2020年中考数学压轴题训练-填空题(教案)

合集下载

2020年中考数学压轴题训练-填空题(教案)

2020年中考数学压轴题训练-填空题(教案)

1
将字母具体化,把一般形式变为特殊形式,当题目的条件是从一般性的角度给出时,特例法尤其奏效。 3.数形结合法:就是把抽象的数字语言,数量关系与直观的几何图形,位置关系结合起来,通过以形助数 或以数助形把复杂问题简单化,抽象问题具体化,从而达到优化解题途径的目的,这类问题的几何意义一 般较为明显,因而有些问题可以借助于图形,然后参照图形的形状,位置,性质,结合图像的特征,进行 直观的分析,加上简单的运算,一般就可以得出正确的答案。 4.转化法:就是将待解决的问题,通过分析,联想,类比等思维过程,选择恰当的方法进行变换,转化到 已经解决或比较容易解决的问题上,最终达到解决问题的目的,解决问题的过程实际就是转化的过程。 5.猜想法:是根据已有的数字理论和方法,通过观察题目中所给出的一些数或图形的特点,分析其规律, 从而总结出一般结论,这种方法一般适用于规律探索题。 6.构造法:就是通过对题目中条件和结论的分析,构造辅助元素,它可以是一个图形,一个方程,一个函 数等,架起一座连接条件和结论的桥梁,从而使问题得以解决的方法,充分的挖掘题设与结论的内在联系, 把问题与某个熟知的概念,公式,定理,图形联系起来,进行构造,往往能促使问题转化,进而谋求解决 问题的途径。
∴OA=PE+PF= AC= ×
=.
2.一组正方形按如图所示的方式放置,其中顶点 B1 在 y 轴上,顶点 C1、E1、E2、C2、E3、E4、C3…在 x 轴上, 已知正方形 A1B1C1D1 的边长为 1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形 A B C D 2016 2016 2016 2016 的边长是
∴∠EAC=∠AFB,
在△CAE 和△AFB 中, ∠ 㠳⸳ 〸 ∠㠳体 ∠㠳⸳ 〸 ∠体 㠳, 㠳 〸 㠳体

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》1.如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C 圆心,以CN为半径作⊙C与直线BE相交于点P、Q两点.(1)填空:∠DCE=60 度,CN= 5 cm,AM=4cm.(2)如图1当点D在线段AM上运动时,求出PQ的长.(3)当点D在MA的延长线上时,请在图2中画出示意图,并直接写出PQ= 6 cm.当点D在AM的延长线上时,请在图3中画出示意图,并直接写出PQ= 6 cm.解:(1)∵△CBE是由△CAD旋转得到,∴∠ACD=∠BCE,∴∠DCE=∠BCD+∠BCE=∠BCD+∠CAD=∠ACB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCE=60°;∵△ABC是等边三角形,AM为BC边上的中线,∴BC=AB=8cm,CM=BC=×8=4cm,在Rt△CMN中,CN===5cm;在Rt△ACM中,AM===4cm;(2)过点C作CF⊥PQ于F,∵△ABC是等边三角形,AM为BC边上的中线,∴∠CAD=∠BAC=×60°=30°,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,∴CF=BC=×8=4cm,连接CP,则PC=CN=5cm,在Rt△PCF中,PF===3cm,由垂径定理得,PQ=2PF=2×3=6cm;(3)①如图,点D在MA的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD,∴∠CBQ=∠CAM=30°,与(2)同理可求PQ=6cm,②如图,点D在AM的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,与(2)同理可求PQ=6cm,综上所述,PQ的长度不变都是6cm.故答案为:(1)60,5,4;(3)6,6.2.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O于点D,AC 与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为,BG的长为,求tan∠CAB.解:(1)∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)连接AD,∵OF⊥BD,∴=,∴∠DAC=∠CDB,∵∠DCG=∠ACD,∴△DCG∽△ACD,∴=,∴CD2=AC•CG;(3)∵OA=OB,∴∠CAO=∠ACO,∵∠CDB=∠CAO,∴∠ACO=∠CDB,而∠CFD=∠GFC,∴△CDF∽△GCF,∴=,又∵∠CDB=∠CAB,∠DCA=∠DBA,∴△DCG∽△ABG,∴=,∴=,∵r=,BG=,∴AB=2r=5,∴tan∠CAB=tan∠ACO===.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.4.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△ABC的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OG=,∴CG===,∴CF=2CG=.5.如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD 于G,连接BG,求BG的最小值.(1)证明:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=9 .证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.8.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,求DF的长为4﹣2;②取的中点H,当∠EAB的度数为30°时,求证:四边形OBEH为菱形.解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠ADF=∠BDG=90°∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=DF,∵sin∠ABD==sin45°=,∴,即BF=FD,∵AB=4,∴BD=4cos45°=2,即BF+FD=2,∴,∴=4﹣2.故答案为:4﹣2.②证明:如图3,连接OH,EH,OE,∵∠AEB=90°,∠EAB=30°,∴∠ABE=60°,∵点H是的中点,∴∠AOH=∠HOE=60°,∴△OEH和△OBE都是等边三角形,∴OB=OH=HE=BE,∴四边形OBEH为菱形.9.已知:AB为⊙O的直径,,D为AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=1,求AD的长;(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠CED=∠CBD+∠BCE,∠CDE=∠ABD+∠BAC,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴AD=2OG,OG∥AD,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴OG=OE=1,∴AD=2OG=2;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵∠CBA=∠BAC=45°,∴BC=AC,∴CP=CD,∴∠CPD=45°,∴∠BPD=135°.,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DFA≌△BDP(SAS),∴∠FAD=∠DBO=135°,∴∠FAB=∠FAD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,∴AF为⊙O的切线.10.若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,∴∠CAC′=60°,∴的长度==2π,线段AC扫过的扇形面积==12π;(Ⅱ)解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如图3,连接DB,AC相交于点O,则O是DB的中点,∵F为线段BC′的中点,∴FO=AB′=3,∴F在以O为圆心,3为半径的圆上运动,∵DO=3,∴DF最大值为3+3,DF的最小值为3﹣3,∴DF长的取值范围为3﹣3≤DF≤3+3.11.如图所示,A是线段BF延长线上的点,矩形BCDF的外接圆⊙O过AC的中点E.(1)求证:BD=AF;(2)若BC=4,DC=3,求tan∠BAC的值;(3)若AD是⊙O的切线,求的值.解:(1)在矩形BCDF中,BD=FC,BF=DC,∠FDC=90°,∴FC为圆O的直径,∴∠FEC=∠FDC=90°,即FE⊥AC,∵E是AC的中点,∴AF=FC,∴BD=AF;(2)在Rt△BCD中,BC=4,DC=3,根据勾股定理得:BD===5=AF,BF=DC=3,∴AB=AF+BF=5+3=8,∴在Rt△ABC中,tan∠BAC===;(3)∵∠BCD=90°,∴BD是⊙O的直径,∵AD是⊙O的切线,∴∠ADB=90°=∠BCD,∵∠ABD=∠BDC,∴△ABD∽△BDC,设DC=BF=a,AF=FC=c,∵=,∴a2+ac﹣c2=0,解得:a=c,(负值舍去),∴=.12.如图,在Rt△ABC中,以BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点M,交CB延长线于点N,连接OM,OC=1.(1)求证:AM=MD;(2)填空:①若DN=,则△ABC的面积为;②当四边形COMD为平行四边形时,∠C的度数为45°.(1)证明:连接OD,∵DN为⊙O的切线,∴∠ODM=∠ABC=90°,在Rt△BOM与Rt△DOM中,,∴Rt△BOM≌Rt△DOM(HL),∴BM=DM,∠DOM=∠BOM=,∵∠C=,∴∠BOM=∠C,∴OM∥AC,∵BO=OC,∴BM=AM,∴AM=DM;(2)解:①∵OD=OC=1,DN=,∴tan∠DON==,∴∠DON=60°,∴∠C=30°,∵BC=2OC=2,∴AB=BC=,∴△ABC的面积为AB•BC=×2=;②当四边形COMD为平行四边形时,∠C的度数为45°,理由:∵四边形COMD为平行四边形,∴DN∥BC,∴∠DON=∠NDO=90°,∴∠C=DON=45°,故答案为:,45°.13.如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A 作⊙O 切CP 于点P ,设BP =x .(1)如图1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当x =4时,如图2,⊙O 与AC 交于点Q ,求∠CAP 的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O 与线段AD 只有一个公共点时,直接写出x 的取值范围.解:(1)如图1,AP 经过圆心O ,∵CP 与⊙O 相切于P ,∴∠APC =90°,∵▱ABCD ,∴AD ∥BC ,∴∠PBC =∠DAB ∴=tan ∠PBC =tan ∠DAB =,设CP =4k ,BP =3k ,由CP 2+BP 2=BC 2,得(4k )2+(3k )2=152,解得k 1=﹣3(舍去),k 2=3,∴x =BP =3×3=9,故当x =9时,圆心O 落在AP 上;∵AP 是⊙O 的直径,∴∠AEP =90°,∴PE ⊥AD ,∵▱ABCD ,∴BC ∥AD∴PE ⊥BC(2)如图2,过点C 作CG ⊥AP 于G ,∵▱ABCD ,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1814.如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=15.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD 的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.16.如图,AB是⊙O的直径,AB=4,M为弧AB的中点,正方形OCGD绕点O旋转与△AMB 的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.(1)求证:△AMB为等腰直角三角形:(2)求证:OE=OF;(3)连接EF,试探究:在正方形OCGD绕点O旋转的过程中,△EMF的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.解(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∵M是弧AB的中点,∴=,∴MA=MB,∴△AMB为等腰直角三角形.(2)连接OM,由(1)得:∠ABM=∠BAM=45°,∠OMA=∠OMB=45°,∴,∴∠MOE+∠BOE=90°,∵∠COD=90°,∴∠MOE+∠MOF=90°,∴∠BOE=∠MOF,在△OBE和△OMF中,,△OBE≌△OMF(ASA),∴OE=OF(3)解:△EFM的周长有最小值.∵OE=OF,∴△OEF为等腰直角三角形,∴,∵△OBE≌△OMF,∴BE=MF,∴△EFM的周长=EF+MF+ME=EF+BE+ME=EF+MB=当OE⊥BM时,OE最小,此时,∴△EFM的周长的最小值为.。

2020年江西省中考数学第二轮专题复习教案及练习:专题六 二次函数压轴题(含答案)

2020年江西省中考数学第二轮专题复习教案及练习:专题六 二次函数压轴题(含答案)

专题六二次函数压轴题类型一二次函数与图形变换如图①,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+m 也经过点A,其顶点为B,将该抛物线沿直线l平移,使顶点B落在直线l上的点D处,点D的横坐标为n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为__________________(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a关于n的函数关系式;②如图②,连接AC、CD,若∠ACD=90°,求a的值.【分析】(1)点B是抛物线顶点,要求点B的坐标,只需求抛物线解析式即可,将点A代入即可得解;(2)确定平移后的抛物线解析式,可根据抛物线平移规律直接得解;(3)①由点C是两抛物线交点,可联立解方程来确定a与n的关系;②由∠ACD=90°,可过点C作y轴的垂线,构造三垂直模型利用相似来解.【自主解答】1.已知平面直角坐标系中两定点A (-1,0)、B (4,0),抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位长度,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值,并说明抛物线平移的方向;若不存在,请说明理由.2.(2019·陕西)在平面直角坐标系中,已知抛物线L :y =ax 2+(c -a )x +c 经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L ′.(1)求抛物线L 的表达式;(2)点P 在抛物线L ′上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D ,若△POD 与△AOB 相似,求符合条件的点P 的坐标.3.已知二次函数y=ax2-2ax-2的图象(记为抛物线C1)的顶点为M,直线l:y =2x-a与x轴、y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是________.①对称轴是:直线x=1;②顶点坐标是(1,-a-2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系式.(3)将二次函数y=ax2-2ax-2的图象C1绕点P(t,-2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当-2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t 的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q′,试探究四边形QMQ′N能否为正方形?若能,求出t的值;若不能,请说明理由.类型二二次函数与几何图形综合如图,已知二次函数L 1:y=mx2+2mx-3m+1(m≥1)和二次函数L2:y=-m(x-3)2+4m-1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A,B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx-3m+1(m≥1)的顶点坐标为________;当二次函数L1,L2的y值同时随x的增大而增大时,x的取值范围是________;(2)当AD=MN时,请直接写出四边形AMDN的形状;(3)抛物线L1,L2均会分别经过某些定点.①求所有定点的坐标;②若抛物线L1的位置固定不变,通过左右平移抛物线L2,使得这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?【分析】(1)将抛物线化为顶点式即可得到顶点坐标;由图象可得y随x的增大而增大的x的取值范围;(2)判断四边形AMDN的形状,可先证明四边形AMDN是平行四边形,再由AD =MN得到其为矩形;(3)①求抛物线经过的定点,可将抛物线化为关于m的代数式,令m的系数为0,代入求出对应的y值即可;②由所得图形为菱形,可先判定定点构成的图形是平行四边形,再根据菱形得到邻边相等,对角线互相垂直平分,从而利用勾股定理求解.【自主解答】1.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.2.(2019·辽阳)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线的解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大,最大值是多少?(3)若点M是平面内任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形?若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.第2题图备用图类型三二次函数与规律探索(2019·江西)特例感知(1)如图①,对于抛物线y 1=-x 2-x +1,y 2=-x 2-2x +1,y 3=-x 2-3x +1,下列结论正确的序号是________.①抛物线y 1,y 2,y 3都经过点C (0,1);②抛物线y 2,y 3的对称轴由抛物线y 1的对称轴依次向左平移12个单位得到;③抛物线y 1,y 2,y 3与直线y =1的交点中,相邻两点之间的距离相等. 形成概念(2)把满足y n =-x 2-nx +1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图②.①“系列平移抛物线”的顶点依次为P 1,P 2,P 3,…,P n ,用含n 的代数式表示顶点P n 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C 1,C 2,C 3,…,C n ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n (k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.(3)在②中,直线y =1分别交“系列平移抛物线”于点A 1,A 2,A 3,…,A n ,连接C n A n ,C n -1A n -1,判断C n A n ,C n -1A n -1是否平行?并说明理由.图① 图②【分析】 (1)逐一判断3个结论的正确性即可;(2)①由抛物线y n 即可表示P n ,消去参数即可得到顶点P n 的横、纵坐标之间的关系式;②分别求出C n ,C n -1的横、纵坐标,利用两点距离公式求线段C n C n -1的长;(3)要判断C n A n 与C n -1A n -1是否平行,只需判断直线C n A n 与直线C n -1A n -1的解析式中自变量的系数是否相同即可.【自主解答】1.已知抛物线y =-x 2+2x +3和抛物线y n =n 3x 2-2n 3x -n (n 为正整数). (1)抛物线y =-x 2+2x +3与x 轴的交点坐标为____________,顶点坐标为________.(2)当n =1时,请解答下列问题:①直接写出y n 与x 轴的交点坐标__________,顶点坐标________.请写出抛物线y ,y n 的一条相同的图象性质________________;②当直线y =12x +m 与y ,y n 相交共有4个交点时,求m 的取值范围;(3)若直线y =k (k <0)与抛物线y =-x 2+2x +3,抛物线y n =n 3x 2-2n 3x -n (n 为正整数)共有4个交点,从左至右依次标记为点A ,点B ,点C ,点D ,当AB =BC =CD 时,求k ,n 之间满足的关系式.2.已知抛物线y n =-(x -a n )2+b n (n 为正整数,且0<a 1<a 2<…<a n )与x 轴的交点为A (0,0)和A n (c n ,0),c n =c n -1+2,当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0)和A 1(2,0),其他依此类推.(1)求a 1,b 1的值及抛物线y 2的解析式.(2)抛物线y3的顶点B3的坐标为(______,______);依此类推,第n条抛物线y n 的顶点B n的坐标为(______,________);所有抛物线的顶点坐标满足的函数关系式是____________.(3)探究下列结论:①是否存在抛物线y n,使得△AA n B n为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由.②若直线x=m(m>0)与抛物线y n分别交于C1,C2,…,C n,则线段C1C2,C2C3,…,C n-1C n的长有何规律?请用含有m的代数式表示.3.如图,抛物线y1=-x2+c与x轴交于A,B两点,且AB=2.(1)求抛物线y1的函数解析式,并直接写出y1的顶点坐标.(2)将y1先向右平移1个单位,再向上平移1个单位,记为第一次操作,得到抛物线y2.按同样的操作方式,经过第二次操作,可得到抛物线y3,经过第三次操作,可得到抛物线y4,…,经过第(n-1)次操作可得到抛物线y n.①y1的顶点是否在y2上?请说明理由.②若抛物线y n恰好经过点B(不含y1),求抛物线y n的解析式.③定义:当抛物线与x轴有两个交点时,定义:以这两个交点及抛物线顶点构成的三角形叫做该抛物线的“轴截三角形”.如△ABC是抛物线y1的“轴截三角形”.记抛物线y1,y2,y3,…,y n的“轴截三角形”的面积分别为S1,S2,S3,…,S n.当S n=125时,求n的值.4.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线y=-x2+bx-3经过点(-1,0),则b=________,顶点坐标为______,该抛物线关于点(0,1)成中心对称的抛物线表达式是___________.抽象感悟我们定义,对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=-x2-2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决(3)已知抛物线y=ax2+2ax-b(a≠0).①若抛物线y的衍生抛物线为y′=bx2-2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a,b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k +22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)(n为正整数)的衍生抛物线为y n,其顶点为A n;….求A n A n+1的长(用含n的式子表示).类型四二次函数与新定义如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B 两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线y =12x 2对应的碟宽为________;抛物线y =4x 2对应的碟宽为________;抛物线y =ax 2(a >0)对应的碟宽为________;抛物线y =a (x -2)2+3(a >0)对应的碟宽为________;(2)抛物线y =ax 2-4ax -53(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)对应的准碟形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准碟形,相应的碟宽之比即为相似比.若F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准碟形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…,F n 的碟高为h n ,则h n =________,F n 的碟宽右端点横坐标为________;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.【分析】 (1)根据定义易算出抛物线y =12x 2,抛物线y =4x 2的碟宽,且都利用端点(第一象限)横、纵坐标相等求解.推广至含字母的抛物线y =ax 2(a >0)可类似求解.而抛物线y =a (x -2)2+3(a >0)为顶点式,可看成由抛物线y =ax 2平移得到,则发现碟宽只和a 有关.(2)由(1)的结论,根据碟宽与a 的关系求解.(3)①由y 1,易推y 2.②由相似的性质得到h n 与h n -1,h n -1与h n -2,…h 2与h 1之间的关系,从而得到h n 即可;由等腰直角三角形性质得到F n 的碟宽与h n 之间的关系,即可得到F n 的碟宽右端点横坐标,先证明F n ,F n -1,F n -2的碟宽右端点在一条直线上,从而作出判断,再确定F 1,F 2的碟宽右端点所在直线即可求解.【自主解答】1.如图①,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两条抛物线L 1、L 2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线L1:y=-x2+4x-3与抛物线L2是“伴随抛物线”,且抛物线L2的顶点B的横坐标为4,求抛物线L2的表达式;(2)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的表达式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由;(3)在图②中,已知抛物线L1:y=mx2-2mx-3m(m>0)与y轴相交于点C,它的一条“伴随抛物线”为L2,抛物线L2与y轴相交于点D,若CD=4m,求抛物线L2的对称轴.2.(2019·南昌二模)我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y =2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标;(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式;(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D 两点,点P在直线l上方的抛物线上,求△PCD的面积的最大值.3.(2019·南昌5月模拟)已知:抛物线C1:y=-(x+m)2+m2(m>0),抛物线C2:y=(x-n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=-(x+1)2+1与抛物线C2:y=(x-2)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C 1与D .(1)已知抛物线:①y =-x 2-2x ,②y =(x -3)2+3,③y =(x -2)2+2,④y =x 2-x +12,则抛物线①②③④中互为派对抛物线的是________ (请在横线上填写抛物线的数字序号);(2)如图①,当m =1,n =2时,证明AC =BD ;(3)如图②,连接AB ,CD 交于点F ,延长BA 交x 轴的负半轴于点E ,记BD 交x 轴于G ,CD 交x 轴于点H ,∠BEO =∠BDC .①求证:四边形ACBD 是菱形;②若已知抛物线C 2:y =(x -2)2+4,请求出m 的值.图① 图②参考答案【例1】 解:(1)当x =0时,y =-x +2=2,∴A (0,2),把A (0,2)代入y =(x -1)2+m ,得1+m =2,∴m =1.∴B (1,1).(2)y =(x -n )2+2-n .(3)①∵点C 是两条抛物线的交点,∴点C 的纵坐标可以表示为(a -1)2+1或(a -n )2+2-n ,∴(a -1)2+1=(a -n )2+2-n ,即a 2-2a +1+1=a 2-2an +n 2+2-n , 2an -2a =n 2-n ,∵n >1,∴a =n 2-n 2n -2=n 2. ②如解图,过点C 作y 轴的垂线,垂足为E ,过点D 作DF ⊥CE 于点F .例1题解图∵∠ACD =90°,∴∠ACE =∠CDF .又∵∠AEC =∠DFC ,∴△ACE ∽△CDF ,∴AE EC =CF FD .又∵C (a ,a 2-2a +2),D (2a ,2-2a ),∴AE =a 2-2a ,DF =a 2,CE =CF =a ,∴a 2-2a a =a a 2,∴a 2-2a =1, 解得a =±2+1,∵n >1,∴a =n 2>12,∴a =2+1.跟踪训练1.解: (1)∵抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,∴⎩⎪⎨⎪⎧a -b -2=0,16a +4b -2=0,解得⎩⎪⎨⎪⎧a =12,b =-32, ∴抛物线的解析式为y =12x 2-32x -2.∵y =12x 2-32x -2=12(x -32)2-258, ∴C (32,-258).(2)如解图①,以AB 为直径作⊙M ,则抛物线在圆内的部分,能使∠APB 为钝角,第1题解图①易得M (32,0),⊙M 的半径为52.设P ′是抛物线与y 轴的交点,∴OP ′=2,∵MP ′=OP′2+OM 2=52. ∵P 关于抛物线对称轴的对称点为点(3,-2),∴当-1<m <0或3<m <4时,∠APB 为钝角.(3)存在.抛物线向左或向右平移,∵AB 、P ′C ′是定值,∴要使首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长第1题解图②最短,只要AC ′+BP ′最小.第一种情况:抛物线向右平移,AC ′+BP ′>AC +BP .第二种情况:向左平移,如解图②所示,由(2)可知P (3,-2), 又∵C (32,-258),∴C ′(32-t ,-258),P ′(3-t ,-2),将BP ′平移至AP ″,∵AB =5,∴P ″(-2-t ,-2),要使AC ′+BP ′最短,只要AC ′+AP ″最短即可,∵点C ′关于x 轴的对称点C ″的坐标为(32-t ,258),设直线P ″C ″的解析式为y =kx +b ,则⎩⎨⎧-2=(-2-t )k +b ,258=(32-t )k +b ,解得⎩⎪⎨⎪⎧k =4128,b =4128t +1314,∴直线P ″C ″的解析式为y =4128x +4128t +1314,当P ″、A 、C ″在同一条直线上时,周长最小,∴-4128+4128t +1314=0,∴t =1541. 故将抛物线向左平移1541个单位长度时,首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短.2.解:(1)将点A (-3,0),B (0,-6)代入L 得⎩⎪⎨⎪⎧a (-3)2+(c -a )·(-3)+c =0,c =-6,解得⎩⎪⎨⎪⎧a =-1,c =-6,∴抛物线L 的表达式为y =-x 2-5x -6.(2)由题意,得∠PDO =90°,∠AOB =90°,由对称性可得L ′的表达式为y =x 2-5x +6.设点P 的坐标为(m ,m 2-5m +6),当△DPO ∽△OAB 时,DP DO =OA OB ,即m 2-5m +6=2m ,解得m 1=1,m 2=6,此时点P 的坐标为(1,2)或(6,12);当△DPO ∽△OBA 时,DP DO =OB OA ,即2m 2-10m +12=m ,解得m 3=4,m 4=32,此时点P 的坐标为(4,2)或(32,34).第2题解图3.解:(1)①②③(2)由抛物线的顶点公式求得:顶点M (1,-a -2).如解图①,当x =1时,y =2·1-a =2-a ,求得D (1,2-a );当y =0时,0=2x -a ,x =a 2,求得A (a 2,0),∴DM =2-a -(-a -2)= 4,∴S =S △BMD -S △AMD =12DM (OC -AC )=12DM ·AO =12·4·a 2=a .即S =a (a >0).(3)①当-2≤x ≤1时,C 1的y 的值会随x 的增大而减小,而C 1的对称轴为x =1, -2≤x ≤1在对称轴的左侧,C 1开口向上,∴a >0;同时C 2的开口向下,而当-2≤x ≤1时,y 的值会随x 的增大而减小,∴-2≤x ≤1要在C 2的对称轴右侧,令C 2的对称轴为x =m ,则m ≤2,而x =1和x =m 关于P (t ,-2)对称,∴P 到这两条对称轴的距离相等,∴1-t =t -m ,m =2t -1,∴2t -1≤-2,即t ≤-12.②当a =1时,M (1,-3),作PE ⊥CM 于E ,将Rt △PME 绕P 旋转90°,得到Rt △PQF ,则△MPQ 为等腰直角三角形,∵N ,Q ′分别是点M ,Q 的中心对称点,∴四边形MQNQ ′为正方形.第一种情况,当t ≤1时,求得PE =PF =1-t ,ME =QF =1,CE =2,∴Q (t +1,-t -1).把Q (t +1,-t -1)代入y =x 2-2x -2,得-t -1=(t +1)2-2(t +1)-2, t 2+t -2=0,解得:t 1=1,t 2=-2;第二种情况,当t >1时,求得PF =PE =t -1,ME =QF =1,CE =2, ∴Q (t -1,t -3),把Q (t -1,t -3)代入y =x 2-2x -2,得t -3=(t -1)2-2(t -1)-2,t 2-5t +4=0,解得t1=1 (舍去),t2=4综上t=-2或1或4.图①图②图③【例2】解:(1)(-1,-4m+1),-1<x<3(2)四边形AMDN是矩形.(3)①y=mx2+2mx-3m+1=m(x+3)(x-1)+1,∴当x=-3或1时,y=1,∴L1经过定点(-3,1)和(1,1).y=-m(x-3)2+4m-1=-m(x-5)(x-1)-1,∴当x=5或1时,y=-1,∴L2经过定点(5,-1)和(1,-1).②L1经过定点(-3,1)和(1,1),L2经过定点(5,-1)和(1,-1),设E(-3,1),F(1,1),G(5,-1),H(1,-1),则组成的四边形EFGH是平行四边形.如解图,另设平移距离为x,根据平移后的图形是菱形,由勾股定理得42=22+(4-x)2,解得x=4±23,故抛物线L2应平移的距离是4+23或4-2 3.例2题解图跟踪训练1.解:(1)将点A ,B 坐标代入抛物线表达式得⎩⎪⎨⎪⎧25a -25b +5=0,16a -4b +5=-3,解得⎩⎪⎨⎪⎧a =1,b =6, ∴抛物线的表达式为y =x 2+6x +5.(2)①令y =x 2+6x +5=0,得x 1=-1,x 2=-5,∴点C 的坐标为(-1,0). 由点B (-4,-3)得直线BC 的函数解析式为y =x +1,如解图①,过点P 作PG ∥y 轴交BC 于G ,第1题解图①设点P 的坐标为(t ,t 2+6t +5),则点G (t ,t +1),∴PG =(t +1)-(t 2+6t +5)=-t 2-5t -4,∴S △PBC =12PG ·|x C -x B |=32(-t 2-5t -4)=-32(t +52)2+278.∵-32<0,∴当t =-52时,△PBC 的面积最大,最大值为278.第1题解图②②设BP 交CD 于点H .当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的垂直平分线上,易得线段BC 的中点坐标为(-52,-32),过该点与直线BC 垂直的直线设为y =-x +m ,则-32=52+m ,解得m =-4,∴直线BC 的垂直平分线的函数解析式为y =-x -4.可得直线CD 的函数表达式为y =2x +2,联立得⎩⎪⎨⎪⎧y =-x -4,y =2x +2,解得⎩⎪⎨⎪⎧x =-2,y =-2,∴点H 的坐标为(-2,-2), 直线BH 的函数解析式为y =12x -1.联立得⎩⎨⎧y =x 2+6x +5,y =12x -1,解得⎩⎪⎨⎪⎧x =-32,y =-74,或⎩⎪⎨⎪⎧x =-4y =-3(舍去), ∴点P 的坐标为(-32,-74).当点P 在直线BC 上方时,∵∠PBC =∠BCD ,∴BP ∥CD ,∴直线BP 的表达式为y =2x +5,联立得⎩⎪⎨⎪⎧y =x 2+6x +5,y =2x +5,解得⎩⎪⎨⎪⎧x =-4,y =-3(舍去)或⎩⎪⎨⎪⎧x =0,y =5,∴点P 的坐标为(0,5).综上,所有点P 的坐标为(-32,-74),(0,5)2.解:(1)将C (3,0),E (0,3)代入y =-x 2+bx +c 得⎩⎪⎨⎪⎧-32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3,∴抛物线的解析式是y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4).设直线AC 的解析式为y =mx +n ,将A ,C 代入得⎩⎪⎨⎪⎧m +n =4,3m +n =0,解得⎩⎪⎨⎪⎧m =-2,n =6,∴直线AC 的解析式为y =-2x +6.设P (1,4-t ),∵PD ⊥AB ,∴y D =4-t ,∴4-t =-2x +6,解得x =1+t2,∴点D 的坐标为(1+t2,4-t ).∵l ∥y 轴,∴x Q =1+t2,∴y Q =-(1+t2-1)2+4=4-14t 2,∴S △ACQ =S △ADQ +S △CDQ=12DQ ·BC=12(4-14t 2-4+t )×2=-14(t -2)2+1,∴当t =2时,S △ACQ 最大,最大值为1.(3)存在,综合条件的M 点坐标为(2,2),(-2,3+14),(4,17).【解法提示】设点P (1,t )(t >0),∵以P ,M ,E ,C 为顶点的四边形是菱形, ∴①当CE 为对角线时,PC =PE ,且PM 与CE 互相垂直平分,∴(1-0)2+(t -3)2=(3-1)2+t 2,解得t =1,即点P 的坐标为(1,1), 由菱形中心对称性质可知,点M 的坐标为(2,2);②CP =CE =32,即(3-1)2+t 2=32,解得t =14(负的已舍去), 即点P 的坐标为(1,14),此时点M 的坐标为(-2,3+14);③EP =CE =32,即(1-0)2+(t -3)2=32,解得t =3+17(负值已舍去),∴此时点P 的坐标为(1,3+17),则点M 的坐标为(4,17).【例3】 解:(1)当x =0时,y 1=y 2=y 3=1,∴①正确;y 1,y 2,y 3的对称轴分别是直线x 1=-12,x 2=-1,x 3=-32,∴②正确;y 1,y 2,y 3与直线y =1的交点(除点C 外)的横坐标分别为-1,-2,-3,∴距离为1,都相等,∴③正确.故答案为①②③.(2)①y n =-x 2-nx +1=-(x +n 2)2+n 2+44,∴顶点P n (-n 2,n 2+44).令顶点P n 的横坐标为x =-n 2,纵坐标y =n 2+44,∴y =n 2+44=(-n 2)2+1=x 2+1,即顶点P n 的纵坐标y 与横坐标x 满足关系式y =x 2+1. ②令C n (x n ,y n ),C n -1(x n -1,y n -1),x n -1=-k -(n -1)=-k -n +1,y n -1=-x n -12-(n -1)x n -1+1,x n =-k -n ,y n =-x n 2-nx n +1, ∵x n -1-x n =1,y n -1-y n =-x n -12-(n -1)x n -1+1+x n 2+nx n -1=(x n -x n -1)(x n +x n -1)+n (x n -x n -1)+x n -1=-(-k -n +1-k -n +n )-k -n +1=2k +n -1-k -n +1=k .∴C n -1C n =(x n -1-x n )2+(y n -1-y n )2=1+k 2. ∵C n -1C n =1+k 2与n 无关, ∴相邻两点之间的距离为定值,定值为1+k 2.(3)令y n =1得-x 2-nx +1=1,解得x 1=0,x 2=-n , ∴A n (-n ,1),由②知C n (x n ,-x n 2-nx n +1),设直线A n C n :y =k n x +b n ,则k n =1-(-x n 2-nx n +1)-n -x n =x n (x n +n )-n -(-k -n )=(-k -n )(-k -n +n )-n +k +n =k +n ,同理A n -1(-n +1,1),C n -1(x n -1,-x n -12-(n -1)x n -1+1), 设直线A n -1C n -1:y =k n -1x +b n -1,则k n -1=k +n -1,∴k n -1≠k n ,∴直线C n A n 与直线C n -1A n -1不平行.跟踪训练1.解:(1)(-1,0),(3,0);(1,4)(2)①(-1,0),(3,0);(1,-4n 3);对称轴为直线x =1[或与x 轴交点为(-1,0),(3,0)]②当直线y =12x +m 与y 相交只有1个交点时,由⎩⎨⎧y =12x +m ,y =-x 2+2x +3,整理得x 2-32x +m -3=0, ∴b 2-4ax =(32)2-4(m -3)=0,解得m =5716.当直线y =12x +m 与y n 相交只有1个交点时,由⎩⎪⎨⎪⎧y =12x +m ,y =13x 2-23x -1,整理得2x 2-7x -(6+6m )=0, ∴b 2-4ax =72-4×2×(-6-6m )=0,解得m =-9748,把点(-1,0)代入y =12x +m 得m =12,把(3,0)代入y =12x +m 得m =-32,如解图①,∴m 的取值范围是-9748<m <5716,且m ≠-32,m ≠12.(3)如解图②,由⎩⎪⎨⎪⎧y =k ,y =-x 2+2x +3得x 2-2x +k -3=0, ∴AD 2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16-4k ,由⎩⎨⎧y =k ,y =n 3x 2-2n 3x -n得nx 2-2nx -(3n +3k )=0, ∴BC 2=(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=16+12k n , ∵AB =BC =CD ,∴AD 2=9BC 2,∴16-4k =9(16+12k n ), ∴32n +27k +nk =0.图① 图② 2.解: (1)当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0),A 1(2,0),∴y 1=-x (x -2)=-(x -1)2+1,则a 1=1,b 1=1. 由c n =c n -1+2可知,c 2=c 1+2=2+2=4, ∴抛物线y 2与x 轴的交点为A (0,0),A 2(4,0), ∴y 2=-x (x -4)=-x 2+4x .(2)3,9,n ,n 2,y =x 2;(3)①存在,由(1)(2)得A n (2n ,0),B n (n ,n 2). 当△AA n B n 为等腰直角三角形时,n 2=n ,解得n 1=1,n 2=0(舍去).∴存在抛物线y n ,使得△AA n B n 为等腰直角三角形,此时抛物线为y 1=-(x -1)2+1.②∵y n =-x (x -2n )=-x 2+2nx ,当x =m (m >0)时,C n (m ,-m 2+2mn ),C n -1(m ,-m 2+2mn -2m ), ∴C n C n -1=-m 2+2mn -(-m 2+2mn -2m )=2m .∴C 1C 2=C 2C 3=…=C n -1C n =2m .3.解: (1)∵AB =2,抛物线y 1=-x 2+c 的对称轴为直线x =0, ∴点A ,B 的坐标分别为(-1,0),(1,0),将点A (-1,0)代入得c =1,则抛物线y 1的解析式为y 1=-x 2+1,顶点坐标为(0,1).(2)①由平移性质得,抛物线y 2的顶点坐标为(1,2),则抛物线y 2的函数解析式为y 2=-(x -1)2+2,当x =0时,y 2=1,则y 1的顶点(0,1)在抛物线y 2上.②由题意,得抛物线y 3=-(x -2)2+3,y 4=-(x -3)2+4,y n =-(x -n +1)2+n ,将点B (1,0)代入y n ,得-(1-n +1)2+n =0,解得n =4或n =1(舍去).∴抛物线y n 的解析式为y 4=-(x -3)2+4.③令y n =-(x -n +1)2+n =0,解得x 1=n -1-n ,x 2=n -1+n ,则S n =12[(n -1+n)-(n -1-n)]·n =n·n =125,∵53=125,∴n =5,即n =25.4.解:(1)-4;(-2,1);y =(x -2)2+1(2)y =-x 2-2x +5即y =-(x +1)2+6,∴顶点为(-1,6).∵点(-1,6)关于点(0,m )的对称点为(1,2m -6),∴衍生抛物线为y =(x -1)2+2m -6,则-(x +1)2+6=(x -1)2+2m -6,化简得x 2=-m +5,∵两抛物线有交点,∴-m +5≥0,∴m ≤5.(3)①y =ax 2+2ax -b =a (x +1)2-a -b ,顶点为(-1,-a -b ).y ′=bx 2-2bx +a 2=b (x -1)2-b +a 2,顶点为(1,-b +a 2).∵两抛物线交点恰好是顶点,∴⎩⎪⎨⎪⎧-b +a 2=a·(1+1)2-a -b ,-a -b =b·(-1-1)2-b +a 2,解得⎩⎪⎨⎪⎧a =0,b =0(舍去)或⎩⎪⎨⎪⎧a =3,b =-3,∴顶点分别为(-1,0)和(1,12).∵(-1,0),(1,12)关于衍生中心对称,∴衍生中心为它们的中点,∵-1+12=0,0+122=6,∴衍生中心为(0,6).②由①可知衍生中心为抛物线y =a (x +1)2-a -b 的顶点与A 1,A 2,A 3,…,A 4的中点,∴A n (1,2k +2n 2+a +b ),A n +1(1,2k +2(n +1)2+a +b ),∴A n A n +1=2k +2(n +1)2+a +b -(2k +2n 2+a +b )=4n +2.【例4】 解:(1)4;12;2a ;2a .例4题解图①【解法提示】 ∵a >0,∴y =ax 2的图象大致如解图①,其顶点为原点O ,记AB 为其碟宽,AB 与y 轴的交点为C ,连接OA ,OB .∵△OAB 为等腰直角三角形,AB ∥x 轴, ∴OC ⊥AB , ∴∠AOC =∠BOC =12∠AOB =12×90°=45°,∴△ACO 与△BCO 亦为等腰直角三角形,∴AC =OC =BC ,∴x A =-y A ,x B =y B ,代入y =ax 2,∴A (-1a ,1a ),B (1a ,1a ),C (0,1a ),∴AB =2a ,OC =1a ,即抛物线y =ax 2对应的碟宽为2a .①抛物线y =12x 2对应的a =12,得碟宽2a 为4;②抛物线y =4x 2对应的a =4,得碟宽2a 为12;③抛物线y =ax 2(a >0)对应的碟宽为2a ; ④抛物线y =a (x -2)2+3(a >0)可看成抛物线y =ax 2向右平移2个单位长度,再向上平移3个单位长度后得到的,∵平移不改变形状、大小、开口方向,∴抛物线y =a (x -2)2+3(a >0)的准碟形与抛物线y =ax 2的准碟形全等. ∵抛物线y =ax 2(a >0)对应的碟宽为2a ,∴抛物线y =a (x -2)2+3(a >0)对应的碟宽为2a .(2)∵y =ax 2-4ax -53=a (x -2)2-(4a +53),∴同(1),其碟宽为2a .∵抛物线y =ax 2-4ax -53的碟宽为6,∴2a =6,解得a =13.(3)①∵F 1的碟宽∶F 2的碟宽=2∶1,∴2a 1=4a 2.∵a 1=13,∴a 2=23.∵y 1=13(x -2)2-3的碟宽AB 在x 轴上(A 在B 左边),∴A (-1,0),B (5,0),∴F 2的碟顶坐标为(2,0),∴y 2=23(x -2)2.②∵F n 的准碟形为等腰直角三角形,∴F n 的碟宽为2h n .∵2h n ∶2h n -1=1∶2,∴h n =12h n -1=(12)2h n -2=(12)3h n -3=…=(12)n -1h 1.∵h 1=3,∴h n =32n -1. ∵h n ∥h n -1,且都过F n -1的碟宽中点,∴h 1,h 2,h 3,…,h n -1,h n 都在一条直线上,∵h 1在直线x =2上,∴h 1,h 2,h 3,…,h n -1,h n 都在直线x =2上,∴F n 的碟宽右端点横坐标为2+32n -1. F 1,F 2,…,F n 的碟宽右端点在一条直线上,直线为y =-x +5.【解法提示】 考虑F n -2,F n -1,F n 情形,如解图②,例4题解图②F n -2,F n -1,F n 的碟宽分别为AB ,DE ,GH ;C ,F ,I 分别为其碟宽的中点,都在直线x =2上,连接右端点,BE ,EH .∵AB ∥x 轴,DE ∥x 轴,GH ∥x 轴,∴AB ∥DE ∥GH ,∴GH 平行且等于FE ,DE 平行且等于CB ,∴四边形GFEH ,四边形DCBE 都为平行四边形,∴HE ∥GF ,EB ∥DC .∵∠GFI =12∠GFH =12∠DCE =∠DCF ,∴GF ∥DC ,∴HE ∥EB ,∵HE ,EB 都过E 点,∴HE ,EB 在一条直线上,∴F n -2,F n -1,F n 的碟宽的右端点在一条直线上,∴F 1,F 2,…,F n 的碟宽的右端点在一条直线上.∵F 1:y 1=13(x -2)2-3对应的准碟形右端点坐标为(5,0),F 2:y 2=23(x -2)2对应的准碟形右端点坐标为(2+32,32),∴可得过以上两点的直线为y =-x +5,∴F 1,F 2,…,F n 的碟宽的右端点在直线y =-x +5上.跟踪训练1.解: (1)由y =-x 2+4x -3可得A 的坐标为(2,1),将x =4代入y =-x 2+4x -3,得y =-3,∴B 的坐标为(4,-3),设抛物线L 2的解析式为y =a (x -4)2-3.将A (2,1)代入,得1=a (2-4)2-3,解得a =1,∴抛物线L 2的表达式为y =(x -4)2-3;(2)a 1=-a 2,理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上,∴可列方程组⎩⎪⎨⎪⎧n =a 2(m -h )2+k k =a 1(h -m )2+n , 整理,得(a 1+a 2)(m -h )2=0,∵伴随抛物线的顶点不重合,∴m ≠h ,∴a 1=-a 2.(3)抛物线L 1:y =mx 2-2mx -3m 的顶点坐标为(1,-4m ),设抛物线L 2的顶点的横坐标为h ,则其纵坐标为mh 2-2mh -3m ,∴抛物线L 2的表达式为y =-m (x -h )2+mh 2-2mh -3m ,化简得,y =-mx 2+2mhx -2mh -3m ,所以点D 的坐标为(0,-2mh -3m ),又点C 的坐标为(0,-3m ),可得|(-2mh -3m )-(-3m )|=4m ,解得h =±2,∴抛物线L 2的对称轴为直线x =±2.2.解:(1)由题意得:a =1,b =-4,故抛物线的表达式为:y =x 2-4x +c ,将点(3,0)代入得:c =3,故抛物线的表达式为:y =x 2-4x +3=(x -2)2-1,故抛物线的顶点坐标为(2,-1);(2)设“子函数”y =x -6的“母函数”为:y =12x 2-6x +c ,则y =12(x 2-12x )+c =12(x -6)2-18+c ,故-18+c =1,解得c =19,故“母函数”的表达式为:y =12x 2-6x +19;第2题解图(3)设点P (m ,-m 2-4m +8),由题意,得直线l 的表达式为:y =-2x -4,故点C 、D 的坐标分别为(-2,0)、(0,-4),如解图,过点P 作PQ ∥y 轴交直线CD 于Q ,则Q (m ,-2m -4), ∴PQ =(-m 2-4m +8)-(-2m -4)=-m 2-2m +12,∴S △PCD =12·PQ |x D -x C |=12`(-m 2-2m +12)·2=-(m +1)2+13,∵点P 在CD 上方的抛物线上且-1<0,∴当m =-1时△PCD 的面积最大,最大值为13.3.(1)解:①y =-x 2-2x =-(x +1)2+12,②y =(x -3)2+3=(x -3)2+(3)2,③y=(x -2)2+(2)2,④y =x 2-x +12=(x -12)2+(12)2,所以①与③互为派对抛物线;①与④互为派对抛物线;故答案为①与③;①与④;(2)证明:当m =1,n =2时,抛物线C 1:y =-(x +1)2+1,抛物线C 2:y =(x -2)2+4,∴A(-1,1),B(2,4),∵AC∥BD∥y轴,∴点C的横坐标为-1,点D的横坐标为2,当x=-1时,y=(x-2)2+4=13,则C(-1,13);当x=2时,y=-(x+1)2+1=-8,则D(2,-8),∴AC=13-1=12,BD=4-(-8)=12,∴AC=BD;(3)①证明:抛物线C1:y=-(x+m)2+m2(m>0),则A(-m,m2);抛物线C2:y=(x-n)2+n2(n>0),则B(n,n2);当x=-m时,y=(-m-n)2+n2=m2+2mn+2n2,则C(-m,m2+2mn+2n2);当x=n时,y=-(n+m)2+m2=-2mn-n2,则D(n,-2mn-n2);∴AC=m2+2mn+2n2-m2=2mn+2n2,BD=n2-(-2mn-n2)=2mn+2n2,∴AC=BD,∴四边形ACBD为平行四边形.∵∠BEO=∠BDC,而∠EHF=∠DHG,∴∠EFH=∠DGH=90°,∴AB⊥CD,∴四边形ACBD是菱形;②∵抛物线C2:y=(x-2)2+4,则B(2,4),∴n=2,∴AC=BD=2mn+2n2=4m+8,而A(-m,m2),∴C(-m,m2+4m+8),∴BC2=(-m-2)2+(m2+4m+8-4)2=(m+2)2+(m+2)4.∵四边形ACBD是菱形,∴BC=BD,∴(m+2)2+(m+2)4=(4m+8)2,即(m+2)4=15(m+2)2,∵m>0,∴(m+2)2=15,∴m+2=15,∴m=15-2.。

2020年中考数学5.几何综合选择填空压轴题(含解析)

2020年中考数学5.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题51、以正方形ABCD勺边AD作等边△ ADE则/ BEC勺度数是 __________2、如图.在厶ABC中, / ACB=60 , AC=1, D是边AB的中点,E是边BC上一点.若DE平分△ ABC的周长,则DE的长是 ____ .3、已知CD是△ ABC的边AB上的高,若CD・3,AD=1AB=2AC则BC的长为__4、如图,将面积为32V2的矩形ABCC沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=J,贝U AP的长为____ .p5、如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90 , AE L BD 于点E,连CD分别交AE AB于点F, G过点A作AH L CD交BD于点H.则下列结论:①/ ADC=15 :② AF=AG ③ AH=DF ④厶AF3A CBQ ⑤AF= (V3 - 1)EF.其中正确结论的个数为()A. 5 B . 4 C . 3 D . 26 已知O 0的半径为10cm AB CD是O O的两条弦,AB// CD AB=16cm CD=12cm则弦AB和CD之间的距离是cm513 13 13 7 77、如图,将矩形ABCD 沿 EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知/ DGH=30,连接BG 则/ AGB ________ .8、如图,?ABCD 勺对角线相交于点 0,且A 》CD 过点0作OM L AC,交AD 于点 M.如果△ CDM 勺周长为8,那么?ABCD 勺周长是 _____ .9、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sin a - COS a =( ) A 13 B10、如图,P是厶ABC的内心,连接PA PB PC, △ PAB △ PBG △ PAC的面积分别为S、S、S.则Si ____ S2+S3.(填“v” 或“二”或“〉”)11、如图,△ ABC中, AB=AC AD L BC 于D点,DEL AB 于点E, BF 丄AC 于点F,DE=3cryi 则BF= ______ cm12、如图,已知半圆O与四边形ABCD勺边AD AB BC都相切,切点分别为DE、C,半径OC=1 则AE?BE=_.13、《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,冋该直角二角形能容纳的正方形边长最大是多少步?”该问题的答案是____________ 步.14、如图,以AB为直径的。

2020年中考冲刺填空题压轴训练(PDF版含答案)

2020年中考冲刺填空题压轴训练(PDF版含答案)

2020中考填空题压轴训练1.(2020苏州吴中、吴江、相城模拟)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.乙回到学校用了分钟.2.(2020苏州姑苏区一模)如图,折线AB -BC 中,AB =3,BC =5,将折线AB -BC 绕点A 按逆时针方向旋转,得到折线AD -DE ,点B 的对应点落在线段BC 上的点D 处,点C 的对应点落在点E 处,连接CE ,若CE ⊥BC ,则tan∠EDC =.3.(2020苏州姑苏区五校联考)如图,在△ABC 中,AB =AC =10,BC =5,D 为边AC 上一动点(C 点除外),把线段BD 绕着点D 沿着顺时针的方向旋转90°至DE ,连接CE ,则△CDE 面积的最大值为.4.(2020苏州工业园区一模)如图,点D 为等边三角形ABC内一点,且120BDC ∠=︒,则AD BD 的最小值为.5.(2020苏州高新区一模)如图,抛物线2144y x =-与x 轴交于,A B 两点,P 是以点(0,3)C -为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是.6.(2020常熟市一模)如图,ABC ∆中,13AB AC ==,24BC =,点D 在BC 上(BD AD >),将ACD V 沿AD 翻折,得到AED V ,AE 交BC 于点F .当DE BC ⊥时,tan CBE ∠的值为.7.(2020太仓一模)如图,在ABC ∆中,60ACB ∠=︒,2BC =,D 是AB 的中点,E 是AC 上一点,若DE 平分ABC ∆的周长,则DE 的长等于.8.(2020张家港一模)如图,在ABC ∆中,AB AC =,12BC =,D 为AC 边的中点,线段BD 的垂直平分线分别与边BC ,AB 交于点E ,F ,连接DF ,EF .设BE x =,tan ACB y ∠=.给出以下结论:①//DF BC ;②BDE ∆的面积为32xy ;③CDE ∆的周长为12x +;④229x y -=;⑤229x y -=.其中正确结论有(把你认为正确结论的序号都填上).9.(2020昆山一模)如图,在ABC ∆中,10AB =,AC =,45ACB ∠=︒,D 为AB 边上一动点(不与点B 重合),以CD 为边长作正方形CDEF ,连接BE ,则BDE V 的面积的最大值等于.10.(2020建湖汇文实验中学模拟)如图,在平面直角坐标系xOy 中,直线y =x 与双曲线y =交于A 、B 两点,P 圆心C (0,2)半径为1的⊙C 上一点,连接AP ,Q 是AP 的中点,连接OQ ,则OQ 的最大值为.11.(2020无锡滨湖区一模)如图,已知A、B 两点都在反比例函数y=k x位于第二象限部分的图像上,且△OAB 为等边三角形,若AB =6,则k 的值为.12.(2020无锡天一中学一模)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为.13.(2020常州一模)如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数xky =(k ≠0,x >0)的图象同时经过顶点C ,D .若点C 的横坐标为5,BE =3DE ,则k 的值为.14.(2020南通如皋一模)如图,在△ABC 中,∠BAC=45°,AD⊥BC 于点D,若BD=3,CD=2.则△ABC 的面积为.15.(2020泰兴高新区模拟)图1为一艺术拱门,下部为矩形ABCD ,AB 、AD 的长分别为m 和4m ,上部是圆心为O 的劣弧CD ,∠COD =120°.现欲以点B 为支点将拱门放倒,放倒过程中矩形ABCD 所在的平面始终与地面垂直,如图2所示.设BC 与地面水平线所成的角为θ,记拱门上的点到地面的距离为h ,当h 取最大值时,此时θ为°.16.(2020扬州高邮模拟)如图,AB 是⊙O 的直径,AB =4,C 为弧AB 中点,点P 是⊙O 上一个动点,取弦AP 的中点D ,则CD 的最大值为.17.(2020扬州广陵区一模)如图,将直线y=x 向下平移b 个单位长度后得到直线l,l 与反比例函数xk y =(k>0,x>0)的图像相交于点A,与x 轴相交于点B,且1022=-OB OA ,则k 的值是.18.(2020扬州江都区模拟)如图,在正方形ABCD 中,AB=4,以B 为圆心,BA 长为半径画弧,点M 为弧上一点,MN⊥CD 于N,连接CM,则CM-MN 的最大值为.19.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是边BC 上一动点(点P 不与点B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,连接MP ,作∠MPC 的角平分线交边CD 于点N .则线段MN 的最小值为.20.(2020苏州吴中区二模)如图,⊙O 的半径为6,点P 在⊙O 上,点A 在⊙O 内,且4AP =,过点A 作AP 的垂线交⊙O 于点B 、C ,连接PB 、PC .设PB x =,PC y =,则y 与x 的函数关系式为.21.(2020苏州新区实验中学二模)如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,∠APB =90°,l 不经过点C ,则AB 的最小值为________.参考答案(1)40(2)724(3)32(4)23(5)3.5(6)177(7)449(8)②⑤(9)18(10)2122+(11)-9(12)3(13)415(14)15(15)60°(16)210+(17)5(18)2(19)34(20)x y 48=(21)4。

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.18)一、选择题1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE =2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值()A.2B.+2 C.2﹣2 D.5二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=,b=;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.【分析】如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.想办法证明AF=DE=EH,BE+AF的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵CF=AE,CA=DA,∠C=∠EAD=90°,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,BH==,∴AF+BE的最小值为,故答案为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或1cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ =30°,再由PN与DC平行,得到∠PF A=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=3,b=4;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.【分析】(1)根据函数的图象,即可得出a、b的值;(2)分点P在线段AB上跟点P在线段BC上讨论,依据相似三角形的性质,即可得出y与x之间的关系;(3)由等高三角形的面积比等于底边长之比,可得出BP的长,根据勾股定理得出x的值,代入到(2)中的关系式中即可求出y的值.【解答】解:(1)当点P在线段AB上时,D到AB的距离为AD,由函数图象可看出,AD=4,即BC=b=4,当点P运动到线段BC上时,D到AB的距离出现变化,由函数图象可看出,AB=3=a.故答案为:3;4.(2)①当点P在线段AB上时,有0≤AP≤AB,即0≤x≤3,此时y=4.②当点P在线段BC上时,连接AC,过点D作DE⊥AP于点E,如图,由勾股定理可得:AC==5.∵此时P点过B点向C点运动,∴AB<AP≤AC,即3<x≤5.∵AD∥BC,∴∠DAE=∠APB,又∵∠ABP=∠DEA=90°,∴△DAE∽△APB,∴=,即=,∴y=.综合①②得:y=.(3)∵△PCD的面积是△ABP的面积的,且两三角形等高,∴BP=3PC,∵BP+PC=BC=4,∴BP=3,由勾股定理可得:x==3,将x=3代入,得y==2.故当△PCD的面积是△ABP的面积的时,y的值为2.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A的坐标,由点B,C的坐标可得出直线BC的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+P A取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+P A的最小值=PO′+P A=AO′==5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点D的坐标为(1,4).又∵点C的坐标为(0,3),点B的坐标为(3,0),∴CD==,BC==3,BD==2,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣1,0),点C的坐标为(0,3),∴OA=1,OC=3,∴==.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴=,即=,∴AQ=10,∴点Q的坐标为(9,0).综上所述:当Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.。

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。

2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)

2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)

2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵∠PQB=∠QBR=∠BRP=90°, ∴四边形 PQBR 是矩形, ∴∠QPR=90°=∠MPN, ∴∠QPE=∠RPF, ∴△QPE∽△RPF, ∴ = =2, ∴PQ=2PR=2BQ, ∵PQ∥BC, ∴AQ:QP:AP=AB:BC:AC=3:4:5,设 PQ=4x,则 AQ=3x,AP=5x,BQ=2x, ∴2x+3x=3, ∴x= , ∴AP=5x=3. 故答案为 3.
感悟实践
1.(2015 年深圳中考第 15 题)观察下列图形,它们是按一定规律排列的,依照此规律,第 5 个图形有 21 个太阳.
【解答】解:第一行小太阳的个数为 1、2、3、4、…,第 5 个图形有 5 个太阳, 第二行小太阳的个数是 1、2、4、8、…、2n﹣1,第 5 个图形有 24=16 个太阳, 所以第 5 个图形共有 5+16=21 个太阳. 故答案为:21.
∴AG=AF﹣FG=3,根据勾股定理得,AE〸 㠳 连接 CF,
∵AD 平分∠CAB,BE 平分∠ABC,
∴CF 是∠ACB 的平分线,
∴∠ACF=45°=∠AFE,
∵∠CAF=∠FAE,
∴△AEF∽△AFC,
∴㠳⸳
㠳体

㠳体,

∴AC〸
㠳体 㠳⸳

t〸

故答案为 .⸳〸 ,9.(2019 年深圳中考第 15 题)
点 F,且 AF=4,EF〸 ,则 AC=

【解答】解:如图, ∵AD,BE 是分别是∠BAC 和∠ABC 的平分线, ∴∠1=∠2,∠3=∠4,
6
∵∠ACB=90°,
∴2(∠2+∠4)=90°,
∴∠2+∠4=45°,
∴∠EFG=∠2+∠4=45°,
过点 E 作 EG⊥AD 于 G,
在 Rt△EFG 中,EF〸 ,∴FG=EG=1, ∵AF=4,


∴AB•OB•=BC•OE ∴k=AB•BO=BC•OE=16. 故答案为:16. 3.(2016 年深圳中考第 15 题)如图,在▱ABCD 中,AB=3,BC=5,以点 B 的圆心,以任意长为半径作弧, 分别交 BA、BC 于点 P、Q,再分别以 P、Q 为圆心,以大于 PQ 的长为半径作弧,两弧在∠ABC 内交于点 M,
5
7.(2018 年深圳中考第 15 题)如图,四边形 ACDF 是正方形,∠CEA 和∠ABF 都是直角且点 E,A,B 三点共 线,AB=4,则阴影部分的面积是 8 .
【解答】解:∵四边形 ACDF 是正方形,
∴AC=AF,∠CAF=90°,
∴∠EAC+∠FAB=90°,
∵∠ABF=90°,
∴∠AFB+∠FAB=90°,
1
将字母具体化,把一般形式变为特殊形式,当题目的条件是从一般性的角度给出时,特例法尤其奏效。 3.数形结合法:就是把抽象的数字语言,数量关系与直观的几何图形,位置关系结合起来,通过以形助数 或以数助形把复杂问题简单化,抽象问题具体化,从而达到优化解题途径的目的,这类问题的几何意义一 般较为明显,因而有些问题可以借助于图形,然后参照图形的形状,位置,性质,结合图像的特征,进行 直观的分析,加上简单的运算,一般就可以得出正确的答案。 4.转化法:就是将待解决的问题,通过分析,联想,类比等思维过程,选择恰当的方法进行变换,转化到 已经解决或比较容易解决的问题上,最终达到解决问题的目的,解决问题的过程实际就是转化的过程。 5.猜想法:是根据已有的数字理论和方法,通过观察题目中所给出的一些数或图形的特点,分析其规律, 从而总结出一般结论,这种方法一般适用于规律探索题。 6.构造法:就是通过对题目中条件和结论的分析,构造辅助元素,它可以是一个图形,一个方程,一个函 数等,架起一座连接条件和结论的桥梁,从而使问题得以解决的方法,充分的挖掘题设与结论的内在联系, 把问题与某个熟知的概念,公式,定理,图形联系起来,进行构造,往往能促使问题转化,进而谋求解决 问题的途径。
连接 BM 并延长交 AD 于点 E,则 DE 的长为 2 .
【解答】解:根据作图的方法得:BE 平分∠ABC, ∴∠ABE=∠CBE ∵四边形 ABCD 是平行四边形,
3
∴AD∥BC,AD=BC=5, ∴∠AEB=∠CBE, ∴∠ABE=∠AEB, ∴AE=AB=3, ∴DE=AD﹣AE=5﹣3=2; 故答案为:2. 4.(2016 年深圳中考第 16 题)如图,四边形 ABCO 是平行四边形,OA=2,AB=6,点 C 在 x 轴的负半轴上, 将▱ABCO 绕点 A 逆时针旋转得到▱ADEF,AD 经过点 O,点 F 恰好落在 x 轴的正半轴上,若点 D 在反比例函 数 y= (x<0)的图象上,则 k 的值为 4 .
【解答】解:设点 C 坐标为(x,y),作 CD⊥BO′交边 BO′于点 D, ∵tan∠BAO=2, ∴ =2, ∵S△ABO= •AO•BO=4, ∴AO=2,BO=4, ∵△ABO≌△A'O'B, ∴AO=A′O′=2,BO=BO′=4, ∵点 C 为斜边 A′B 的中点,CD⊥BO′, ∴CD= A′O′=1,BD= BO′=2, ∴x=BO﹣CD=4﹣1=3,y=BD=2, ∴k=x•y=3•2=6.
故正方形 AnBnCnDn 的边长是:( )n﹣1,
则正方形 A B C D 2016 2016 2016 2016 的边长为:(
)2015,
3.如图,在 Rt△AOB 中,两直角边 OA、OB 分别在 x 轴的负半轴和 y 轴的正半轴上,将△AOB 绕点 B 逆时 针旋转 90°后得到△A′O′B.若反比例函数 的图象恰好经过斜边 A′B 的中点 C,S△ABO=4,tan∠BAO=2, 则 k 的值为
二.题型概述
填空题是中考必考基本题型之一,它叙述简单,概念性强,知识覆盖面广,有利于基础知识和基本技能的 考察,中考中填空题注重基础,贴近课本,多半是课本例题,习题的改编题,在解答填空题时要做到以下 几点:准-审题要仔细,考虑问题要全面,结论要准确;巧-解法要灵活,推理要巧妙,思路要优化;快运算要快速,小题不大做。
, ∴△ABE≌△CDF(SSS), ∴∠ABE=∠CDF, ∵∠AEB=∠CFD=90°, ∴∠ABE+∠BAE=90°, ∴∠ABE=∠DAG=∠CDF, 同理:∠ABE=∠DAG=∠CDF=∠BCH, ∴∠DAG+∠ADG=∠CDF+∠ADG=90°, 即∠DGA=90°, 同理:∠CHB=90°, 在△ABE 和△ADG 中,
三.解题策略
1.直接法:就是从题设条件出发,运用定义,定理,公式,性质,法则等知识,通过变形,推理,计算等 得出正确的结论,使用此方法时,要善于透过现象看本质,自觉地,有意识的采用灵活简捷的解法。 2.特例法:特例法在考试中应用起来比较方便,它的实施过程是从一般到特殊,优点是简单易行,当暗示 答案是一个定值时,就可以取一个特殊数值,特殊位置,特殊图形,特殊关系,特殊数列或特殊函数值等
∴OA=PE+PF= AC= ×
=.
2.一组正方形按如图所示的方式放置,其中顶点 B1 在 y 轴上,顶点 C1、E1、E2、C2、E3、E4、C3…在 x 轴上, 已知正方形 A1B1C1D1 的边长为 1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形 A B C D 2016 2016 2016 2016 的边长是
2
2.(2015 年深圳中考第 16 题)如图,已知点 A 在反比例函数 y= (x<0)上,作 Rt△ABC,点 D 为斜边 AC 的中点,连 DB 并延长交 y 轴于点 E.若△BCE 的面积为 8,则 k= 16 .
【解答】解:∵△BCE 的面积为 8,


∴BC•OE=16, ∵点 D 为斜边 AC 的中点, ∴BD=DC, ∴∠DBC=∠DCB=∠EBO, 又∠EOB=∠ABC, ∴△EOB∽△ABC,
10
4.如图,在△AOB 中,∠BOA=90°,∠BOA 的两边分别与函数
、 的图象交于 B、A 两点,若

则 AO 的值为
【解答】解:∵∠AOB=90°, ∴∠AOC+∠BOD=∠AOC+∠CAO=90°, ∠CAO=∠BOD, ∴△ACO∽△BDO,

=( )2,
∵S△AOC= ×2=1,S△BOD= ×1= , ∴( )2= =2,
, ∴△ABE≌△ADG(AAS), ∴AE=DG,BE=AG, 同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12, ∴EG=GF=FH=EF=12﹣5=7, ∵∠GEH=180°﹣90°=90°, ∴四边形 EGFH 是正方形, ∴EF= EG=7
7
10.(2019 年深圳中考第 16 题)
8
闯关练习
1.如图,在正方形 ABCD 中,AB=1,P 是线段 AD 上的动点,PE⊥AC 于点 E,PF⊥BD 于点 F,则 PE+PF 的值 为
【解答】解:在正方形 ABCD 中,OA⊥OB,∠OAD=45°, ∵PE⊥AC,PF⊥BD, ∴四边形 OEPF 为矩形,△AEP 是等腰直角三角形, ∴PF=OE,PE=AE, ∴PE+PF=AE+OE=OA, ∵正方形 ABCD 的边长为 1,
∴∠EAC=∠AFB,
在△CAE 和△AFB 中, ∠ 㠳⸳ 〸 ∠㠳体 ∠㠳⸳ 〸 ∠体 㠳, 㠳 〸 㠳体
∴△CAE≌△AFB,
∴EC=AB=4,
∴阴影部分的面积〸 ×AB×CE=8,
故答案为:8. 8.(2018 年深圳中考第 16 题)在 Rt△ABC 中,∠C=90°,AD 平分∠CAB,BE 平分∠ABC,AD、BE 相交于
【解答】解:如图所示:过点 D 作 DM⊥x 轴于点 M, 由题意可得:∠BAO=∠OAF,AO=AF,AB∥OC, 则∠BAO=∠AOF=∠AFO=∠OAF, 故∠AOF=60°=∠DOM, ∵OD=AD﹣OA=AB﹣OA=6﹣2=4, ∴MO=2,MD=2 , ∴D(﹣2,﹣2 ), ∴k=﹣2×(﹣2 )=4 . 故答案为:4 .
相关文档
最新文档