MEND S S =△四边形12BD EM DM EM ∴=·· 即12DM BD = ··········································· 8分 ∴EM 是BD 的垂直平分线.∴∠EDB=∠DBE∵∠EDB =∠CDE ∴∠DBE =∠CDE又∵∠DCE =∠BCD∴CDE CBD △∽△ ·················· 9分CD CE DE BC CD BD∴==① ·········· 10分 2CD BE BE BC BD BM ∴== 即4BE CD BM= 45cos 4554BM B CD BE ==∴=⨯= ················································· 11分 由①式得2258CD CE BC == 3943939cos 85810BE BM BE B ∴=∴==⨯= 39112102105AD AB BM ∴=-=-⨯= ················································· 12分 25.(本小题满分14分)解:(1)OA =1,OC =2则A 点坐标为(0,1),C 点坐标为(2,0)设直线AC 的解析式为y=kx+b0120b k b +=⎧∴⎨+=⎩ 第24题解得121k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为112y x =-+ ······················································· 2分 (2)123555(0)(0)(0(52))384P P P --+,,,,,或3(0)4(52)P --, (正确一个得2分) ··········································································· 8分(3)如图,设(1)O x ′,过O ′点作O F OC ⊥′于F222251()4O D O F DF x ='+=+-′ 由折叠知OD O D =′22551()()44x ∴+-= 12x ∴=或2 ··································· 10分第25题。
莆田市中考数学试卷及答案(WORD解析版)
福建省莆田市中考数学试卷一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得0分.1.(4分)(•莆田)3的相反数是()A.﹣3 B.3C.D.﹣考点:相反数.分析:根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(3的相反数)+(3)=0,则3的相反数是﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(•莆田)下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式;合并同类项法则对各选项分析判断利用排除法求解.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、(2a)3=8a3,故本选项错误;C、(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、3a2﹣a2=2a2,故本选项正确.故选D.点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.3.(4分)(•莆田)如图图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.(4分)(•莆田)如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从物体左面看,第一层有3个正方形,第二层的中间有1个正方形.故选C.点评:本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.5.(4分)(•莆田)若x、y 满足方程组,则x﹣y的值等于()A.﹣1 B.1C.2D.3考点:解二元一次方程组.专题:计算题.分析:方程组两方程相减即可求出x﹣y的值.解答:解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选A点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.(4分)(•莆田)在半径为2的圆中,弦AB的长为2,则的长等于()A.B.C.D.考点:弧长的计算.分析:连接OA、OB,求出圆心角AOB的度数,代入弧长公式求出即可.解答:解:连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴的长为=,故选C.点评:本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长=.7.(4分)(•莆田)如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()A.(2,﹣2)B.(2,﹣2)C.(2,﹣2)D.(2,﹣2)考点:坐标与图形变化-旋转.专题:数形结合.分析:根据含30度的直角三角形三边的关系得到OB=OA=2,AB=OB=2,则A点坐标为(2,2),再根据旋转的性质得到∠A′OA=120°,OA′=OA=4,则∠A′OB=60°,于是可判断点A′和点A关于x轴对称,然后根据关于x轴对称的点的坐标特征写出点A′的坐标.解答:解:∵∠ABO=90°,∠A=30°,OA=4,∴∠AOB=60°,OB=OA=2,AB=OB=2,∴A点坐标为(2,2),∵△OAB饶点O按顺时针方向旋转120°得到△OA′B′,∴∠A′OA=120°,OA′=OA=4,∴∠A′OB=60°,∴点A′和点A关于x轴对称,∴点A′的坐标为(2,﹣2).故选B.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了含30度的直角三角形三边的关系.8.(4分)(•莆田)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD 的面积为y,则能表示y与x函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE、BE,然后表示出PE、QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x 的关系式,再根据二次函数图象解答.解答:解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=AB=2,∵BE=DE,PD=x,∴PE=DE﹣PD=2﹣x,∵PQ∥BD,BE=DE,∴QE=PE=2﹣x,又∵△ABE是等腰直角三角形(已证),∴点Q到AD的距离=(2﹣x)=2﹣x,∴△PQD的面积y=x(2﹣x)=﹣(x2﹣2x+2)=﹣(x ﹣)2+,即y=﹣(x ﹣)2+,纵观各选项,只有C选项符合.故选C.点评:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.二、细心填一填:本大题共8小题,每小题4分,共32分.9.(4分)(•莆田)我国的北斗卫星导航系统与美国的GPS和俄罗斯格洛纳斯系统并称世界三大卫星导航系统,北斗系统的卫星轨道高达36000公里,将36000用科学记数法表示为3.6×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将36000用科学记数法表示为:3.6×104.故答案为:3.6×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(4分)(•莆田)若正n边形的一个外角为45°,则n=8.考点:多边形内角与外角.分析:根据正多边形的外角和的特征即可求出多边形的边数.解答:解:n=360°÷45°=8.答:n的值为8.故答案为:8.点评:本题考查多边形的外角和的特征:多边形的外角和等于360°,是基础题型.11.(4分)(•莆田)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=2.考点:一元二次方程的解.分析:把x=﹣1代入原方程,列出关于a的新方程,通过解新方程可以求得a的值.解答:解:∵关于x的一元二次方程x2+3x+a=0有一个根是﹣1,∴(﹣1)2+3×(﹣1)+a=0,解得a=2,故答案是:2.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.(4分)(•莆田)在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球颜色相同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两次摸出的小球颜色相同的有3种情况,∴两次摸出的小球颜色相同的概率是:=故答案为:点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(•莆田)在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是82.考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.解答:解:把这组数据从小到大排列为:77、79、81、83、84、87,最中间两个数的平均数是:(81+83)÷2=82;故答案为:82.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,熟练掌握中位数的概念是本题的关键.14.(4分)(•莆田)计算:=a﹣2.考点:分式的加减法.专题:计算题.分析:根据同分母分式加减运算法则,分母不变只把分子相加减即可求解.解答:解:==a﹣2.故答案为a﹣2.点评:本题主要考查同分母分式加减,熟练掌握运算法则是解题的关键.15.(4分)(•莆田)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是2.考点:轴对称-最短路线问题;菱形的性质.分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M 时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.解答:解:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=AD,DH=AD,∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=2,在RT△EHD中,DE===2∴EF+BF的最小值为2.点评:此题主要考查菱形是轴对称图形的性质,知道什么时候会使EF+BF成为最小值是解本题的关键.16.(4分)(•莆田)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A的坐标是(,).考点:一次函数图象上点的坐标特征;等边三角形的性质.专题:规律型.分析:根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.解答:解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A(,).故答案为:(,).点评:此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.三、耐心做一做:本大题共9小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤17.(8分)(•莆田)计算:﹣2sin60°+|﹣|.考点:实数的运算;特殊角的三角函数值.分析:先根据数的开方法则、特殊角的三角函数值、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3﹣2×+=3﹣+=3.点评:本题考查的是实数的运算,熟知数的开方法则、特殊角的三角函数值、绝对值的性质是解答此题的关键.18.(8分)(•莆田)解不等式≥,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母和去括号得到6﹣3x≥4﹣4x,然后移项后合并得到x≥﹣2,再利用数轴表示解集.解答:解:去分母得3(2﹣x)≥4(1﹣x),去括号得6﹣3x≥4﹣4x,移项得4x﹣3x≥4﹣6,合并得x≥﹣2,在数轴上表示为:.点评:本题考查了解一元一次不等式:解一元一次不等式的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.也考查了在数轴上表示不等式的解集.19.(8分)(•莆田)某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:(1)这次被抽查的学生有60人;请补全条形统计图;(2)在统计图2中,“乒乓球”对应扇形的圆心角是144度;(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有48人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据C类的人数是9,所占的比例是20%,据此即可求得总人数;(2)利用360°乘以对应的比例即可求解;(3)利用总人数480,乘以对应的比例即可.解答:解:(1)被抽查的学生数是:9÷15%=60(人),D项的人数是:60﹣21﹣24﹣9=6(人),;(2)“乒乓球”对应扇形的圆心角是:360°×=144°;(3)480×=48(人).故答案是:60,144,48.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(•莆田)如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.考点:全等三角形的判定与性质;等边三角形的性质;扇形面积的计算.专题:证明题.分析:(1)由点D是线段BC的中点得到BD=CD,再由AB=AC=BC可判断△ABC为等边三角形,于是得到AD为BC的垂直平分线,根据线段垂直平分线的性质得BE=CE;(2)由EB=EC,根据等腰三角形的性质得∠EBC=∠ECB=30°,则根据三角形内角和定理计算得∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,根据含30度的直角三角形三边的关系得到ED=BD=,然后根据扇形的面积公式求解.解答:(1)证明:∵点D是线段BC的中点,∴BD=CD,∵AB=AC=BC,∴△ABC为等边三角形,∴AD为BC的垂直平分线,∴BE=CE;(2)解:∵EB=EC,∴∠EBC=∠ECB=30°,∴∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,∴ED=BD=,∴阴影部分(扇形)的面积==π.点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.也考查了等边三角形的判定与性质、相等垂直平分线的性质以及扇形的面积公式.21.(8分)(•莆田)如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,﹣2),反比例函数y=(x>0)的图象过点A.(1)求直线l的解析式;(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)由A为直角三角形外心,得到A为斜边MN中点,根据A坐标确定出M与N 坐标,设直线l解析式为y=mx+n,将M与N坐标代入求出m与n的值,即可确定出直线l解析式;(2)将A坐标代入反比例解析式求出k的值,确定出反比例解析式,利用反比例函数k的意义求出△OBC的面积,由△ONP的面积是△OBC面积的3倍求出△ONP的面积,确定出P的横坐标,即可得出P坐标.解答:解:(1)∵Rt△MON的外心为点A(,﹣2),∴A为MN中点,即M(3,0),N(0,﹣4),设直线l解析式为y=mx+n,将M与N代入得:,解得:m=,n=﹣4,则直线l解析式为y=x﹣4;(2)将A(,﹣2)代入反比例解析式得:k=﹣3,∴反比例解析式为y=﹣,∵B为反比例函数图象上的点,且BC⊥x轴,∴S△OBC=,∵S△ONP=3S△OBC,∴S△ONP=,设P横坐标为a(a>0),∴ON•a=,即a=,则P坐标为(,﹣1).点评:此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,反比例函数k的几何意义,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.22.(10分)(•莆田)如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=.(1)求证:CD是⊙O的切线;(2)若tan∠CAB=,BC=3,求DE的长.考点:切线的判定.专题:证明题.分析:(1)连结OC,由=,根据圆周角定理得∠1=∠2,而∠1=∠OCA,则∠2=∠OCA,则可判断OC∥AD,由于AD⊥CD,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BE交OC于F,由AB是⊙O的直径得∠ACB=90°,在Rt△ACB中,根据正切的定义得AC=4,再利用勾股定理计算出AB=5,然后证明Rt△ABC∽Rt△ACD,利用相似比先计算出AD=,再计算出CD=;根据垂径定理的推论由=得OC⊥BE,BF=EF,于是可判断四边形DEFC为矩形,所以EF=CD=,则BE=2EF=,然后在Rt△ABE中,利用勾股定理计算出AE=,再利用DE=AD﹣AE求解.解答:(1)证明:连结OC,如图,∵=,∴∠1=∠2,∵OC=OA,∴∠1=∠OCA,∴∠2=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BE交OC于F,如图,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ACB中,tan∠CAB==,而BC=3,∴AC=4,∴AB==5,∵∠1=∠2,∴Rt△ABC∽Rt△ACD,∴=,即=,解得AD=,∵=,即=,解得CD=,∵=,∴OC⊥BE,BF=EF,∴四边形DEFC为矩形,∴EF=CD=,∴BE=2EF=,∵AB为直径,∴∠BEA=90°,在Rt△ABE中,AE===,∴DE=AD﹣AE=﹣=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和相似三角形的判定与性质.23.(10分)(•莆田)某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?考点:二次函数的应用.分析:(1)把函数图象经过的点(3,6),(7,7)代入函数解析式,解方程组求出m、n 的值,即可得解;(2)根据图1求出每千克的售价y1与x的函数关系式,然后根据利润=售价﹣成本得到利润与x的函数关系式,然后整理成顶点式形式,再根据二次函数的最值问题解答即可.解答:解:(1)由图可知,y2=mx2﹣8mx+n经过点(3,6),(7,7),∴,解得.∴y2=x2﹣x+(1≤x≤12);(2)设y1=kx+b(k≠0),由图可知,函数图象经过点(4,11),(8,10),则,解得,所以,y1=﹣x+12,所以,每千克所获得利润=(﹣x+12)﹣(x2﹣x+)=﹣x+12﹣x2+x﹣=﹣x2+x+=﹣(x2﹣6x+9)++=﹣(x﹣3)2+,∵﹣<0,∴当x=3时,所获得利润最大,为元.答:第3月销售这种水果,每千克所获得利润最大,最大利润是元/千克.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数的最值问题,难点在于(2)整理出利润的表达式并整理成顶点式形式.24.(12分)(•莆田)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.(1)点F在边BC上.①如图1,连接DE,AF,若DE⊥AF,求t的值;②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得=?若存在,求出t的值;若不存在,请说明理由.考点:四边形综合题.分析:(1)①利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.②利用△EBF∽△DCF,得出=,列出方程求解.(2)①0<t≤2时如图3,以点B为原点BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式是,再利用勾股定理求出BG,运用=,求出点O的坐标把O的坐标代入EF所在的直线函数关系式求解.②当t>2时如图4,以点B为原点BC为x轴,BA为y轴建立坐标系,以点B为原点BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式是,再利用勾股定理求出BG,运用=,求出点O的坐标把O的坐标代入EF所在的直线函数关系式求解.解答:解:(1)①如图1∵DE⊥AF,∴∠AOE=90°,∴∠BAF+∠AEO=90°,∵∠ADE+∠AEO=90°,∴∠BAE=∠ADE,又∵四边形ABCD是正方形,∴AE=AD,∠ABF=∠DAE=90°,在△ABF和△DAE中,∴△ABF≌△DAE(ASA)∴AE=BF,∴1+t=2t,解得t=1.②如图2∵△EBF∽△DCF∴=,∵BF=2t,AE=1+t,∴FC=4﹣2t,BE=4﹣1﹣t=3﹣t,∴=,解得,t=,t=(舍去),故t=.(2)①0<t≤2时如图3,以点B为原点BC为x轴,BA为y轴建立坐标系,A的坐标(0,4),G的坐标(2,4),F点的坐标(2t,0),E的坐标(0,3﹣t)EF所在的直线函数关系式是:y=x+3﹣t,BG所在的直线函数关系式是:y=2x,∵BG==2∵=,∴BO=,OG=,设O的坐标为(a,b),解得∴O的坐标为(,)把O的坐标为(,)代入y=x+3﹣t,得=×+3﹣t,解得,t=(舍去),t=,②当3≥t>2时如图4,以点B为原点BC为x轴,BA为y轴建立坐标系,A的坐标(0,4),G的坐标(2,4),F点的坐标(4,2t﹣4),E的坐标(0,3﹣t)EF所在的直线函数关系式是:y=x+3﹣t,BG所在的直线函数关系式是:y=2x,∵BG==2∵=,∴BO=,OG=,设O的坐标为(a,b),解得∴O的坐标为(,)把O的坐标为(,)代入y=x+3﹣t,得=×+3﹣t,解得:t=.综上所述,存在t=或t=,使得=.点评:本题主要考查了四边形的综合题,解题的关键是把四边形与坐标系相结合求解.25.(14分)(•莆田)如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线O P的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).考点:二次函数综合题.分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C(0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如答图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.解答:解:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如答图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO===2,∴==2,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D (﹣m,3).AB=OB+OA=2﹣m+m=2.如答图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD===,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=•=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).点评:本题是二次函数压轴题,以平移变换为背景,考查了二次函数、一次函数、三角函数(或相似)、等边三角形、角平分线的性质等知识点,有一定的难度.函数解析式中含有未知数,增大了试题的难度.第(2)问中,解题关键是理解“点B与点C到直线OP的距离之和最大且AP=BP”的含义;第(3)问中,满足条件的点P有4个,不要漏解.21 / 21。
福建省莆田市中考数学试题含答案
一、选择题(共10小题,每小题4分,满分40分)1.(4分)﹣2的相反数是( )A .12B .2C .12- D .﹣2 2.(4分)下列运算正确的是( )A .235()a a =B .246a a a +=C .331a a ÷=D .32()a a a a -÷= 3.(4分)右边几何体的俯视图是( )A .B .C .D .4.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A . 等边三角形B . 平行四边形C . 矩形D .正五边形5.(4分)不等式组21112x x +>⎧⎪⎨≤⎪⎩的解集在数轴上可表示为( ) A . B . C . D .6.(4分)如图,AE ∥DF ,AE =DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB =CD B .EC =BF C .∠A =∠D D .AB =BC7.(4分)在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8,则关于这组数据的说法不正确的是( )A .平均数是5B .中位数是6C .众数是4D .方差是3.28.(4分)如图,在⊙O 中,AB AC =,∠AOB =50°,则∠ADC 的度数是( )A .50°B .40°C .30°D .25°9.(4分)命题“关于x 的一元二次方程210x bx ++=,必有实数解.”是假命题.则在下列选项中,可以作为反例的是( )A .b =﹣3B .b =﹣2C .b =﹣1D .b =210.(4分)数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN . 观察,探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45°二、细心填一填(共6小题,每小题4分,满分24分)11.(4分)要了解一批炮弹的杀伤力情况,适宜采取 (选填“全面调查”或“抽样调查”).12.(4分)八边形的外角和是 . 13.(4分)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为.14.(4分)用一根长为32cm 的铁丝围成一个矩形,则围成矩形面积的最大值是 cm 2.15.(4分)如图,AB 切⊙O 于点B ,OA =23,∠BAO =60°,弦BC ∥OA ,则BC 的长为 (结果保留π).16.(4分)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是 .三、耐心做一做(共10小题,满分86分)17.(7分)计算:0229(1)--+-.18.(7分)解分式方程:232x x =+. 19.(8分)先化简,再求值:222a ab b a b b a----,其中13a =+,13b =-+. 20.(10分)为建设”书香校园“,某校开展读书月活动,现随机抽取了一部分学生的日人均阅读时间x (单位:小时)进行统计,统计结果分为四个等级,分别记为A ,B ,C ,D ,其中:A :0≤x <0.5,B :0.5≤x <1,C :1≤x <1.5,D :1.5≤x <2,根据统计结果绘制了如图两个尚不完整的统计图.(1)本次统计共随机抽取了名学生;(2)扇形统计图中等级B所占的圆心角是;(3)从参加统计的学生中,随机抽取一个人,则抽到“日人均阅读时间大于或等于1小时”的学生的概率是;(4)若该校有1200名学生,请估计“日人均阅读时间大于或等于0.5小时”的学生共有人.21.(8分)如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长.22.(8分)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=35.求证:CB是⊙O的切线.23.(8分)某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数1y(张)与售票时间x (小时)的变化趋势如图1,每个无人售票窗口售出的车票数2y (张)与售票时间x (小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图2中所确定抛物线的解析式;(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?24.(8分)如图,矩形OABC ,点A ,C 分别在x 轴,y 轴正半轴上,直线6y x =-+交边BC 于点M (m ,n )(m <n ),并把矩形OABC 分成面积相等的两部分,过点M 的双曲线k y x =(0x >)交边AB 于点N .若△OAN 的面积是4,求△OMN 的面积.25.(10分)抛物线2y ax bx c =++,若a ,b ,c 满足b =a +c ,则称抛物线2y ax bx c =++为“恒定”抛物线.(1)求证:“恒定”抛物线2y ax bx c =++必过x 轴上的一个定点A ;(2)已知“恒定”抛物线233y x =-的顶点为P ,与x 轴另一个交点为B ,是否存在以Q 为顶点,与x 轴另一个交点为C 的“恒定”抛物线,使得以P A ,CQ 为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.26.(12分)在Rt △ACB 和Rt △AEF 中,∠ACB =∠A EF =90°,若点P 是BF 的中点,连接PC ,PE . 特殊发现:如图1,若点E ,F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明).问题探究:把图1中的△AEF绕着点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记ACkBC,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)。
莆田中考数学试题答案.doc
2011年莆田市初中毕业、升学考试试卷数学参考答案及评分标准一、精心选一选1.C 2.D 3.A 4.C 5.B 6,B 7.A 8.C 二、耐心填—填9.48.6410⨯ I0.1 1I .7 12,9 13.4 14,58 15,5 16.5151 三,耐心填一填 17.解:原式=418. 原式=28a -+,当5a =-时,原式=1819. (1)证明略 (2)四边形BDCF 是矩形。
证明略。
20. (1)证明:连接OD ,则OD=OA , ∴∠OAD=∠ODA∵D 为»EF的中点 ∴∠OAD=∠CAD ∴∠ODA=∠CAD ∴OD ∥AC又∵∠C=90°,∴∠ODC=90°,即BC ⊥OD ∴BC 与⊙O 相切。
(2)连接DE ,则∠ADE=90°∵∠OAD=∠ODA=∠CAD=30°,∴∠AOD=120° 在Rt △ADE 中,易求AE=4, ∴⊙O 的半径r=2 ∴»AD 的长120241803l ππ⨯==。
22. 解:(1)∵点E 、F 在函数(0)ky x x=>的图象上, ∴设111()(0)kE x x x >,,222()(0)k F x x x >,∴111122k k S x x =⋅⋅=,222122k k S x x =⋅⋅= ∵12=2S S +,∴222k k+=,2k =。
(2)∵四边形OABC 为矩形,OA=2,OC=4, 设(2)2k E , ,(4)4k F ,∴BE=42k -,BF=24k - ∴211(4)(2)422416BEF k k S k k ∆=--=-+ ∵14242OCF k kS ∆=⨯⨯=,24=8OABC S =⨯⨯矩形∴2211=844162162BEF OCF OABC OAEF k k S S S S k k k ∆∆--=--+-=-++矩形四边形() =21(4)516k --+xyO A BCEP P 2P 3第24题 图1∴当4k =时,5OAEF S =四边形,∴AE=2.当点E 运动到AB 的中点时,四边形OA EF 的面积最大,最大值是5. 23.解:(1)设该公司生产A 钟中医疗器械x 台,则生产B 钟中医疗器械(80x -)台,依题意得2025(80)18002025(80)1810x x x x +-≥⎧⎨+-≤⎩ 解得3840x ≤≤, 取整数得383940x =,,∴该公司有3钟生产方案:方案一:生产A 钟器械38台,B 钟器械42台。
初中毕业升学考试(福建莆田卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(福建莆田卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】的绝对值是()A. B. C. 2 D. ﹣2【答案】A【解析】试题分析:根据负数的绝对值等于它的相反数解答.试题解析:的绝对值是.故选A.考点:绝对值.【题文】下列运算正确的是()A.3a﹣a=0 B. C. D.【答案】B.【解析】试题分析:A.3a﹣2a=a,故A不正确;B.,故B正确;C.,故C不正确;D.,故D不正确;故选B.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】一组数据3,3,4,6,8,9的中位数是()A.4 B.5 C.5.5 D.6【答案】B.【解析】试题分析:数据3,3,4,6,8,9的中位数是:(4+6)÷2=5,故选B.考点:中位数;统计与概率.【题文】图中三视图对应的几何体是()A. B. C. D.【答案】C.【解析】试题分析:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度相同,从俯视图推出上面是圆柱体,直径等于下面柱体的宽.由此可以判断对应的几何体是C.故选C.考点:由三视图判断几何体.【题文】菱形具有而一般平行四边形不具有的性质是( )A. 对边相等B. 对角相等C. 对角线互相平分D. 对角线互相垂直【答案】D【解析】试题分析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.考点:菱形的性质;平行四边形的性质.【题文】如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD 的选项是()A.PC⊥OA,PD⊥OB B.OC=ODC.∠OPC=∠OPD D.PC=PD【答案】D.【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD ;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.【题文】关于x的一元二次方程的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【答案】D.【解析】试题分析:∵△=>0,∴,方程有两个不相等的两个实数根.故选D.考点:根的判别式.【题文】规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形 C.正六边形 D.正十边形【答案】C.【解析】试题分析:A.正三角形的最小旋转角是120°,故此选项错误;B.正方形的旋转角度是90°,故此选项错误;C.正六边形的最小旋转角是60°,故此选项正确;D.正十角形的最小旋转角是36°,故此选项错误;故选C.考点:旋转对称图形.【题文】如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.【答案】A.【解析】试题分析:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4﹣3=1,∴在直角△ECD中,sin∠CDE=.故选A.考点:翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.【题文】如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线 B.抛物线 C.双曲线 D.双曲线的一支【答案】B.【解析】试题分析:根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B.考点:二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.【题文】莆田市海岸线蜿蜒曲折,长达217000米,用科学记数法表示217000为.【答案】2.17×105.【解析】试题分析:将217000用科学记数法表示为:217000=2.17×105.故答案为:2.17×105.考点:科学记数法—表示较大l∴AB∥a∥b,∵AB∥a,∴∠1=∠3,∵AB∥b,∴∠2=∠4,∵∠3+∠4=90°,∴∠1+∠2=90°,∵∠1=37°,∴∠2=90°﹣37°=53°,故答案为:53°.考点:平行线的性质.【题文】在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.【答案】480.【解析】试题分析:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.【题文】如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则的长为(结果保留π).【答案】.【解析】试题分析:连接AC,∵CD为⊙O的弦,AB是⊙O的直径,∴CE=DE,∵AB⊥CD,∴AC=AD,∴∠CAB=∠DAB=30°,∴∠COB=60°,∴的长==,故答案为:.考点:弧长的计算;垂径定理.【题文】魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”,证明了勾股定理.若图中BF=1,CF=2,则AE的长为__________.【答案】.【解析】试题分析:∵BF=1,CF=2,∴AB=BC=3,∵AB∥DE,∴△ABF∽△ECF,∴AB:CE=BF:FC,∴3:CE=1:2,∴CE=6,∴DE=3+6=9,∴AE===.故答案为:.考点:勾股定理;相似三角形的判定与性质.【题文】计算:.【答案】.【解析】试题分析:根据绝对值、算术平方根和零指数幂的意义计算.试题解析:原式==.考点:实数的运算;零指数幂.【题文】先化简,再求值:,其中x=﹣1.【答案】,﹣1.【解析】试题分析:先把分解因式和除法运算化为乘法运算,再约分后进行同分母的减法运算,然后把x的值代入计算即可.试题解析:原式====当x=﹣1时,原式==﹣1.考点:分式的化简求值.【题文】解不等式组:.【答案】x≤1.【解析】试题分析:先解不等式组中的每一个不等式,再求出它们的公共解即可.试题解析:.由①得x≤1;由②得x<4;所以原不等式组的解集为:x≤1.考点:解一元一次不等式组.【题文】小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【答案】会.【解析】试题分析:过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin∠OAB=,求得OE,即可作出判断.试题解析:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA •sin∠OAB=140×sin59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.考点:解直角三角形的应用.【题文】在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.【答案】.【解析】试题分析:列出得出所有等可能的情况数,找出抽取2张牌的数字之和为偶数的情况数,即可求出所求的概率.试题解析:列表如下:所有等可能的情况数有12种,抽取2张牌的数字之和为偶数的有4种,则P==.考点:列表法与树状图法;概率及其应用.【题文】甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【答案】(1)80km/h;(2)75.【解析】试题分析:(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.试题解析:(1)由图象可得,甲车的速度为:(280-120)÷2=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得:,解得,a=75,经检验,a=78是原分式方程的解,即a的值是75.考点:分式方程的应用;函数的图象;方程与不等式.【题文】如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:=4BP•QP.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP 中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.【题文】如图,反比例函数(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.【答案】(1)6;(2)E(4,0)或E(6,0).【解析】试题分析:(1)过点M作MC⊥x轴于点C,MD⊥y轴于点D,根据AAS证明△AMC≌△BMD,那么S四边形OCMD=S四边形OAMB=6,根据反比例函数比例系数k的几何意义得出k=6;(2)先根据反比例函数图象上点的坐标特征求得点P的坐标为(3,2).再分两种情况进行讨论:①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.根据AAS证明△PGE≌△FHP,进而求出E点坐标;②如图3,同理求出E点坐标.试题解析:(1)如图1,过点M作MC⊥x轴于点C,MD⊥y轴于点D,则∠MCA=∠MDB=90°,∠AMC=∠BMD ,MC=MD,∴△AMC≌△BMD,∴S四边形OCMD=S四边形OAMB=6,∴k=6;(2)存在点E,使得PE=PF.由题意,得点P的坐标为(3,2).①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0).综上所述,E(4,0)或E(6,0).考点:反比例函数与一次函数的交点问题;存在型;分类讨论;探究型;综合题.【题文】若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为,,,各边上的内接正方形的边长分别记为,,.(1)模拟探究:如图,正方形EFGH为△ABC的BC边上的内接正方形,求证:;(2)特殊应用:若∠BAC=90°,==2,求的值;(3)拓展延伸:若△ABC为锐角三角形,b<c,请判断与的大小,并说明理由.【答案】(1)证明见解析;(2);(3)>.【解析】试题分析:(1)先根据EH∥FG,判定△AEH∽△ABC,再根据相似三角形对应边成比例,列出比例式变形即可得到;(2)先根据(1)中的结论得出,再将=c和=2代入变形,即可求得的值;(3)先根据(1)中的结论得出和,变形得出,,再根据△ABC得到b=c, =csinA,=bsinA,最后代入代数式进行变形推导,即可得出与的大小关系.试题解析:∵正方形EFGH中,EH∥FG,∴△AEH∽△ABC,∵AD⊥BC,∴,即,∴;(2)由(1)得:,∵∠A=90°,∴=c,又∵=2,∴=;(3)>.证明:由(1)得:,,∴,,∵S=b=c,∴2S=b=c,又∵=csinA,=bsinA,∴===,∵b<c,sinA<1,∴<0,即<0,∴>.考点:三角形综合题;相似三角形的判定与性质;探究型;和差倍分;压轴题.【题文】如图,抛物线C1:的顶点为A,与x轴的正半轴交于点B.(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,点P在抛物线C2上,满足S△PAC=S△ABC,且∠APC=90°.①当k>1时,求k的值;②当k<﹣1时,请直接写出k的值,不必说明理由.【答案】(1);(2)①k=;②k=.【解析】试题分析:(1)由抛物线C1解析式求出A、B及原点坐标,将三点坐标都扩大到原来的2倍,待定系数求解可得;(2)①如图1中,当k>1时,与(1)同理可得抛物线C2的解析式为及顶点C的坐标,根据S△PAC=S△ABC知BP∥AC,继而可得△ABO是边长为2的正三角形,四边形CEBP是矩形,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;②如图2中,当k<﹣1时,作△ABO关于y轴对称的△A′B′O,OE′⊥A′B′,同理可得四边形CEBP是矩形,先求出抛物线C2解析式,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;试题解析:(1)∵=,∴抛物线C1经过原点O,点A(1,)和点B(2,0)三点,∴变换后的抛物线经过原点O,(2,)和(4,0)三点,∴变换后抛物线的解析式为;(2)①如图1中,当k>1时,∵抛物线C2经过原点O,(k,k),(2k,0)三点,∴抛物线C2的解析式为,∴O、A、C三点共线,且顶点C为(k,k),如图,∵S△PAC=S△ABC,∴BP∥AC,过点P作PD⊥x轴于D,过点B作BE⊥AO于E,由题意知△ABO是边长为2的正三角形,四边形CEBP是矩形,∴OE=1,CE=BP=2k﹣1,∵∠PBD=60°,∴BD=,PD=(2k﹣1),∴P(k+,(2k﹣1)),∴(2k﹣1)=,解得:k=;②如图2中,当k<﹣1时,∵抛物线C2经过原点O,(k,k),(2k,0)三点,∴抛物线C2的解析式为,∴O、A、C′三点共线,且顶点C′为(k,k),作△ABO关于y轴对称的△A′B′O,OE′⊥A′B′,∵S△PAC′=S△ABC=S△AC′B′,∴A′P∥AC′,由题意四边形PC′OE′是矩形,∴PE′=OC′=﹣2k,B′E′=1,PB′=﹣2k﹣1,在RT△PDB′中,∵∠PDB′=90°,∠PB′D=∠A′B′O=60°,∴DB′=PB′=,DP=(﹣2k﹣1),∴点P坐标[,(2k+1)],∴(2k+1)=,∴k=.考点:二次函数综合题;探究型;压轴题.。
2010年福建省莆田市中考数学试卷(word版含解析答案)
2010年福建省莆田市中考数学试卷一、选择题(共8小题,每小题4分,满分32分)1.(2011•孝感)﹣2的倒数是()A.2 B.﹣2 C.D.2.(2010•莆田)式子在实数范围内有意义,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤13.(2011•重庆)下列图形中,是中心对称图形的是()A.B.C.D.4.(2010•莆田)下列计算正确的是()A.(a3)2=a5 B.a2+a=a3C.a3÷a=a3D.a2•a3=a55.(2010•莆田)已知⊙O1和⊙O2的半径分别是3cm和5cm,若O1O2=1cm,则⊙O1与⊙O2的位置关系是()A.相交 B.相切 C.相离 D.内含6.(2010•莆田)如图是由五个小正方体搭成的几何体,它的左视图是()A. B.C.D.7.(2010•莆田)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=108.(2010•莆田)A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,若t=(x1﹣x2)(y1﹣y2),则()A.t<0 B.t=0 C.t>0 D.t≤0二、填空题(共8小题,每小题4分,满分32分)9.(2010•莆田)化简:(a+1)2﹣(a﹣1)2=_________.10.(2010•莆田)2009年我国全年国内生产总值约335 000亿元,用科学记数法表示为_________亿元.11.(2010•莆田)如图,D、E分别是△ABC边AB、AC的中点,BC=10,则DE=_________.12.(2010•莆田)一个n边形的内角和是720°,则n=_________.13.(2010•莆田)已知数据:1,3,2,x,2的平均数是3,则这组数据的众数是_________.14.(2010•莆田)如果关于x的方程x2﹣2x+a=0有两个相等的实数根,那么a=_________.15.(2010•莆田)若用半径为20cm,圆心角为240°的扇形铁皮,卷成一个圆锥容器的侧面(接缝忽略不计),则这个圆锥容器的底面半径是_________cm.16.(2010•莆田)某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:_________.三、解答题(共9小题,满分86分)17.(2010•莆田)计算:|﹣2|+﹣22.18.(2010•莆田)解不等式,并把它的解集在数轴上表示出来.19.如图,四边形ABCD的对角线AC、DB相交于点O,现给出如下三个条件:①AB=DC;②AC=DB;③∠OBC=∠OCB.(1)请你再增加一个_________条件使得四边形ABCD为矩形(不添加其它字母和辅助线,只填一个即可,不必证明);(2)请你从①②③中选择两个条件_________(用序号表示,只填一种情况),使得△AOB≌△DOC,并加以证明.20.(2010•莆田)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为_________;(3)四边形AOA1B1的面积为_________.21.(2010•莆田)如图,A、B是⊙O上的两点,∠AOB=120°,点D为劣弧的中点.(1)求证:四边形AOBD是菱形;(2)延长线段BO至点P,交⊙O于另一点C,且BP=3OB,求证:AP是的⊙O切线.22.(2010•莆田)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x,y满足y<的概率.23.(2010•莆田)一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现有甲、乙两车要从M地沿同一公路运输救援物资往玉树灾区的N地,乙车比甲车先行1小时,设甲车与乙车之间的路程为y(km),甲车行驶的时间为t(h),y(km)与t(h)之间的函数关系的图象如图所示.结合图象解答下列问题(假设甲、乙两车的速度始终保持不变):(1)乙车的速度是_________km/h;(2)求甲车的速度和a的值.24.(2010•莆田)如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?25.(2010•莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=.(1)求直线AC的解析式;(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE 沿DE折叠后点O落在边AB上O′处.2010年福建省莆田市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(2011•孝感)﹣2的倒数是()A.2 B.﹣2 C.D.考点:倒数。
福建省莆田市中考数学试卷含答案
2018年莆田市初中毕业、升学考试试卷数学试卷(满分:150分;考试时间:120分钟>注意:本试卷分为“试卷”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.b5E2RGbCAP一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得O 分.p1EanqFDPw1.下列各数中,最小的数是( >A.-l B.O C.1 D.2.下列图形中,是中心对称图形,但不是轴对称图形的是( >3.下列运算正确的是( >A.B.C.D.4.在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166 cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是( >DXDiTa9E3dA.甲队B.乙队C.丙队D.丁队5.方程的两根分别为( >A.=-1,=2 B.=1,=2 C.=―l,=-2D.=1,=-26.某几何组合体的主视图和左视图为同一个视图,如图所示,则该几何组合体的俯视图不可能是( >7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的是( >RTCrpUDGiTA.B.C.D.8.如图,在平面直角坐标系中,A(1,1>,B(-1,1>,C(-1,-2>,D(1,-2>.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计>的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( >5PCzVD7HxAA.(1,-1> B.(-1,1>C.(-1,-2> D.(1,-2>二、细心填一填:本大题共8小题,每小题4分,共32分.9.如图,△A’B’C’是由ABC沿射线AC方向平移2 cm得到,若AC=3cm,则A’C=cm.10.2018年6月15日,中国“蛟龙号”载人潜水器在太平洋马里亚纳海沟区域进行下潜实验中,成功突破6500M深度,创中国载人深潜新纪录.将6500用科学记数法表示为.jLBHrnAILg11.将一副三角尺按如图所示放置,则1=度.12.如果单项式与是同类项,那么.13.某学校为了做好道路交通安全教育工作,随机抽取本校100名学生就上学的交通方式进行调查,根据调查结果绘制扇形图如图所示.若该校共有1000名学生,请你估计全校步行上学的学生人数约有人.xHAQX74J0X 14.若扇形的圆心角为60°,弧长为2,则扇形的半径为.15.当时,代数式的值为.16.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得的值最大的点,Q是y轴上使得QA十QB的值最小的点,则=.LDAYtRyKfE三、耐心做一做:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分8分>计算:18.(本小题满分8分>已知三个一元一次不等式:,,,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.Zzz6ZB2Ltk(1>(2分>你组成的不等式组是(2>(6分>解:19.(本小题满分8分>如图,四边形ABCD是平行四边形,连接AC.(1>(4分>请根据以下语句画图,并标上相应的字母(用黑色字迹的钢笔或签字笔画>.①过点A画AE⊥BC于点E;②过点C画CF∥AE,交AD于点F;(2>(4分>在完成(1>后的图形中(不再添加其它线段和字母>,请你找出一对全等三角形,并予以证明.20.(本小题满分8分>已知甲、乙两个班级各有50名学生.为了了解甲、乙两个班级学生解答选择题的能力状况,黄老师对某次考试中8道选择题的答题情况进行统计分析,得到统计表如下:dvzfvkwMI1请根据以上信息解答下列问题:(1>(2分>甲班学生答对的题数的众数是______;(2>(2分>若答对的题数大于或等于7道的为优秀,则乙班该次考试中选择题答题的优秀率=______(优秀率=×100%>.rqyn14ZNXI (3>(4分>从甲、乙两班答题全对的学生中,随机抽取2人作选择题解题方法交流,则抽到的2人在同一个班级的概率等于______.EmxvxOtOco 21.(本小题满分8分>如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km>与飞行时间x(s>之间的关系式为.发射 3 s 后,导弹到达A 点,此时位于与L 同一水平面的R 处雷达站测得AR 的距离是2 km ,再过3s 后,导弹到达B 点.SixE2yXPq5(1>(4分>求发射点L 与雷达站R 之间的距离;人数(人> 答对的题数(道>班级(2>(4分>当导弹到达B点时,求雷达站测得的仰角(即∠BRL>的正切值.22.(本小题满分10分>如图,点C在以AB为直径的半圆O上,延长BC到点D,使得CD=BC,过点D作DE⊥AB于点E,交AC于点F,点G为DF的中点,连接CG、OF、FB.6ewMyirQFL(1>(5分>求证:CG是⊙O的切线;(2>(5分>若△AFB的面积是△DCG的面积的2倍,求证:OF∥BC.23.(本小题满分10分>如图,一次函数的图象过点A(0,3>,且与反比例函数(x>O>的图象相交于B、C两点.(1>(5分>若B(1,2>,求的值;(2>(5分>若AB=BC,则的值是否为定值?若是,请求出该定值;若不是,请说明理由.24.(本小题满分12分>(1>(3分>如图①,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D.求证:AB2=AD·A C;(2>(4分>如图②,在Rt△ABC中,∠ABC=90°,点D为BC边上的点,BE⊥AD于点E,延长BE交AC于点F.,求的值;kavU42VRUs(3>(5分> 在Rt△ABC中,∠ABC=90°,点D为直线BC上的动点(点D不与B、C重合>,直线BE⊥AD于点E,交直线AC于点F。
2013年福建莆田中考数学试卷及答案(word解析版)
莆田市中考试题数 学友情提示:一、认真对待每一次复习及考试。
.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.四、请仔细审题,细心答题,相信你一定会有出色的表现!(满分150分,考试时间120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置,一、精心选一选:本大题共8小题,每小题4分,共32分每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得0分.1.(福建莆田,1,3分)2013的相反数是A .2013B .-2013C ..20131 D . 20131 【答案】B2.(福建莆田,2,3分)下列运算正确的是A .(a +b )2=a 2+b 2B .3a 2-2a 2=a 2C .-2(a -1)=-2a -1D . a 6÷a 3=a 2【答案】B3.(福建莆田,3,3分)对于一组统计数据:2,4,4,5,6,9.下列说法错误..的是 A .众数是4 B .中位数是5 C .极差是7 D .平均数是5【答案】B4.(福建莆田,4,3分)如图,一次函数y =(m -2)x -1的图象经过二、三、四象限,则m 的取值范围是A .m >0B .m <0C .m >2D . m <2【答案】D5.(福建莆田,5,3分)如图是一个圆柱和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是(第4题图)【答案】C6.(福建莆田,6,3分)如图,将Rt △ABC (其中∠B =35°,∠C =90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于A .55°B .. 70°C .125°D . 145°【答案】C7.(福建莆田,7,3分)如图,△ABC 内接于⊙O ,∠A =50°,则∠OBC 的度数为A .400B . 500C .800D . 1000【答案】A8.(福建莆田,8,3分)下列四组图形中,一定相似的是A .正方形与矩形B .正方形与菱形C .菱形与菱形D .正五边形与正五边形【答案】D二、细心填一填:本大题共8小题,每小题4分,共32分.9.(福建莆田,9,4分)不等式2x -4<0的解集是____【答案】x <210.(福建莆田,10,4分)小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为___________【答案】8.65×10611.(福建莆田,11,4分)如图,点B 、E 、C 、F 在一条直线上,AB ∥DF ,BE = CF ,请添加一个条件_____________________________________,使△ABC ≌△DEF (写出一个即可)(第5题图)(第7题图)A B 1C BC 1(第4题图)【答案】∠A =∠D 或AB =DE 或∠ACB =∠DFE 或AC ∥DF12.(福建莆田,12,4分)已知在Rt △ABC 中,∠C =900,sinA =135,则tanB 的值为______________ 【答案】512 13.(福建莆田,13,4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是____【答案】1014.(福建莆田,14,4分)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为__________. 【答案】41 15.(福建莆田,15,4分)如图,正方形ABCD 的边长为4,点P 在DC 边上且DP =1,点Q 是 AC 上一动点,则DQ +PQ 的最小值为_____________【答案】516.(福建莆田,16,4分)统计学规定:某次测量得到n 个结果x 1,x 2...x n ,当函数y =(x -x 1)2+(x -x 2)2+…+(x –x n )2 取最小值时,对应x 的值称为这次测量的“最佳近似值”若某次测量得到5个结果9.8,10.1,10. 5,10.3,9.8则这次测量的“最佳近似值”为__________________【答案】10.1三、耐心做一做:本大题共9小题,共86分解答应写出必要的文字说明、证明过程或演算步骤17.(福建莆田,17,8分)计算:0)2013(34---+πA BCDPQ (第15题图) A DB EC F(第11题图)(第13题图)【答案】解:原式=2+3-1=418.(福建莆田,18,8分)先化简,再求值:212)212(22-+-÷---a a a a a a ,其中a =3 【答案】解:原式=22)1(221--⋅--a a a a =2)1(22)1)(1(--⋅--+a a a a a =11-+a a 当3=a 时,原式=21313=-+19.(福建莆田,19,8分)莆田素有“文献名邦”之称,某校就同学们对“莆仙历史文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图:根据统计图的信息,解答下列问题:(1)(2分)本次共凋查____名学生;(2)(3分)条形统计图中m =____;(3)(3分)若该校共有学生1000名,则该校约有____名学生不了解“莆仙历史文化”;【答案】(1)60(2)18(3)20020.(福建莆田,20,8分)定义:如图1,点C 在线段AB 上,若满足AC 2= BC ·AB ,则称点C 为线段AB 的黄金分割点如图2,△ABC 中,AB =AC =l ,∠4=360,BD 平分∠ABC 交AC 于点D(1)(5分)求证:点D 是线段AC 的黄金分割点;(2)(3分)求出线段AD 的长【答案】(1) 证明:∵AB =AC ,∠A =36°∴∠ABC =∠C =72°∵BD 平分∠ABC ∴∠ABD =∠DBC =∠A =36°∴∠BDC =72°,∴BC =BD =AD∴△BCD ∽△ACB∴BCCD AC BC =即BC 2=AC ·CD ∴AD 2=AC ·CD∴点D 是线段AC 的黄金分割点(2)设AD =x 则CD =1-x由(1)得x 2=1-x解得 2511--=x (舍去),2512+-=x ∴AD =251+- 21.(福建莆田,21,8分)如图,□ABCD 中,AB =2,以点A 为圆心,AB 为半径的圆交边BC 于点E ,连接DE 、AC 、AE .(1)(4分)求证:△AED ≌△DCA ;(2)(4分)若DE 平分∠ADC 且与OA 相切于点E ,求图中阴影部分(扇形)的面积(第20题图) AB C DA C B(图1)(图2) (第20题图) AB CD【答案】(1)证明:在□ABCD 中AB =DC ,AD ∥BC ,∠B =∠CDA∴∠DAE =∠AEB∵AB =AE∴AE =DC ,∠B =∠AEB∴∠EAD =∠CDA∵AD =DA∴△AED ≌△DCA(2) 解:∵DE 与⊙A 相切∴∠AED =90°∵DE 平分∠ADC∴∠EAD =∠ADC =2∠ADE∴∠AEB =∠EAD =60°∴△ABE 是等边三角形∴∠BAE =60°∴S 阴影=ππ3236023602=⨯ 22. (福建莆田,22,10分)如图,直线: y =x+1与x 轴、y 轴分别交于A 、B 两点,点C 与原点O 关于直线l 对称.反比例函数y =xk 的图象经过点C ,点P 在反比例函数图象上且位于点C 左侧.过点P 作x 轴、y 轴的垂线分别交直线l 于M 、N 两点.()(4分)求反比例函数的解析式;(2)(6分)求AN ·BM 的值.【答案】解:(1)∵直线l :y =x +1∴A (-1,0),B (0,1) l(第21题图)∴OA =OB =1,∴∠OAB =45°∵点O 、C 关于直线l 对称,连接AC ,则∠CAB =∠OAB =45°,AC =OA =1∴AC ⊥OA ,C (-1,1)∴反比例函数的解析式为y =x1 (2)设P (a ,b ),则ab =-1过点M 、N 分别作ME ⊥y 轴于点E ,NF ⊥x 轴于点F易证△MEB ,△AFN 为等腰直角三角形∴BM =-2aAN =2b∴AN ·BM =-2ab =223.(福建莆田,23,10分)如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形)矩形的四个顶点分别在菱形四条边上,菱形的边长AB =4米,∠ABC =60°.设AE =x 米(0<x <4),矩形的面积为米2.(1)(5分)求S 与x 的函数关系式;(2)(5分)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x 为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?【答案】解:l BF CG D H AE(第23题图)(1)过点A 作AM ⊥EH 于点M由轴对称性的性质得:AE =AH ,BE =BF ,∠EAM =60°∴EM =AE ·sin 60°=x 23 ∴EH =x 3∵∠B =60°∴△BEF 为等边三角形∴EF =BE =4-x∴S =)4(3x x -⋅即S =x x 3432+-(2)解法一:∵红色花草价格比黄色花草便宜.∴当矩形面积最大时,购买花草的总费用最低.S =34)2(32+--x ∴当x =2时,S 最大=34 易得S 四边形ABCD =38此时四个三角形的面积为343438=-∴最低总费用为:324034403420=⨯+⨯(元)解法二:设购买花草所需的总费用为W 元,易得S 四边形ABCD =38则=40(S -38)+20S=S 203320-∴W =33203803202+-x x=3240)2(3202+-x ∴当x =2时,W =3240答:当x =2时,购买花草所得的总费用最低,最低总费用是3240元 BF CG DH AE(第23题图) M24.(福建莆田,24,12分)如图抛物线y =ax 2+bx +c 的开口向下与x 轴交于点A (-3,0)和点B (1,0)与y 轴交于点C ,顶点为D(1)(2分)求顶点D 的坐标(用含a 的代数式表示)(2)若△ACD 的面积为3(3)①(4分)求抛物线的解析式(4)②(6分)将抛物线向右平移,使得平移后的抛物线与原抛物线相交于点P ,且∠P AB =∠DAC ,求平移后抛物线的解析式【答案】解:(1)∵抛物线经过点A (-3,0)和B (1,0)∴y =a (x +3)(x -1)=a (x +1)2-4a∴顶点D (-1,-4a )(2)解法一:由(1)得C (0,-3a )∴S =a a 29)3(321-=-⨯⨯ 连接OD ,则S 四边形ADCO =S △ADO +S △DCO=a a a 215)3(121)4(321-=-⨯⨯+-⨯⨯ ∴S =3)29(215=---a a 解得a =-1 ∴y =-x 2-2x +3解法二:(第24题图)过点D 作DE ∥y 轴交AC 于点E∵A (-3,0),C (0,-3a )设直线AC :y =kx +m则⎩⎨⎧-==+-a m m k 303 解得⎩⎨⎧-=-=am a k 3 ∴y =-ax -3a∴E (-1,-2a )∴DE =-2a∴S △ACD =S △ADE +S △CDE=33)2(21=⨯-⨯a 解得a =-1∴y =-x 2-2x +3②过点D 作DF ⊥y 轴于点F设平移后的抛物线解析式为y =-(x -h )2+4 ∵a =-1,则C (0,3),D (-1,4)∴△CDF 和△AOC 都是等腰直角三角形∴∠ACD =90°,CD =2,AC =23∴tan ∠DAC =31=AC CD(第24题图)(第24题图)分两种情况讨论:(1)当点P 在x 轴上方时设为P 1,若直线AP 1交y 轴于点M ,n∵tan ∠M 1AO =tan ∠DAC =31 ∴M 1(0,1) 则直线AP 1:y =131+x 令321312+--=+x x x 解得3,3221-==x x (舍去) ∴P1(32,911) 解法一:带入得:4)32(9112+--=h 解得1,3721-==h h (舍去) ∴4)37(2+--=x y 解法二:∵平移后的抛物线与原抛物线关于直线x =32对称 ∴应向右平移310个单位,∴4)37(2+--=x y (2)当点P 在x 轴下方时设为P 2,同理可得M 2(0,-1)则直线AP 2:131--=x y 令321312+--=--x x x 解得3,3421-==x x (舍去) ∴P 2(34,913-) 解法一:代入得:4)34(9132+--=-h 解得1,31121-==h h (舍去) ∴4)311(2+--=x y 解法二:∵平移后的抛物线与原抛物线关于直线x =34对称 ∴应向右平移314个单位,∴4)311(2+--=x y 综所述:平移后的抛物线解析式4)37(2+--=x y 或4)311(2+--=x y 25.(福建莆田,25,14分)在Rt △ABC 中,∠C =90°,D 为AB 边上一点,点M 、N 分别在BC 、AC 边上,且DM ⊥DN .作MF ⊥AB 于点F ,NE 垂直AB 于点E(1)特殊验证:4分)如图1,若AC =BC ,且D 为AB 中点,求证:DM =DN ,AE =DF(2)拓展研究:若AC ≠BC①(6分)如图2,若D 为AB 中点,(1)中的两个结论有一个仍成立,请指出并加以证明②(4分)如图3若BD =kAD ,条件中“点M 在BC 边上”改为“点M 在线段CB 的延长线上”,其它条件不变,请探究AD 与DF 的数量关系并加以证明.【答案】(1)证明:连接CD∵AC =BC ,∠ACB =90°,AD =BD∴∠4=∠A ,CD =AD ,∠2+∠3=90°又∵∠1+∠3=90°,∴∠1=∠2∴△DMC ≌△DNA ∴DM =DN又∠DEN =∠DFM =90° ∴∠2+∠5=∠6+∠5∴∠2=∠6∴△DMF ≌△NDE ∴NE =DF又∵NE =AE ∴AE =DF(2)①答:AE =DF解法一:由(1)证明可知:△DEN ∽△MFD∴DFEN MF DE = 即MF ·EN =DE ·DF 同理△AEN ∽△MFB ∴BF EN MF AE = 即MF ·EN =AE ·BF ∴DE ·DF =AE ·BF∴(AD -AE )·DF =AE ·(BD -DF )AD ·DE =AE ·BD ∴DF =A解法二:作DP ⊥BC 于点P ,DQ ⊥AC 于点Q∵D 为AB 中点 ∴DQ =PC =PBA E D F BMC N(图2)QP A E D FCMN (图1) 13 245 6A E D FB A E D F B A D E B F MC N M C N CMN(第25题图) (图1) (图2)(图3)易证△DMF ∽△NDE ∴DNDM NE DF = 易证△DMP ∽△DNQ ∴PB DP DQ DP DN DM == ∴PBDP NE DF = 易证△AEN ∽△DPB∴BPDP NE AE = ∴NEDF NE AE = ∴AE =DF ②DF =kAE (或=DF k 1) 解法一:由①同理可得:DE ·DF =AE ·BF∴(AE -AD )·DE =AE ·(DF -BD )AD ·DF =AE ·BDk ADBD AE DF == 即DF =kAE解法二:作DP ⊥BC 于点P ,DQ ⊥AC 于点Q .易证△AQD ∽△DPB 得K BD AD PB DQ 1== 即PB =kDQ由①同理可得:NEDF DQ DP DN DM == ∴PBkDP NE DF = 又∵PB DP NE AE = ∴NE kAE NE DF = ∴DF =kAEA D EB F MCN (图3)PQ。
2022年中考数学卷精析版——福建莆田卷
2022年中考数学卷精析版——莆田卷〔本试卷总分值150分,考试时间120分钟〕一、精心选一选:本大题共8小题,每题4分,共32分.每题给出的四个选项中有且只有一个选项 是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得O 分. 1.〔2022福建莆田4分〕以下各数中,最小的数是【 】A .-lB .OC .1D 【答案】A 。
【考点】实数大小比拟。
【分析】根据实数的大小比拟法那么〔负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小〕,比拟即可解答:∵-1<0<1< 3 ,∴最小的数是-1。
应选A 。
2.〔2022福建莆田4分〕以下图形中,是.中心对称图形,但不是..轴对称图形的是【 】 【答案】B 。
【考点】中心对称图形,轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两局部沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A 、不是中心对称图形,是轴对称图形,故本选项错误;B 、是中心对称图形,但不是轴对称图形,故本选项正确;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、是中心对称图形,也是轴对称图形,故本选项错误。
应选B 。
3.〔2022福建莆田4分〕以下运算正确的选项是【 】A .3a a 3-=B .33a a a ÷=C .235a a a = D .222(a b)a b +=+【答案】C 。
【考点】合并同类项,同底幂乘法和除法,完全平方公式。
【分析】根据合并同类项,同底幂乘法和除法运算法那么和完全平方公式逐一计算作出判断:A .3a a 2a -=,故本选项错误;B .33330a a a =a =1-÷=,故本选项错误;C .232+35a a aa ==,故本选项正确;D .222(a b)a 2ab b +=++,故本选项错误。
应选C 。
4.〔2022福建莆田4分〕在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均 为166 cm ,且方差分别为2S 甲=1.5,2S 乙=2.5,2S 丙=2.9,2S 丁=3.3,那么这四队女演员的身高最整齐的 是【 】 A .甲队 B .乙队 C .丙队 D .丁队【答案】A 。
福建省莆田市中考数学试卷及答案(Word解析版)
福建省莆田市中考数学试卷一、精心选一选:本大题共8小题,每小题4分,共32分。
每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分。
1.(4分)(•莆田)的相反数是()A.B.﹣C.D.﹣考点:相反数.分析:直接根据相反数的定义求解.解答:解:的相反数为﹣.故选B.点评:本题考查了相反数:a的相反数为﹣a.2.(4分)(•莆田)下列运算正确的是()A.(a+b)2=a2+b2B.3a2﹣2a2=a2C.﹣2(a﹣1)=﹣2a﹣1D.a6÷a3=a2考点:完全平方公式;合并同类项;去括号与添括号;同底数幂的除法.专题:计算题分析:A、原式利用完全平方公式化简得到结果,即可作出判断;B、原式合并得到结果,即可作出判断;C、原式去括号得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A、原式=a2+2ab+b2,本选项错误;B、3a2﹣2a2=a2,本选项正确;C、﹣2(a﹣1)=﹣2a+2,本选项错误;D、a6÷a3=a3,本选项错误,故选B点评:此题考查了完全平方公式,合并同类项,去括号与添括号,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.(4分)(•莆田)对于一组统计数据:2,4,4,5,6,9.下列说法错误的是()A.众数是4 B.中位数是5 C.极差是7 D.平均数是5考点:极差;加权平均数;中位数;众数分析:根据平均数、众数、中位数和极差的定义分别进行计算,即可求出答案.解答:解:4出现了2次,出现的次数最多,则众数是4;共有6个数,中位数是第3,4个数的平均数,则中位数是(4+5)÷2=4.5;极差是9﹣2=7;平均数是:(2+4+4+5+6+9)÷6=5;故选B.点评:此题考查了平均数、众数、中位数和极差,求极差的方法是用一组数据中的最大值减去最小值,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数.4.(4分)(•莆田)如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m 的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2考点:一次函数图象与系数的关系.分析:根据一次函数图象所在的象限得到不等式m﹣2<0,据此可以求得m的取值范围.解答:解:如图,∵一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,∴m﹣2<0,解得,m<2.故选D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.(4分)(•莆田)如图是一个圆柱和一个长方体的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到一个长方形里有一个圆.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(4分)(•莆田)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°考点:旋转的性质.分析:根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB′,再根据旋转的性质对应边的夹角∠BAB′即为旋转角.解答:解:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°.故选C.点评:本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.7.(4分)(•莆田)如图,△ABC内接于⊙O,∠A=50°,则∠OBC的度数为()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:连接OC,利用圆周角定理即可求得∠BOC的度数,然后利用等腰三角形的性质即可求得.解答:解:连接OC.则∠BOC=2∠A=100°,∵OB=OC,∴∠OBC=∠OCB==40°.故选A.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.8.(4分)(•莆田)下列四组图形中,一定相似的是()A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形考点:相似图形.分析:根据相似图形的定义和图形的性质对每一项进行分析,即可得出一定相似的图形.解答:解:A、正方形与矩形,对应角相等,对应边不一定成比例,故不符合题意;B、正方形与菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;C、菱形与菱形,对应边不值相等,但是对应角不一定相等,故不符合题意;D、正五边形与正五边形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意.故选:D.点评:本题考查了相似形的定义,熟悉各种图形的性质和相似图形的定义是解题的关键.二、细心填一填:本大题共8小题,每小题4分,共32分)9.(4分)(•莆田)不等式2x﹣4<0的解集是x<2.考点:解一元一次不等式.专题:计算题.分析:利用不等式的基本性质,将两边不等式同时加4再除以2,不等号的方向不变.解答:解:不等式2x﹣4<0移项得,2x<4,系数化1得,x<2.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.(4分)(•莆田)小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为8.65×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8 650 000=8.65×106,故答案为:8.65×106.点评:此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(•莆田)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE,使△ABC≌△DEF.考点:全等三角形的判定.专题:开放型.分析:可选择利用AAS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:添加AB=DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案可为:AB=DE.点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.12.(4分)(•莆田)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.考点:互余两角三角函数的关系.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5,斜边AB为13,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tnaB.解答:解:∵sinA=,∴设BC=5,AB=13,则AC==12,故tanB==.故答案为:.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.13.(4分)(•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.考点:勾股定理.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.点本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角评:三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.14.(4分)(•莆田)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为.考点:可能性的大小.分析:列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.解答:解:画树状图得出:∴一共有4种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是:.故答案为:.点评:本题主要考查用列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(•莆田)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q 是AC上一动点,则DQ+PQ的最小值为5.考点:轴对称-最短路线问题;正方形的性质.分析:要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ 的值,从而找出其最小值求解.解答:解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP==5,∴DQ+PQ的最小值是5.故答案为:5.点评:此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小时Q点位置是解题关键.16.(4分)(•莆田)统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为10.1.考点:方差.专题:新定义.分析:根据题意可知“量佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.解答:解:根据题意得:x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;故答案为:10.1.点评:此题考查了一组数据的方差、平均数,掌握新定义的概念和平均数的平方和最小时要满足的条件是解题的关键.三、耐心做一做:本大题共9小题,共86分。
2022年福建省莆田市中考数学试题(word及答案)
2022年福建省莆田市中考数学试题〔word及答案〕2022年莆田中考数学试题一、精心选一选:本大题共8小题,每每题4分,共32分。
1. ?2022的相反数是〔〕A. ?2022 B. ?1 2022C. 2022 D.1 20222. 以下运算哪种,正确的选项是〔〕A. 2x?x?2 B. (x3)3?x6 C. x?x?x D.x?x?2x8243. 点P〔a,a?1〕在平面直角坐标系的第一象限内,那么a的取值范围在数轴上可表示为〔〕4. 在平行四边形、等边三角形、菱形、等腰梯形中既是轴对称图形又是中心对称图形的是〔〕A.平行四边形 B.等边三角形 C.菱形D.等腰梯形5. 抛物线y??6x2可以看作是由抛物线y??6x2?5按以下何种变换得到〔〕 A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位6. 如下图的是某几何体的三视图,那么该几何体的形状是〔〕A.长方体 B.三棱柱C.圆锥D.正方体7. 等腰三角形的两条边长分别为3,6,那么它的周长为〔〕A.15B.12C.12或15D.不能确定8. 如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,假设AB=4,BC=5,那么tan∠AFE的值为〔〕二、细心填一填:本大题共8小题,每题4分,共32分〕 9. 一天有86400秒,用科学记数法表示为____________ 秒;A.4334 B. C. D. 3545, 2,x, ?1,?2的平均数是1,那么这组数据的中位数是_________。
10.数据1- 1 -11. ⊙O1和⊙O2的半径分别为3㎝和4㎝,假设⊙O1和⊙O2相外切,那么圆心距O1O2 =_________cm。
12. 假设一个正多边形的一个外角等于40°,那么这个多边形是_________边形。
13. 在围棋盒中有6颗黑色棋子和a颗白色棋子,随机地取出一颗棋子,如果它是黑色棋子的概率是a=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年莆田市中考试题数 学(满分150分,考试时间120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置,一、精心选一选:本大题共8小题,每小题4分,共32分每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得0分.1.(2013年福建莆田,1,3分)2013的相反数是A .2013B .-2013C ..20131D . 20131 【答案】B2.(2013年福建莆田,2,3分)下列运算正确的是A .(a +b )2=a 2+b 2B .3a 2-2a 2=a 2C .-2(a -1)=-2a -1D . a 6÷a 3=a 2【答案】B3.(2013年福建莆田,3,3分)对于一组统计数据:2,4,4,5,6,9.下列说法错误..的是 A .众数是4 B .中位数是5 C .极差是7 D .平均数是5【答案】B4.(2013年福建莆田,4,3分)如图,一次函数y =(m -2)x -1的图象经过二、三、四象限,则m 的取值范围是A .m >0B .m <0C .m >2D . m <2【答案】D5.(2013年福建莆田,5,3分)如图是一个圆柱和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是【答案】C6.(2013年福建莆田,6,3分)如图,将Rt △ABC (其中∠B =35°,∠C =90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于A .55°B .. 70°C .125°D . 145°(第5题图)AC DB (第4题图)【答案】C7.(2013年福建莆田,7,3分)如图,△ABC 内接于⊙O ,∠A =50°,则∠OBC 的度数为A .400B . 500C .800D . 1000【答案】A8.(2013年福建莆田,8,3分)下列四组图形中,一定相似的是A .正方形与矩形B .正方形与菱形C .菱形与菱形D .正五边形与正五边形【答案】D二、细心填一填:本大题共8小题,每小题4分,共32分.9.(2013年福建莆田,9,4分)不等式2x -4<0的解集是____【答案】x <210.(2013年福建莆田,10,4分)小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为___________【答案】8.65×10611.(2013年福建莆田,11,4分)如图,点B 、E 、C 、F 在一条直线上,AB ∥DF ,BE = CF ,请添加一个条件_____________________________________,使△ABC ≌△DEF (写出一个即可)【答案】∠A =∠D 或AB =DE 或∠ACB =∠DFE 或AC ∥DF12.(2013年福建莆田,12,4分)已知在Rt △ABC 中,∠C =900,sinA =135,则tanB 的值为______________ 【答案】512 13.(2013年福建莆田,13,4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是____A DB EC F (第11题图)(第7题图) A B 1C BC 1(第4题图)【答案】1014.(2013年福建莆田,14,4分)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为__________. 【答案】41 15.(2013年福建莆田,15,4分)如图,正方形ABCD 的边长为4,点P 在DC 边上且DP =1,点Q 是 AC 上一动点,则DQ +PQ 的最小值为_____________【答案】516.(2013年福建莆田,16,4分)统计学规定:某次测量得到n 个结果x 1,x 2...x n ,当函数y =(x -x 1)2+(x -x 2)2+…+(x –x n )2 取最小值时,对应x 的值称为这次测量的“最佳近似值”若某次测量得到5个结果9.8,10.1,10. 5,10.3,9.8则这次测量的“最佳近似值”为__________________【答案】10.1三、耐心做一做:本大题共9小题,共86分解答应写出必要的文字说明、证明过程或演算步骤17.(2013年福建莆田,17,8分)计算:0)2013(34---+π【答案】解:原式=2+3-1=4 18.(2013年福建莆田,18,8分)先化简,再求值:212)212(22-+-÷---a a a a a a ,其中a =3 【答案】解:原式=22)1(221--⋅--a a a a =2)1(22)1)(1(--⋅--+a a a a a =11-+a a 当3=a 时,原式=21313=-+19.(2013年福建莆田,19,8分)莆田素有“文献名邦”之称,某校就同学们对“莆仙历史文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图:ABCD PQ (第15题图)(第13题图)根据统计图的信息,解答下列问题:(1)(2分)本次共凋查____名学生;(2)(3分)条形统计图中m =____;(3)(3分)若该校共有学生1000名,则该校约有____名学生不了解“莆仙历史文化”;【答案】(1)60(2)18(3)20020.(2013年福建莆田,20,8分)定义:如图1,点C 在线段AB 上,若满足AC 2= BC ·AB ,则称点C 为线段AB 的黄金分割点如图2,△ABC 中,AB =AC =l ,∠4=360,BD 平分∠ABC 交AC 于点D(1)(5分)求证:点D 是线段AC 的黄金分割点;(2)(3分)求出线段AD 的长【答案】(1) 证明:∵AB =AC ,∠A =36°∴∠ABC =∠C =72°∵BD 平分∠ABC ∴∠ABD =∠DBC =∠A =36°∴∠BDC =72°,∴BC =BD =AD∴△BCD ∽△ACB∴BCCD AC BC 即BC 2=AC ·CD ∴AD 2=AC ·CD∴点D 是线段AC 的黄金分割点(2)A C B(图1)(图2) (第20题图) AB CD设AD =x 则CD =1-x由(1)得x 2=1-x解得 2511--=x (舍去),2512+-=x ∴AD =251+- 21.(2013年福建莆田,21,8分)如图,□ABCD 中,AB =2,以点A 为圆心,AB 为半径的圆交边BC 于点E ,连接DE 、AC 、AE .(1)(4分)求证:△AED ≌△DCA ;(2)(4分)若DE 平分∠ADC 且与OA 相切于点E ,求图中阴影部分(扇形)的面积【答案】(1)证明:在□ABCD 中AB =DC ,AD ∥BC ,∠B =∠CDA∴∠DAE =∠AEB∵AB =AE∴AE =DC ,∠B =∠AEB∴∠EAD =∠CDA∵AD =DA∴△AED ≌△DCA(2) 解:∵DE 与⊙A 相切∴∠AED =90°∵DE 平分∠ADC∴∠EAD =∠ADC =2∠ADE∴∠AEB =∠EAD =60°∴△ABE 是等边三角形∴∠BAE =60°(第20题图) AB CD(第21题图)∴S 阴影=ππ3236023602=⨯ 22. (2013年福建莆田,22,10分)如图,直线: y =x+1与x 轴、y 轴分别交于A 、B 两点,点C 与原点O 关于直线l 对称.反比例函数y =xk 的图象经过点C ,点P 在反比例函数图象上且位于点C 左侧.过点P 作x 轴、y 轴的垂线分别交直线l 于M 、N 两点.()(4分)求反比例函数的解析式;(2)(6分)求AN ·BM 的值.【答案】解:(1)∵直线l :y =x +1∴A (-1,0),B (0,1)∴OA =OB =1,∴∠OAB =45°∵点O 、C 关于直线l 对称,连接AC ,则∠CAB =∠OAB =45°,AC =OA =1∴AC ⊥OA ,C (-1,1)∴反比例函数的解析式为y =x1- (2)设P (a ,b ),则ab =-1过点M 、N 分别作ME ⊥y 轴于点E ,NF ⊥x 轴于点F易证△MEB ,△AFN 为等腰直角三角形∴BM =-2aAN =2b∴AN ·BM =-2ab =223.(2013年福建莆田,23,10分)如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形)矩形的四个顶点分别在菱形四条边上,菱形的边长AB =4米,∠ABC =60°.设AE =x 米(0<x <4),矩形的面积为米2.(1)(5分)求S 与x 的函数关系式;ll(2)(5分)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x 为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?【答案】解:(1)过点A 作AM ⊥EH 于点M由轴对称性的性质得:AE =AH ,BE =BF ,∠EAM =60°∴EM =AE ·sin 60°=x 23 ∴EH =x 3∵∠B =60°∴△BEF 为等边三角形∴EF =BE =4-x∴S =)4(3x x -⋅即S =x x 3432+-(2)解法一:∵红色花草价格比黄色花草便宜.∴当矩形面积最大时,购买花草的总费用最低.S =34)2(32+--x ∴当x =2时,S 最大=34 易得S 四边形ABCD =38此时四个三角形的面积为343438=-∴最低总费用为:324034403420=⨯+⨯(元)解法二:设购买花草所需的总费用为W 元,易得S 四边形ABCD =38则=40(S -38)+20S BFG D H AE(第23题图) M BFG DH AE(第23题图)=S 203320-∴W =33203803202+-x x=3240)2(3202+-x ∴当x =2时,W =3240答:当x =2时,购买花草所得的总费用最低,最低总费用是3240元24.(2013年福建莆田,24,12分)如图抛物线y =ax 2+bx +c 的开口向下与x 轴交于点A (-3,0)和点B (1,0)与y 轴交于点C ,顶点为D(1)(2分)求顶点D 的坐标(用含a 的代数式表示)(2)若△ACD 的面积为3(3)①(4分)求抛物线的解析式(4)②(6分)将抛物线向右平移,使得平移后的抛物线与原抛物线相交于点P ,且∠P AB =∠DAC ,求平移后抛物线的解析式【答案】解:(1)∵抛物线经过点A (-3,0)和B (1,0)∴y =a (x +3)(x -1)=a (x +1)2-4a∴顶点D (-1,-4a )(2)解法一:由(1)得C (0,-3a )∴S =a a 29)3(321-=-⨯⨯ 连接OD ,则S 四边形ADCO =S △ADO +S △DCO=a a a 215)3(121)4(321-=-⨯⨯+-⨯⨯ ∴S =3)29(215=---a a 解得a =-1 ∴y =-x 2-2x +3解法二:(第24题图)过点D 作DE ∥y 轴交AC 于点E∵A (-3,0),C (0,-3a )设直线AC :y =kx +m则⎩⎨⎧-==+-am m k 303 解得⎩⎨⎧-=-=a m a k 3 ∴y =-ax -3a∴E (-1,-2a )∴DE =-2a∴S △ACD =S △ADE +S △CDE=33)2(21=⨯-⨯a 解得a =-1∴y =-x 2-2x +3②过点D 作DF ⊥y 轴于点F设平移后的抛物线解析式为y =-(x -h )2+4∵a =-1,则C (0,3),D (-1,4)∴△CDF 和△AOC 都是等腰直角三角形∴∠ACD =90°,CD =2,AC =23∴tan ∠DAC =31=AC CD 分两种情况讨论:(1)当点P 在x 轴上方时设为P 1,若直线AP 1交y 轴于点M ,n(第24题图)(第24题图)∵tan ∠M 1AO =tan ∠DAC =31 ∴M 1(0,1) 则直线AP 1:y =131+x 令321312+--=+x x x 解得3,3221-==x x (舍去) ∴P1(32,911) 解法一:带入得:4)32(9112+--=h 解得1,3721-==h h (舍去) ∴4)37(2+--=x y 解法二:∵平移后的抛物线与原抛物线关于直线x =32对称 ∴应向右平移310个单位,∴4)37(2+--=x y (2)当点P 在x 轴下方时设为P 2,同理可得M 2(0,-1)则直线AP 2:131--=x y 令321312+--=--x x x 解得3,3421-==x x (舍去) ∴P 2(34,913-) 解法一:代入得:4)34(9132+--=-h 解得1,31121-==h h (舍去) ∴4)311(2+--=x y 解法二:∵平移后的抛物线与原抛物线关于直线x =34对称 ∴应向右平移314个单位,∴4)311(2+--=x y 综所述:平移后的抛物线解析式4)37(2+--=x y 或4)311(2+--=x y 25.(2013年福建莆田,25,14分)在Rt △ABC 中,∠C =90°,D 为AB 边上一点,点M 、N 分别在BC 、AC 边上,且DM ⊥DN .作MF ⊥AB 于点F ,NE 垂直AB 于点E(1)特殊验证:4分)如图1,若AC =BC ,且D 为AB 中点,求证:DM =DN ,AE =DF(2)拓展研究:若AC ≠BC①(6分)如图2,若D 为AB 中点,(1)中的两个结论有一个仍成立,请指出并加以证明②(4分)如图3若BD =kAD ,条件中“点M 在BC 边上”改为“点M 在线段CB 的延长线上”,其它条件不变,请探究AD 与DF 的数量关系并加以证明.【答案】(1)证明:连接CD∵AC =BC ,∠ACB =90°,AD =BD∴∠4=∠A ,CD =AD ,∠2+∠3=90°又∵∠1+∠3=90°,∴∠1=∠2∴△DMC ≌△DNA ∴DM =DN又∠DEN =∠DFM =90° ∴∠2+∠5=∠6+∠5 ∴∠2=∠6∴△DMF ≌△NDE ∴NE =DF又∵NE =AE ∴AE =DF(2)①答:AE =DF解法一:由(1)证明可知:△DEN ∽△MFD ∴DFEN MF DE = 即MF ·EN =DE ·DF 同理△AEN ∽△MFB ∴BF EN MF AE = 即MF ·EN =AE ·BF ∴DE ·DF =AE ·BF∴(AD -AE )·DF =AE ·(BD -DF )AD ·DE =AE ·BD ∴DF =A解法二:作DP ⊥BC 于点P ,DQ ⊥AC 于点Q ∵D 为AB 中点 ∴DQ =PC =PB易证△DMF ∽△NDE ∴DNDM NE DF = A E D F BM CN(图2)QP A E D FB CMN (图1) 13 245 6A E D FE DF B A D E B F M C N M C N CMN(第25题图) (图1) (图2)(图3)易证△DMP ∽△DNQ ∴PB DP DQ DP DN DM == ∴PBDP NE DF = 易证△AEN ∽△DPB∴BPDP NE AE = ∴NEDF NE AE = ∴AE =DF ②DF =kAE (或=DF k 1) 解法一:由①同理可得:DE ·DF =AE ·BF∴(AE -AD )·DE =AE ·(DF -BD )AD ·DF =AE ·BDk ADBD AE DF == 即DF =kAE解法二:作DP ⊥BC 于点P ,DQ ⊥AC 于点Q .易证△AQD ∽△DPB 得K BD AD PB DQ 1== 即PB =kDQ由①同理可得:NEDF DQ DP DN DM == ∴PBkDP NE DF = 又∵PB DP NE AE = ∴NE kAE NE DF = ∴DF =kAEA D EB F M CN(图3)P Q。