一次函数单元测试卷(A卷)
一次函数单元测试卷1024
八年级数学一次函数测试试卷A一、填空题 1、若函数=y 321x +有意义,则x 满足的条件是 . 3、已知:132=-y x ,若把y看成x 的函数,则可以表示为_______________5、若函数3)12(23+-=-m x m y 是一次函数,则,且y 随x 的增大而________7、某拖拉机的油箱有油100升,每工作1小时耗油8升,则油箱的剩余油量y (升)与工作时间x (时)间的函数关系式为_____________,自变量取值范围是_____________ 9、一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是 11、若1y x -与成正比例,且22,3x y y x ==-=时,那么时的值为 。
二、选择题( 13、对于正比例函数mx y =,y 随着x 的增大而增大,则m 的取值范围( )A、m 0< B、0≤m C、0>m D、0≥m 15、已知一次函数3-=kx y 过点(2,1),则k 的值是( ).A 、 2 B 、 -2 C 、 1 D 、 -1 17、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是19、一次函数n mx y +-=的图象经过第二、三、四象限,则化简22)(n n m +-的结果是( ) A 、m B 、m - C 、n m -2 D 、n m 2- 三、解答题( 21.(10分)已知一次函)5()23(n x m y -+-= ,问: ⑴m 在什么范围时,y 随x 的增大而减少? ⑵n m ,在什么范围时,函数图象与y 轴交点在x 轴下方? ⑶n m ,在什么范围时,图象经过第一、二、三象限?23、 (10分)若三点)1,6(),,2(),4,1(-P 在一条直线上。
1 求P 的值。
2 试判断点Q(p+1,1-p)是否在这条直线上。
一次函数单元测试(A卷基础篇)(浙教版)(解析版)
第5章一次函数单元测试(A卷基础篇)【浙教版】参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2018秋•西湖区期末)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r【思路点拨】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【解答】解:圆的周长计算公式是c=2πr,C和r是变量,2、π是常量,故选:B.【点睛】本题主要考查了常量,变量的定义,是需要识记的内容.2.(3分)(2019春•裕华区校级期中)下列函数中,自变量x的取值范围是x≥2的是()A.y=B.y=C.y=﹣ D.y=【思路点拨】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,分别求自变量x 的取值范围,再判断.【解答】解:A、2﹣x≥0,解得x≤2;B、4﹣x2≥0,解得x≤2;C、,解得x≥2;D、x﹣2>0,解得x>2.故选:C.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2019春•白银区期末)如图是某市一天内的气温变化情况,则下列说法中错误的是()A.这一天的最高气温是24℃B.从2时至14时,气温在逐渐升高C.从14时至24时,气温在逐渐降低D.这一天的最高气温与最低气温的差为14℃【思路点拨】根据该市一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中的最高气温是24℃,从2时至14时,这天的气温在逐渐升高,从14时至24时,这天的气温在逐渐降低,故A,B,C正确,这一天中最高气温24℃,最低气温是8℃,这一天中最高气温与最低气温的差为16℃,故D错误;由于该题选择错误的,故选:D.【点睛】本题考查了折线统计图,认真观察折线统计图,从不同的图中得到必要的信息是解决问题的关键.4.(3分)(2018秋•遂川县期末)函数y=ax+b﹣2的图象如图所示,则函数y=﹣ax﹣b的大致图象是()A.B.C.D.【思路点拨】根据一次函数的图象的性质确定a和b的符号,进而解答即可.【解答】解:由函数y=ax+b﹣2的图象可得:a<0,b﹣2=0,∴a<0,b=2>0,所以函数y=﹣ax﹣b的大致图象经过第一、四、三象限,故选:C.【点睛】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a和b的符号.5.(3分)(2019春•开福区校级月考)一个弹簧不挂重物时长8cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长2cm.则弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式为()A.y=2x B.y=0.5x C.y=2x+8 D.y=0.5x+8【思路点拨】弹簧总长=弹簧原来的长度+挂上xkg重物质量时弹簧伸长的长度,把相关数值代入即可.【解答】解:∵挂上1kg的物体后,弹簧伸长2cm,∴挂上xkg的物体后,弹簧伸长2xcm,∴弹簧总长y=2x+8.故选:C.【点睛】本题考查了列代数式;得到弹簧总长的等量关系是解决本题的关键.6.(3分)(2019春•硚口区期末)如图,直线y=kx+b交直线y=mx+n于点P(1,2),则关于x的不等式kx+b>mx+n的解集为()A.x>1 B.x>2 C.x<1 D.x<2【思路点拨】观察函数图象得到,当x<1时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+b>mx+n的解集.【解答】解:如图所示,直线y=kx+b交直线y=mx+n于点P(1,2),所以,不等式kx+b>mx+n的解集为x<1.故选:C.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.(3分)(2019春•长春期中)关于一次函数y=1﹣2x,下列说法正确的是()A.它的图象过点(1,﹣2)B.它的图象经过第一、二、三象限C.y随x的增大而增大D.当x>0时,总有y<1【思路点拨】A、利用一次函数图象上点的坐标特征可得出点(1,﹣2)不在一次函数y=1﹣2x的图象上,A不符合题意;B、由k,b的值,利用一次函数图象与系数的关系可得出一次函数y=1﹣2x的图象经过第一、二、四象限,B不符合题意;C、由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,C不符合题意;D、利用一次函数图象上点的坐标特征以及一次函数的性质,可得出当x>0时,总有y<1,D符合题意.此题得解.【解答】解:A、当x=1时,y=1﹣2x=﹣1,∴点(1,﹣2)不在一次函数y=1﹣2x的图象上,A不符合题意;B、∵k=﹣2<0,b=1>0,∴一次函数y=1﹣2x的图象经过第一、二、四象限,B不符合题意;C、∵k=﹣2<0,∴y随x的增大而减小,C不符合题意;D、∵当x=0时,y=1﹣2x=1,∴当x>0时,总有y<1,D符合题意.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数图象与系数的关系,逐一分析四个选项的正误是解题的关键.8.(3分)(2019春•宣州区校级月考)一次函数y=(m+2)x﹣m+1,若y随x的增大而减小,且该函数的图象与x轴交点在原点右侧,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.﹣2<m<1 D.m<1【思路点拨】一次函数中,y随x增大而减小,说明自变量系数小于0,即m+2<0,图象过二、四象限;又该函数的图象与x轴交点在原点右侧,所以图象过一、二、四象限,直线与y轴交点在正半轴,故﹣m+1>0.综合求解.【解答】解:∵y随x的增大而减小,∴m+2<0,解得m<﹣2;又该函数的图象与x轴交点在原点右侧,所以图象过一、二、四象限,直线与y轴交点在正半轴,故﹣m+1>0.解得m<1.∴m的取值范围是m<﹣2.故选:B.【点睛】考查了一次函数的图象与系数的关系,根据一次函数的增减性和与坐标轴交点的位置画出草图分析,来确定待定系数的取值范围,综合求解.9.(3分)(2019秋•香坊区校级月考)甲乙两人在同一条笔直的公路上步行从A地去往B地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y(千米)与甲步行的时间t(小时)的函数关系图象如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A地21千米;④A、B两地距离为27千米.其中错误的个数为()A.1个B.2个C.3个D.4个【思路点拨】①由函数图象数据可以求出甲的速度,再由追击问题的数量关系建立方程就可以求出乙的速度;②由函数图象的数据由乙到达终点时走的路程﹣甲走的路程就可以求出结论;③乙或甲行驶的路程就是乙追上甲时,两人距A地的距离;④求出乙到达终点的路程就是A,B两地距离.【解答】解:①由题意,得甲的速度为:12÷4=3千米/时;设乙的速度为a千米/时,由题意,得(7﹣4)a=3×7,解得:a=7.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(9﹣4)×7﹣9×3=8千米,故②正确;③当乙追上甲时,两人距A地距离为:7×3=21千米.故③正确;④A,B两地距离为:7×(9﹣4)=35千米,故④错误.综上所述:错误的只有④.故选:A.【点睛】本题考查了一次函数的图象的运用,一次函数的性质的运用,行程问题的追击题型的等量关系的运用,一元一次方程的运用,解答时分析清楚函数图象的数据之间的关系是关键.10.(3分)(2019春•长春期中)如图,Rt△ABC的顶点A的坐标为(3,4),顶点B的坐标为(﹣1,0),点C在x轴上,若直线y=﹣2x+b与Rt△ABC的边有交点,则b的取值范围为()A.﹣2<b<10 B.0<b<4 C.﹣1≤b≤4 D.﹣2≤b≤10【思路点拨】当直线y=﹣2x+b分别经过点A、B时,即可求得点b的最大值和最小值.【解答】解:把A(3,4)代入y=﹣2x+b,得4=﹣2×3+b.解得b=10.把B(﹣1,0)入y=﹣2x+b,得0=﹣2×(﹣1)+b.解得b=﹣2.所以b的取值范围为﹣2≤b≤10.故选:D.【点睛】考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征.根据题意得到当直线y=﹣2x+b分别经过点A、B可求得点b的最大值和最小值是解题的关键.二.填空题(共6小题,每小题4分,共24分)11.(4分)(2018秋•莱州市期末)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,则y1<y2(填“>”或“<”或“=”).【思路点拨】根据一次函数的性质,当k>0时,y随x的增大而增大.【解答】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵﹣1<2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.12.(4分)(2019春•桥西区期末)已知直线y=ax+b与y=x交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【思路点拨】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=x交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组的解是.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.13.(4分)(2019春•城关区校级期中)如图,A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的是①③④(填序号).【思路点拨】根据函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,乙晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度是12÷3=4千米/小时,故③正确;乙先到达B地,故④正确;故答案为:①③④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14.(4分)(2019秋•贡井区校级月考)把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2x+7.【思路点拨】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2(x+3)﹣1+2=2x+7.故答案为:y=2x+7.【点睛】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.15.(4分)(2018秋•雨花区校级期末)已知直线y=2x+2,则此直线与两坐标轴围成的三角形面积为1.【思路点拨】求出y=2x+2与x轴、y轴的交点,然后求直角三角形的面积.【解答】解:当x=0时,y=2,所以y=2x+2与y轴交点A(0,2);当y=0时,0=2x+2,解得x=﹣1,所以y=2x+2与x轴交点B(﹣1,0).所以直角△OAB是直线与两坐标轴围成的三角形,OA=2,OB=1,所以△AOB面积为OA•OB=×2×1=1.故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,同时体现了数形结合思想,把点的坐标转化为线段的长度.16.(4分)(2019春•西湖区校级月考)关于函数y=(k﹣3)x+k,给出下列结论:①此函数是一次函数;②无论k取什么值,函数图象必经过点(﹣1,3);③若函数经过二,三,四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是k<3,其中正确的是②③;(填序号)【思路点拨】①当k﹣3≠0时,函数是一次函数,即可求解;②y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),即可求解;③当k﹣3=0时,y=k=3,图象在一、二象限,当k﹣3≠0时,函数经过二,三,四象限,k<0,﹣<0,即可求解;④当k﹣3=0时,y=3,与x轴无交点;当k≠3时,函数图象与x轴的交点始终在正半轴,即﹣>0,即可求解.【解答】解:①当k﹣3≠0时,函数是一次函数,故①不符合题;②y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),故②符合题意;③当k﹣3=0时,y=k=3,图象在一、二象限,当k﹣3≠0时,函数经过二,三,四象限,k<0,﹣<0,解得:k<0,故符合题意;④当k﹣3=0时,y=3,与x轴无交点;当k≠3时,函数图象与x轴的交点始终在正半轴,即﹣>0,解得:0<k<3,故不符合题;故答案为:②③.【点睛】本题考查根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或是不等式进而解决问题.三.解答题(共7小题,共66分)17.(6分)(2019秋•雨花区校级月考)已知:y与x+2成正比例,且x=1时,y=﹣6 (1)求y与x之间的函数关系式;(2)当y<0时,求x的取值范围.【思路点拨】(1)根据题意设出函数解析式,把当x=1时,y=﹣6代入解析式,便可求出未知数的值,从而求出其解析式;(2)当y<0时,代入求出x的取值范围即可.【解答】解:(1)根据题意:设y=k(x+2),把x=1,y=﹣6代入得:﹣6=k(1+2),解得:k=﹣2.则y与x函数关系式为y=﹣2(x+2),即y=﹣2x﹣4;(2)当y<0时,代入y=﹣2x﹣4,则﹣2x﹣4<0,解得:x>﹣2.【点睛】本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题的关键.18.(8分)(2019秋•宣州区校级月考)已知一次函数y=kx+b的图象经过点A(﹣1,1)和点B(1,3)(1)求此一次函数的解析式(2)若一次函数y=kx+b的图象与x轴相交于点C,求点C的坐标.【思路点拨】(1)将A与B坐标代入y=kx+b中得到关于k与b的方程组,求出方程组的解得到k与b 的值,即可确定出一次函数解析式;(2)令y=0,则x+2=0,即可求得交点C的坐标.【解答】解:(1)依题意将A(﹣1,1)与B(1,3)代入y=kx+b,得,解得k=1,b=2,∴所求的解析式为y=x+2;(2)令y=0,则x+2=0,解得x=﹣2,∴点C的坐标为(﹣2,0).【点睛】此题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.19.(8分)(2018秋•景德镇期末)(1)直线y=2x﹣3经过第一、三、四象限;(2)若直线y=mx+n经过第一、二、三象限,请直接写出m,n的取值范围;(3)若直线y=mx+n不经过第一象限,请直接写出m,n的取值范围.【思路点拨】(1)根据一次函数的性质解答即可;(2)根据一次函数的性质得出m,n的取值范围即可;(3)根据一次函数的性质得出m,n的取值范围即可.【解答】解:(1)∵k=2>0,b=﹣3<0,所以直线y=2x﹣3经过第一、三、四象限;故答案为:一、三、四.(2)∵直线y=mx+n经过第一、二、三象限,∴m>0,n>0,(3)∵直线y=mx+n不经过第一象限,∴直线y=mx+n经过第二、三、四象限,∴m<0,n≤0.【点睛】此题考查一次函数的性质,关键是根据一次函数的性质解答.20.(10分)(2018秋•莱州市期末)如图,在平面直角坐标系中,一次函数y=﹣的图象l1分别与x 轴、y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求点C坐标;(2)求l2的表达式;(3)求△AOC和△BOC的面积.【思路点拨】(1)把(m,4)代入y=﹣中求得点C的坐标,(2)运用待定系数法即可得到l2的解析式;(3)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值【解答】解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),(2)设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(3)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC=×10×4=20;S△BOC=×5×2=5.【点睛】本题主要考查一次函数相交与平行问题,解决问题的关键是掌握待定系数法求函数解析式.21.(10分)(2019•望花区四模)在某市的创优工作中,某社区计划对1200m2的区域进行绿化.经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.(1)求甲、乙两施工队每天分别能完成的绿化面积是多少?(2)设先由甲队施工m天,再由乙队施工n天,刚好完成绿化任务,①求n与m的关系式;②若甲、乙两队施工的总天数不超过14天,问甲工程队最少施工多少天?【思路点拨】(1)设乙施工队每天能完成绿化的面积是xm2,根据在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天,列方程求解;(2)①用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解;②设应安排甲队工作a天,乙队的工作b天,列不等式组求解.【解答】解:(1)设乙施工队每天能完成绿化的面积是xm2,根据题意得:,解得:x=50,经检验,x=50是原方程的解,则甲施工队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两施工队每天能完成的面积分别是100m2、50m2;(2)①由题意得:100m+50n=1200,整理得:n==24﹣2m;②设应甲队的工作a天,则乙队工作b天,(0≤a≤14,0≤b≤14)根据题意得,100a+50b=1200,∴b=24﹣2aa+b≤14,∴a+24﹣2a≤14,∴a≥10.答:甲工程队最少施工10天.【点睛】此题是一次函数综合题,主要考查了分式方程及其解法,不等式及其解法,极值的确定,解本题的关键是求出甲乙对每天的工作量.22.(12分)(2018秋•景德镇期末)周末,小明和哥哥一起骑自行车从家里出发到昌南湖游玩,从家出发0.5小时后到达陶溪川,游玩一段时间后按原速前往昌南湖.小明离家80分钟后,爸爸驾车沿相同路线前往昌南湖,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知爸爸驾车的速度是小明骑车速度的3倍.(1)小明骑车的速度为20km/h,爸爸驾车的速度为60km/h;(2)小明从家到陶溪川的路程y与时间x的函数关系式为y=20x,他从陶溪川到昌南湖的路程y与时间x的函数关系式为y=20x﹣10,爸爸从家到昌南湖的路程,与时间x的函数关系式为y=60x ﹣80;(3)小明从家出发多少小时后被爸爸追上?此时离家多远?(4)如果小明比爸爸晚10分钟到达昌南湖,那么昌南湖离家有多远?【思路点拨】(1)根据图象可以求出小明在甲地游玩的时间,由速度=路程÷时间就可以求出小明骑车的速度;(2)直接运用待定系数法就可以求出从家到陶溪川和从陶溪川到昌南湖路程y(km)与时间x(h)的函数关系式;(3)其解析式建立二元一次方程组,求出交点的坐标就可以求出结论;(4)设从爸爸追上小明的地点到昌南湖的路程为n(km),根据爸爸比小明早到10分钟列出有关n的方程,求得n值即可.【解答】解:(1)由图象可得,小明骑车的速度为:10÷0.5=20km/h,∵爸爸驾车的速度是小明骑车速度的3倍,∴爸爸驾车的速度为:20×3=60km/h,故答案为:20,60;(2)设小明从家到陶溪川的路程y与时间x的函数关系式为y=kx,0.5k=10,得k=20,即小明从家到陶溪川的路程y与时间x的函数关系式是y=20x;∵小明走OA段与走BC段速度不变,∴OA∥BC.设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10;设直线DE解析式为y=60x+b2,把点D(,0)代入得:b2=﹣80,∴y=60x﹣80;故答案为:y=20x;y=20x﹣10;y=60x﹣80;(3)根据题意可得:,解得,所以小明出发1.75小时(105分钟)被爸爸追上,此时离家25km;(4)设从爸爸追上小明的地点到昌南湖的路程为n(km),由题意得:,∴n=5∴从家到昌南湖的路程为5+25=30(km).答:昌南湖离家有30km.【点睛】本题考查了一次函数的应用,解题的关键是根据实际问题并结合函数的图象得到进一步解题的有关信息,并从实际问题中整理出一次函数模型.23.(12分)(2019春•崇川区校级期中)直线y=kx+3和x轴、y轴的交点分别为B、C,∠OBC=30°,点A的坐标是(﹣,0),另一条直线经过点A、C.(1)求点B的坐标及k的值;(2)求证:AC⊥BC;(3)点M为直线BC上一点(与点B不重合),设点M的横坐标为x,△ABM的面积为S.①求S与x的函数关系式;②当S=6时,求点M的坐标.【思路点拨】(1)直线y=kx+3和y轴的交点为C,则点C(0,3),则BC=6,OB=3,则点B(3,0),即可求解;(2)OA=,OC=3,则AC=2,则∠AOC=30°,即可求解;(3)①点M(x,﹣x+3),S=×AB×|y M|即可求解;②S=6±2x=6,即可求解.【解答】解:(1)直线y=kx+3和y轴的交点为C,则点C(0,3),则BC=6,OB=3,则点B(3,0),将点B的坐标代入y=kx+3得:0=3k+3,解得:k=﹣;(2)OA=,OC=3,则AC=2,则∠AOC=30°,∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°,∴AC⊥BC;(3)①直线BC的表达式为:y=﹣x+3,则点M(x,﹣x+3),S=×AB×|y M|=4×|﹣x+3|=6±2x,即:S=;②S=6±2x=6,解得:x=0,故点M(0,3).【点睛】本题考查的是一次函数综合运用,涉及到直角三角形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。
人教版八年级数学下册 第19章 一次函数 单元测试题精选(配套练习附答案)
③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;
考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
二、填空题。(每小题3分,共18分)仔细审题,认真填写哟!
11.在平面直角坐标系中,已知一次函数 的图像经过 , 两点,若 ,则 _______ .(填”>”,”<”或”=”)函数 的增减性有两种情况:①当 时,函数 的值随x的值增大而增大;②当 时,函数 y的值随x的值增大而减小.
A. 21cmB. 22cmC. 23cmD. 24cm
【答案】C
【解析】
【分析】
【详解】试题分析:设碗的个数为x个,碗的高度为ycm,由题意可知碗的高度和碗的个数的关系式为y=kx+b,
由题意得, ,
解得: ,
则11只饭碗摞起来的高度为: ×11+5= (cm).
更接近23cm.
故选C.
考点:二元一次方程组的应用.
【答案】D
【解析】
设正比例函数的解析式为y=kx(k≠0),
因为正比例函数y=kx的图象经过点(-1,2),
所以2=-k,
解得:k=-2,
所以y=-2x,
把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,
所以这个图象必经过点(1,-2).
故选D.
4.对于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
一次函数_单元测试含答案
二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。
一次函数测试A卷(含参考答案)
一次函数测试题A卷一、选择题:1、一次函数的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、下列图象中,以方程的解为坐标的点组成的图象是()3、如下图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.204、一次函数与的图象如图,则下列结论①;②;③当时,中,正确的个数是()A.0 B.1 C.2 D.35、直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为()A. B. C. D.无法确定6、均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为().7、已知是的一次函数,下表列出了部分对应值,则等于()A. B. C. D.28、图是韩老师早晨出门散步时,离家的距离与时间之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()9、下列函数是一次函数,且图像经过原点的是()A.y= B.y=-3x+5 C.y=-x D.y=10、直线经过第一、二、四象限,则直线的图象只能是()A B C D11、父亲节,某大学“文苑”专栏登出了某同学回忆父亲的小诗:同辞家门赴车站,别时叮咛语万千,学子满载信心去,老父怀抱希望还“如果用纵轴y表示父亲和学子在行进中离家的距离,横轴表示离家的时间,那么下列图中与上述诗意大致相吻合的是( )二、填空题12、直线经过点和轴正半轴上的一点,如果(为坐标原点)的面积为2,则的值为.13、直线,直线与轴围成图形的周长是(结果保留根号)14、在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,是总价(元)与加油量(升)的函数关系式是.15、已知一次函数的图象经过点,,则,.16、如果y=(k-2)x是正比例函数,则k=_____,且y随x的增大而_______。
第四章一次函数单元测试 2024—2025学年北师大版数学八年级上册
第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.若点(3,m)在函数y=x+2的图象上.则m的值为()A.0B.1C.2D.32.一个正比例函数的图象经过点(﹣2,4),它的表达式为()A.y=﹣2x B.y=2x C.y=﹣x D.y=x3.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)4.关于一次函数y=2x+4,下列说法正确的是()A.图象经过第一、三、四象限B.图象与y轴交于点(0,﹣2)C.函数值y随自变量x的增大而增大D.当x>﹣1时,y<25.点A(2,y1)与点B(3,y2)在直线y=﹣2024x+2024上,则y1与y2的关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1=y26.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米7.若一次函数y=(4﹣3k)x﹣2的图象经过点A(x1,y1)和点B(x2,y2),当x1>x2时,y1<y2,则k的取值范围是()A.B.C.D.8.一次函数y=kx﹣k和正比例函数y=kx在同一平面直角坐标系中的函数图象可能是()A.B.C.D.9.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 10.一次函数y=(m﹣1)x+m+2的图象过一、二、三象限,则m的取值范围是()A.m>1B.﹣1<m<2C.﹣2<m<1D.m>﹣2二、填空题(每小题3分,满分18分)11.已知关于x的函数y=(k﹣1)x|k﹣2|是正比例函数,则k=.12.当直线y=(2﹣2k)x+k﹣3,不经过第一象限时,则k的取值范围是.13.在函数y=中,自变量x的取值范围是.14.若,则直线y=kx﹣k必经过第象限.15.如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB 上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是.16.如图,在平面直角坐标系中,一次函数y=k(x﹣1)的图象分别交x 轴,y轴于A,B两点,且OB=2OA,将直线AB绕点B按顺时针方向旋转45°,交x 轴于点C,则直线BC的函数表达式是.第II卷第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册考生注意:本试卷共三道大题,24道小题,满分120分,时量120分钟姓名:____________学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______12、______13、_______14、______15、_______16、______三、解答题(17、18题每题8分,19、20、21、22每题9分,23、24每题10分,共计72分,解答题要有必要的文字说明)17.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.18.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+1与y轴交于点C,直线l1和直线l2相交于点D.(1)直接写出点A、B、C的坐标分别为:A,B,C;=4,若存在,求点P坐标;若不存在,请说(2)在x轴上是否存在一点P,使得S△ADP明理由.19.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?20.已知y=y1+y2,y1与x成正比例,y2与x﹣2成正比例,当x=1时,y=﹣3;当x=﹣2时,y=0.(1)求y与x的函数关系式;(2)当x=3时,求y的值.21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.23.已知函数y=其中m为常数,该函数的图象记为G.(1)当m=﹣2时,若点D(3,n)在图象G上,求n的值;(2)当3﹣m≤x≤4﹣m时,若函数最大值与最小值的差为,求m的值;(3)已知点A(0,1),B(0,﹣2),C(2,1),当图象G与△ABC有两个公共点时,直接写出m的取值范围.24.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)求一次函数y=kx+b的解析式;(2)求四边形AOCD的面积;(3)在平面内直线CD的右侧是否存在点P,使得以点P,C,D为顶点的三角形是以CD为腰的等腰直角三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.。
(完整版)一次函数单元测试题(含答案)(可编辑修改word版)
2 - x4 -x 2x + 2一次函数专题训练一、相信你一定能填对!(每小题 3 分,共 30 分) 1. 下列函数中,自变量 x 的取值范围是 x≥2 的是( )1A. y=B .y=C .y=D .y= ·1 2. 下面哪个点在函数 y= x+1 的图象上( )2A .(2,1)B .(-2,1)C .(2,0)D .(-2,0)3.下列函数中,y 是 x 的正比例函数的是( )xA. y=2x-1B .y=3C .y=2x 2D .y=-2x+14. 一次函数 y=-5x+3 的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四5. 若函数 y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则 m 的值为( )1 1 1 1 A .m>B .m=C .m<D .m=-22226. 若一次函数 y=(3-k )x-k 的图象经过第二、三、四象限,则 k 的取值范围是( )A .k>3B .0<k≤3C .0≤k<3D .0<k<37. 已知一次函数的图象与直线 y=-x+1 平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1⑧.汽车开始行驶时,油箱内有油 40 升,如果每小时耗油 5 升,则油箱内余油量 y (升)与行驶时间 t (时)的函数关系用图象表示应为下图中的( )9. 李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程 y (千米)与行进时间 t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数 y=kx+b 的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为( ) 1A .y=-2x+3B .y=-3x+2C .y=3x-2D .y= x-32x - 2x - 2⎩二、你能填得又快又对吗?(每小题 3 分,共 30 分)11. 已知自变量为 x 的函数 y=mx+2-m 是正比例函数,则 m= , 该函数的解析式为. 12. 若点(1,3)在正比例函数 y=kx 的图象上,则此函数的解析式为 .13. 已知一次函数 y=kx+b 的图象经过点 A (1,3)和 B (-1,-1),则此函数的解析式为 .14. 若解方程 x+2=3x-2 得 x=2,则当 x时直线 y=x+ 2 上的点在直线 y=3x-2 上相应点的上方.15.已知一次函数 y=-x+a 与 y=x+b 的图象相交于点(m ,8),则 a+b= .16. 若一次函数 y=kx+b 交于 y 轴的负半轴, 且 y 的值随 x 的增大而减少, 则 k0,b 0.(填“>”、“<”或“=”)⎧x - y - 3 = 0 17.已知直线 y=x-3 与 y=2x+2 的交点为(-5,-8),则方程组⎨2x - y + 2 = 0 的解是.18. 已知一次函数 y=-3x+1 的图象经过点(a ,1)和点(-2,b ),则 a= ,b= .19. 如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k 的值为.20. 如图,一次函数 y=kx+b 的图象经过A 、B 两点,与 x 轴交于点C ,则此一次函数的解析式为 ,△AOC 的面积为 .三、认真解答,一定要细心哟!(共 60 分)21.(14 分)根据下列条件,确定函数关系式:(1)y 与 x 成正比,且当 x=9 时,y=16; (2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12 分)一次函数 y=kx+b 的图象如图所示:(1) 求出该一次函数的表达式; (2) 当 x=10 时,y 的值是多少? (3) 当 y=12 时, x 的值是多少?23.(12 分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克 0.4 元将剩余土豆售完,这时他手中的钱(含备用零钱)是26 元,问他一共带了多少千克土豆?24.(10 分)如图所示的折线 ABC 表示从甲地向乙地打长途电话所需的电话费 y(元)与通话时间 t(分钟)之间的函数关系的图象.(1)写出 y 与 t 之间的函数关系式.(2)通话 2 分钟应付通话费多少元?通话 7 分钟呢?25.(12 分)已知雅美服装厂现有 A 种布料 70 米,B 种布料 52 米,现计划用这两种布料生产 M、N 两种型号的时装共 80 套.已知做一套 M 型号的时装需用 A 种布料 1. 1 米,B 种布料 0.4 米,可获利 50 元;做一套N 型号的时装需用 A 种布料 0.6 米,B 种布料 0. 9 米,可获利45 元.设生产M 型号的时装套数为 x,用这批布料生产两种型号的时装所获得的总利润为 y 元.①求 y(元)与 x(套)的函数关系式,并求出自变量的取值范围;②当 M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?⎨y = -8答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11. 2; y=2x 12. y=3x 13. y=2x+1 14. <2 15.16 16.<;< 17.⎧x = -5⎩ 18.0;7 19.±6 20.y=x+2;421.①y=16 x ;②y= 1 x+ 722.y=x-2;y=8;x=14 95 523.①5 元;②0.5 元;③45 千克24.①当 0<t≤3 时,y=2.4;当 t>3 时,y=t-0.6.②2.4 元;6.4 元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0. 6(80- x )]米,共用 B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得 40≤x≤44, 而 x 为整数,∴x=40,41,42,43,44,∴y 与 x 的函数关系式是 y=5x+3600(x=40,41, 42,43,44);②∵y随x 的增大而增大,∴当 x=44 时,y 最大=3820,即生产 M 型号的时装 44 套时,该厂所获利润最大,最大利润是 3820 元.。
八年级数学一次函数单元测试卷AB
八年级数学一次函数单元测试卷A姓名_____________ (用时120分钟,满分150分) 得分一、填空题(每小题4分,共32分)1、若函数=y 123+x x 有意义,则x 满足的条件是 .2、一次函数y b kx +=,若0,0<>b k ,那么它的图象过第________象限。
3、已知:132=-y x ,若把y 看成x 的函数,则可以表示为_______________4、直线x y 213+-=与x 轴的交点坐标为________,与y 轴的交点为______5、若函数3)12(23+-=-m x m y 是一次函数,则_______=m ,且y 随x 的增大而________6、某拖拉机的油箱有油100升,每工作1小时耗油8升,则油箱的剩余油量y (升)与工作时间x (时)间的函数关系式为 。
7、一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是 。
8、某地“市话”的收费标准是:(1)通话时间在三分钟以内(包括三分钟),话费为0.22元;(2)通话时间超过三分钟时,超过部分的话费按每分钟0.22元计,在一次通话中,如果通话时间超过三分钟那么话费y(元)与通话时间x(x 取整数,单位:分钟)之间的函数关系式为 。
二、选择题(每小题3分,共30分)9、对于正比例函数mx y =,y 随着x 的增大而增大,则m 的取值范围( )A、m 0< B、0≤m C、0>m D、0≥m10、一次函数32+-=x y 的图象与两坐标轴的交点是( )A、(3,0)(0,23) B、(1,3)(23,1)C、(0,3)(23,0) D、(3,1)(1,23)11、弹簧的长度y cm 与所挂物体的质量x(kg)的关系是一次函数,图象如右图所示,则弹簧不挂物体时的长度是( )A、9cm B、10cm C、10.5cm D、11cm12、下列各函数中,x 逐渐增大y 反而减少的函数是( )A 、x y 31-= B 、x y 31=C 、14+=x yD 、14-=x y13、已知一次函数3-=kx y 过点(2,1),求k 的值是( )A 、 2B 、 -2C 、 1D 、 -114、 一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R 欧表示为温度t ℃的函数关系为( )A 、R=2992.1+-tB 、 R=2008.0+tC 、 R=2008.2+tD 、 R=22+t15、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是 ( )16、已知函数2)12(++-=m x m y 的图象上两点A (),11y x ,B (),22y x ,若21x x <时,21y y >,则m 的取值范围是( )A 、21<m B 、21>m C 、2<m D 、0>m17、一次函数n mx y +-=的图象经过第二、三、四象限,则化简22)(nn m +-的结果是A 、mB 、m -C 、n m -2D 、n m 2- ( ) 18、点A (3,1y )和点B (-2,2y )都在直线34+-=x y 上,则1y ,2y 的大小关系是( ) A 、 21y y > B 、21y y < C 、21y y = D 、不能确定三、解答题(共78分)19、(6分)画出函数13-=x y 的图象,并说出图象与x 轴、y 轴的交点坐标。
初中八年级数学 《一次函数》单元测试(A)
《一次函数》单元测试(A )一、耐心填一填,一锤定音!(每小题3分,共30分)1.已知函数(1)1y k x k =++-,当k 时,它为一次函数,当k 时,它为正比例函数.2.直线1y x =+与直线22y x =-的交点坐标是 .3.一次函数1y x =-+的图象经过点P (m ,m -1),则m = .4.A ,B 两地的距离是160k m ,若汽车以平均每小时80k m 的速度从A 地开往B 地,则汽车距B 地的路程y (k m )与行驶的时间x (h )之间的函数关系式为 . 5.已知函数3y x b =-+的图象过点(1,-2)和(a ,-4),则a = .6.一次函数y kx b =+中,y 随x 的增大而减小,且kb >0,则它的图象一定不经过第 象限.7.已知某一次函数的图象如图1所示,则其函数表达式是 .8.直线y kx b =+过点(2,-1),且与直线132y x =+相交于y 轴上同一点,则其函数表达式为 .9.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出一个符合上述条件的函数表达式 . 10.若三点A (0,3),B (-3,0)和C (6,y )共线,则y = . 二、精心选一选,慧眼识金!(每小题3分,共30分)1.下列各函数中,x 逐渐增大y 反而减少的函数是( ) A .13y x =-B .13y x =C .41y x =+D .41y x =-2.下面哪个点不在函数23y x =-+的图象上( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)3.已知直线y =x +b ,当b <0时,直线不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.直线y =kx 过点(3,4),那么它还通过点( ) A .(3,-4) B .(4,3)C.(-4,-3)D.(-3,-4)5.一次函数y=kx+b的图象经过点(2,1)和点(0,3),那么这个函数表达式为()A.132y x=-B.y=-x+3C.y=3x-2D.y=-3x+26.如果直线y=kx+b经过一、二、四象限,则有()A.k>0,b>0B.k>0,b<0C.k<0,b<0D.k<0,b>07.关于正比例函数y=-2x,下列结论中正确的是()A.图象过点(-1,-2)B.图象过第一、三象限C.y随x的增大而减小D.不论x取何值,总有y<08.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限9.汽车由重庆驶往相距400千米的成都.如果汽车的平均速度是100千米/小时,那么汽车距离成都的路程s(千米)与行驶时间t(小时)的函数关系的图象表示为()A.B.C.D.10.甲、乙两人赛跑,所跑路程与时间的关系如图2所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙两人中先到达终点的是乙C.甲、乙同时起跑D.甲在这次赛跑中的速度为5m/s三、用心想一想,马到成功!(本大题共46分)1.(本小题11分)如图3所示,直线m是一次函数y=kx+b的图象.(1)求k、b的值;(2)当12x=时,求y的值;(3)当y=3时,求x的值.2.(本小题11分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元.(1)求出y与x的函数关系式(纯利润=总收入-总支出);(2)当y=106000时,求该厂在这个月中生产产品的件数.3.(本小题12分)某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:①买一个书包赠送一个文具盒;②按总价九折付款。
(完整)人教版数学八年级上册第6章一次函数单元测试题(含答案),推荐文档
2 1 初二数学第六单元测试题一、选择题:(本题共 10 小题,每小题 3 分,共 30 分)1.如果 y = (m -1)x 2-m 2+ 3 是一次函数,那么 m 的值是…………………………( )A. 1 ;B. -1;C. ±1 ;D. ± ;2. (2015•南平)直线 y=2x+2 沿 y 轴向下平移 6 个单位后与 x 轴的交点坐标是 ............... ( ) A .(-4,0);B .(-1,0);C .(0,2);D .(2,0);13. 若点 A (-2,m )在正比例函数 y = - 2x 的图象上,则 m 的值是………………()A . ;B . - 1; C .1; D .-1;4 44. 若一次函数 y=(2-m )x-2 的函数值 y 随 x 的增大而减小,则 m 的取值范围是 …………( )A .m <0;B .m >0;C .m <2 ;D .m >2; 5. 直线 y=kx+b 不经过第四象限,则…………………………………………………()A .k >0,b >0;B .k <0,b >0;C .k≥0,b≥0;D .k <0,b≥0; 6. (2014.深圳)已知函数 y=ax+b 经过(1,3),(0,-2),则 a-b=… .......... ( )A .-1;B .-3;C .3;D .7;7. 如图,直线 y=-x+m 与 y=nx+4n (n≠0)的交点的横坐标为-2,则关于 x 的不等式- x+m >nx+4n >0 的整数解为……………………………………………………………( ) A .-1; B .-5; C .-4; D .-3;第 7 题图第 9 题 图 第 10 题 图8.已知直线l 经过点 A (1,0),且与直线 y = x 垂直,则直线l 的函数表达式为 ......................................... ( )A. y = -x +1 ;B. y = -x -1;C. y = x +1 ;D. y = x -1;9. 小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间, 然后回家,如图描述了小明在散步过程汇总离家的距离 s (米)与散步所用时间 t (分)之间的函数关系,根据图象,下列信息错误的是 ............................................................... ( )A. 小明看报用时 8 分钟;B .公共阅报栏距小明家 200 米;5. (2015•无锡)一次函数标为 .与两坐标 6.如图,已 x - y = 2 的解是 2x + y = 1 值, C .小明离家最远的距离为 400 米; D .小明从出发到回家共用时 16 分钟;10. (2014•黑龙江)如图,在平面直角坐标系中,边长为 1 的正方形 ABCD 中,AD 边的中点处有一动点 P ,动点 P 沿 P→D→C→B→A→P 运动一周,则 P 点的纵坐标 y 与点 P 走过的路程 s 之间的函数关系用图象表示大致是……………………………………( )A.B. C. D.二、填空题:(本题共 8 小题,每小题 3 分,共 24 分)211.函数 y =x -1中自变量 x 的取值范围是 .12.已知 m 是整数,且一次函数 y = (m + 4)x + m + 2 的图像不经过第二象限,则 m =.13.已知一次函数 y = kx + k - 3 的图像经过点(2,3),则 k 的值为.14.请你写出一个图像过点(0,2),且 y 随 x 的增大而减小的一次函数的解析式 .1 y=2x-6 的图象与 x 轴的交点坐标为 .与 y 轴的交点坐 轴围成的三角形面积为 . 1 知函数 y=x-2 和 y=-2x+1 的图象交于点 P ,根据图象可得方程组⎧⎨.⎩第 16 题图第 17 题图17. (2013 春•玉田县期中)在矩形 ABCD 中,动点 P 从点 B 出发,沿 BC 、CD 、DA 运动至点 A 停止,设点 P 运动的路程为 x ,△ABP 的面积是 . 18.如图,点 Q 在直线 y=-x 上运动,点 A 的坐标为(1,0),当线段 AQ 最短时,点 Q 的坐标为 .三、解答题:(本大题共 10 题,满分 76 分)19.(本题满分 8 分)已知一次函数 y = (1- 2m )x + m +1 ,求当 m 为何时 (1) y 随着 x 的增大而增大?(2)图像经过一、二、四象限? (3)图像经过一、三象限? (4)图像与 y 轴的交点在 x 轴上方?第 18 题图20.(本题满分 6 分)已知一次函数y=kx+b的图像经过 A(1,1),B(2,-1)两点,求这个函数的表达式.21.(本题满分 7 分)在平面直角坐标系中,点 O 是坐标原点,过点 A(1,2)的直线y=kx+b 与x 轴交于点 B,且S AOB=4,求k 的值.22.(本题满分 7 分)如图,直线 y=2x+3 与x 轴交于点 A,与y 轴交于点 B.(1)求A、B 两点的坐标;(2)过B 点作直线 BP 与x 轴交于点 P,且使 OP=2OA,求△ABP的面积.23.(本题满分 7 分)已知:y+2 与3x 成正比例,且当 x=1 时,y 的值为 4.(1)求y 与x 之间的函数关系式;(2)若点(-1,a)、点(2,b)是该函数图象上的两点,试比较 a、b 的大小,并说明理由.24.(本题满分 8 分)如图,在平面直角坐标系中,点 A(0,4),B(3,0),连接 AB,将△AOB沿过点 B 的直线折叠,使点 A 落在x 轴上的点A′处,折痕所在的直线交 y 轴正半轴于点 C,求直线 BC 的解析式.25.(本题满分 7 分)如图,直线l1:y =x +1与直线l2:y =mx +n 相交于点P(1,b).(1)求b 的值;⎧y =x +1(2)不解关于 x,y 的方程组⎨y =mx +n ,请你直接写出它的解;⎩(3)直线l3:y =nx +m 是否也经过点 P?请说明理由.26.(本题满分 6 分)已知直线 y=kx+b 经过点 A(5,0),B(1,4).(1)求直线 AB 的解析式;(2)若直线 y=2x-4 与直线 AB 相交于点 C,求点 C 的坐标;(3)根据图象,写出关于 x 的不等式 2x-4>kx+b 的解集.27.(本题满分 10 分)某社区活动中心为鼓励居民加强体育锻炼,准备购买 10 副某种品牌的羽毛球拍,每副球拍配 x(x≥2)个羽毛球,供社区居民免费借用.该社区附近 A、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为 30 元,每个羽毛球的标价为 3 元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的 90%)销售;B 超市:买一副羽毛球拍送 2 个羽毛球.设在 A 超市购买羽毛球拍和羽毛球的费用为 yA(元),在 B 超市购买羽毛球拍和羽毛球的费用为 yB(元).请解答下列问题:(1)分别写出 yA、yB 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配 15 个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.28.(本题满分 10 分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发 1 小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成 2 小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的 2.5 倍,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间 x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?4 ⎩2017-2018 学年第一学期初二数学第六单元测试题参考答案一 、 选 择 题 : 1.B ;2.D ;3.C ;4.D ;5.A ;6.D ;7.D ;8.A ;9.A ;10.D ; 二、填空题:11.x ≠ 1;12.-3 或-2;13.2;14. y = -x + 2 (答案不唯一);15.(3,0),⎧x = 1 ⎛ 1 1 ⎫(0,-6,9;16. ⎨ y = -1;17.10;18. 2 , - ; ⎩⎝ ⎭ 三、解答题:19.(1) m < 1 ;(2) m > 1 ;(3) m = -1;(4) m > -1且m ≠ 1;20.2y = -2x + 3 ;21. 2 2 k = - 2 或 2 ; 3 522.(1)A ⎛ -2 3 ,⎪0 ⎫ ;B (0, 3);(24) 27 或 9 ; ⎝ ⎭ 23.(1) y = 6x - 2 ;(2) a < b ; 24. y = - 1 x + 3;2 2⎧x = 125. (1) b = 2 ;(2) ⎨ y = 2 ;(3)直线 y=nx+m 也经过点 P .理由如下: ∵当 x=1 时,y=nx+m=m+n=2,∴(1,2)满足函数 y=nx+m 的解析式,则直线经过点 P . 26. (1) y = -x + 5 ;(2) (3, 2);(3)x > 3 ; 27. 解:(1)由题意,得 yA=(10×30+3×10x)×0.9=27x+270; yB=10×30+3(10x-20)=30x+240;(2)当 yA=yB 时,27x+270=30x+240,得 x=10; 当 yA >yB 时,27x+270>30x+240,得 x <10; 当 yA <yB 时,27x+270<30x+240,得 x >10∴当2≤x<10 时,到B 超市购买划算,当 x=10 时,两家超市一样划算, 当 x >10 时在 A 超市购买划算.(3)由题意知 x=15,15>10,∴选择 A 超市,yA=27×15+270=675(元), 先选择 B 超市购买 10 副羽毛球拍,送 20 个羽毛球,然后在 A 超市购买剩下的 羽毛球:(10×15-20)×3×0.9=351(元),共需要费用 10×30+351=651(元) .∵651 元<675 元,∴最佳方案是先选择 B 超市购买 10 副羽毛球拍,然后在 A 超市购买 130 个羽毛球.28. 解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h. 故答案为:24;(2) 由题意得邮政车的速度为:24×2.5=60km/h .2设邮政车出发 a 小时两车相遇,由题意得 24(a+1)=60a ,解得:a= .32答:邮政车出发 小时与自行车队首次相遇;39(3) 由题意,得邮政车到达丙地的时间为:135÷60= ,4∴邮政车从丙地出发的时间为: 9 + 2 +1 = 21,∴B4 49 + 2 +1 = 21,C (7.5,0). 4 445 49 ,∴D⎛ 49 ⎫ 自行车队到达丙地的时间为:135÷24+0.5= +0.5= 888 ,135⎪ . ⎝ ⎭⎪⎧135 = 21 k + b设 BC 的解析式为 y = k x + b ,由题意得 1 1 1 ⎨4 1 1 ,∴ k 1 =−60, b 1 =450, ∴ y 1 = -60x + 450 ,⎩0 = 7.5k 1 + b 1设 ED 的解析式为 y 2 = k 2 x + b 2 ,由题意得⎧72 = 3.5k 2 + b 2 ,解得: ⎧k 2 = 24 ,∴ y = 24x -12 .当 y = y 时 , ⎨⎪ 49 ⎨ 135 = ⎩b = -122 1 2 ⎩⎪8 k 2 + b 2 2 -60x+450=24x-12,解得:x=5.5. y 1 =-60×5.5+450=120. 答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地 120km .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
一次函数单元测试题(含答案)
一次函数单元测试题(含答案) 一次函数测试题一、相信你一定能填对!(每小题3分,共24分)1.下列函数中,自变量x的取值范围是x≥2的是()A。
y=2-x B。
y=1/x C。
y=4-x^2 D。
y=(x+2)/(x-2)2.下列函数中,y是x的正比例函数的是()A。
y=2x-1 B。
y=x C。
y=2x^2 D。
y=-2x+13.一次函数y=-5x+3的图象经过的象限是()B。
二、三、四4.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()D。
m=-2/35.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()B。
0<k≤36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()C。
y=-x+107.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()A。
y=-2x+38.XXX骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,XXX加快了速度,仍保持匀速行进,如果准时到校,在课堂上,XXX请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()删除无法呈现的图片)二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x的函数y=mx+2-m是正比例函数,则m=1/2,该函数的解析式为y=1/2x+1/2.10.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为y=3x。
11.已知一次函数 $y=kx+b$ 的图象经过点 $A(1,3)$ 和$B(-1,-1)$,则此函数的解析式为 $y=2x+1$。
12.若解方程 $x+2=3x-2$ 得 $x=2$,则当 $x<2$ 时直线$y=x+2$ 上的点在直线 $y=3x-2$ 上相应点的上方。
+第5章一次函数+单元测试卷++2024—2025学年浙教版数学八年级上册
浙教版八年级上册《第5章一次函数》单元测试卷一、选择题1.(3分)下表描述了皮球从一定高度落下,弹跳高度y(m)与下落高度x(m)之间的关系,则下列判断错误的是()x(m)0 2 4 6 8 ⋯y(m)0 1 2 3 4 ⋯A.弹跳高度y(m)与下落高度x(m)都是变量B.弹跳高度是下落高度的一半C.y与x之间的函数表达式为y=x-2D.y与x之间的函数表达式为y= 1x22.(3分)如图,在长方形ABCD中,AB=6,AD=4,P是CD上的动点,且不与点C,D重合,设DP=x,梯形ABCP的面积为y,则y与x之间的函数关系式和自变量的取值范围分别是()A.y=24-2x;0<x<6 B.y=24-2x;0<x<4C.y=24-3x;0<x<6 D.y=24-3x;0<x<43.(3分)直线y=kx+2过点(-1,0),则k的值是()A.2 B.-2 C.-1 D.14.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(-2,0)C.图象不经过第四象限D.当x>2时,y<45.(3分)一次函数y=-3x+1的图象过点(x 1 ,y 1 ),(x 1+1,y 2 ),(x 1 +2,y 3 ),则()A.y 1 <y 2 <y 3 B.y 3 <y 2 <y 1 C.y 2 <y 1 <y 3 D.y 3 <y 1 <y 26.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=157.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,1),B(3,1),C(2,2).当直线y=0.5x+b与△ABC有交点时,b的取值范围是()A.-1≤b≤1 B.-1≤b≤0.5 C.-0.5≤b≤0.5 D.-0.5≤b≤18.(3分)如图,一次函数y= 34x+6的图象与x轴,y轴分别交于点A,B,过点B的直线l平分△ABO的面积,则直线l相应的函数表达式为()A.y= 35x+6 B.y= 53x+6 C.y= 23x+6 D.y= 32x+69.(3分)药品研究所开发一种抗菌新药,经过多年的动物实验后,首次用于临床人体试验,测得成人服药后血液中的药物浓度y(μg/mL)与服药后时间x(h)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A.83≤y≤ 6411B.6411≤y≤8 C.83≤y≤8 D.8≤y≤1610.(3分)张师傅驾车从甲地到乙地,两地相距500km,汽车出发前油箱中有油25L,途中加油若干升(加油时间忽略不计),加油前、后汽车都以100km/h的速度匀速行驶,已知油箱中的剩余油量y(L)与行驶时间t(h)之间的关系如图所示,则下列说法错误的是()A.当0<t<2时,y(L)与t(h)之间的函数表达式为y=-8t+25 B.途中加油21LC.汽车加油后还可行驶4hD.汽车到达乙地时油箱中的剩余油量为6L二、填空题11.(3分)将直线y=2x向上平移1个单位长度,平移后直线的解析式为 ______ .12.(3分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=-x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是 ______ ℉.13.(3分)已知函数y=2x 2a+b +a+2b是正比例函数,则a+b= ______ .14.(3分)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x(日) 1 2 3 4成绩y(个)40 43 46 49小红的仰卧起坐成绩y与日期x之间近似为一次函数关系,则该函数表达式为 ______ .15.(3分)如图,小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行13分钟时,到学校还需步行 ______ 米.16.(3分)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是 ______ .三、解答题17.(10分)图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示.(1)根据图2填表:x(min)0 3 6 8 … y(m)______ ______ ______ ______ …(2)根据图中的信息,请写出摩天轮的直径.18.(10分)如图,直线l 1 :y=x+5与过点A(5,0)的直线l 2 交于点C(1,m),与x轴交于点B.(1)求直线l 2 的解析式;(2)点M在直线l 1 上,MN∥y轴,交直线l 2 于点N,若MN=AB,求点M的坐标.19.(10分)在平面直角坐标系中,直线l 1 经过点(2,3),(-1,-3),直线l 2 经过原点O,且与直线l 1 交于点P(-2,a).(1)求a的值;(2)根据题意写出一个以点P(-2,a)的坐标为对应解的二元一次方程组;(3)设直线l 1 与y轴交于点A,求△APO的面积.20.(10分)AB两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与行驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是 ______ 千米/时,图中括号内的值为 ______ ;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是450千米.21.(12分)经销商用32000元购进一批某种品牌运动鞋,售完后,又用52800元再购进一批该种品牌的运动鞋,第二次购进的数量是第一次购进数量的1.5倍,但每双运动鞋进价比第一次上涨了20元.(1)经销商第二次购进这批运动鞋多少双?(2)经销商将第二次购进的运动鞋平均分给甲、乙两家分店销售,每双标价300元.甲店按标价卖出m双以后,剩余的按标价打八折全部售出;乙店同样按标价卖出m双,然后将n双按标价打九折售出,再将剩余的按标价打七折全部售出,结果利润与甲店相同.①写出n关于m的函数关系式;②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.。
(完整版)(一次函数单元测试题含答案)
一次函数单元测试题(分数120分时间:120分钟)一、选择题(本大题共10小题,共30分)1.一次函数y=(k+2)x+k2−4的图象经过原点,则k的值为()A. 2B. −2C. 2或−2D. 32.已知一次函数y=kx+b−x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<03.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.4.已知直线y=(m−3)x−3m+1不经过第一象限,则m的取值范围是()A. m≥13B. m≤13C. 13≤m<3 D. 13≤m≤35.下列函数关系式中:①y=2x+1;②y=1x ;③y=x+12−x;④s=60t;⑤y=100−25x,表示一次函数的有()A. 1个B. 2个C. 3个D. 4个6.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A. (−3,0)B. (−6,0)C. (−32,0) D. (−52,0)7.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度8.如图,△ABC是等腰直角三角形,∠A=90∘,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )A. B. C. D.9.小明、小华从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小华骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小华先到达青少年宫;②小华的速度是小明速度的2.5倍;③a=24;④b=480.其中正确的是()A. ①②④B. ①②③C. ①③④D. ①②③④10.已知一次函数y=ax+4与y=bx−2的图象在x轴上相交于同一点,则ba的值是( )A. 4B. −2C. 12D. −12二、填空题(本大题共10小题,共30分)11.函数y=√x+2−√3−x中自变量x的取值范围是______.12.如果直线y=−2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .13.已知y−2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是______ .14.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是 .15.已知一次函数y=(−3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是______ .16.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .17.如图,在平面直角坐标系中,直线y=−√52x+2√5与x轴,y轴分别交于点A,B,将△AOB沿过点A的直线折叠,使点B落在x轴的负半轴上,记作点C,折痕与y轴交于点D,则点D的坐标为______ 。
2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)
14.−4
15.<
1
1
16.k=2或−2.
17. = 2 + 10 (−5 < < 0)
18.(1) = 20−2 (2)5 < < 10
19.(1) = 1.5 + 5(0 < < 15);
(2)当弹簧长度为23cm时,所挂物体的质量为 12kg.
20.(1)y1=15x+30(x≥3),y2=12x+60(x≥3);(2)当购买 10 张票时,两种优惠方案付款
.
时,y 随 x 的增大而增大.
14.已知正比例函数 = −2的图象经过点(2,),则 m 的值为
15.已知点(−2,1),(2,2)都在直线 = 2−3上,则1
.
2.(填“<”或“>”或“=”)
16.若直线 ykx2 与坐标轴围成的三角形的面积是 4,则 k 的值为
.
17.已知点(−4,0)及第二象限的动点(,),且− = 5.设的面积为,则关于的
10.已知一次函数 y=kx+b(k,b 为常数,k≠0)的图象经过一、三、四象限,则下列结论
正确的是(
A.kb>0
)
B.kb<0
C.k+b>0
D.k+b<0
二、填空题
11.一次函数 = 2 + 1与轴的交点坐标是
12.请写出一个当 > 1时,随的增大而减小的函数表达式:
13.已知一次函数 = (5−) + 2,当 m
B. = + 1
6.一次函数 = −2−1的图象大致是(
A.
C. = −−2
)
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版一、单选题1.对于函数y=x+1,自变量x 取5时,对应的函数值为( )A .3B .36C .16D .62.下列各图像中,y 不是x 的函数的是( ).A .B .C .D .3.已知正比例函数3y x =的图象经过点()1m ,,则m 的值为( ) A .13B .3C .13-D .3-4.若一次函数的3y x b =-+图象上有两点()12A y -,和()26B y ,,则下列1y ,2y 大小关系正确的是( ). A .12y y >B .12y y <C .12y y ≥D .12y y ≤5.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <6.一个圆形花坛,面积S 与半径r 的函数关系式2S πr =中关于常量和变量的表述正确的是( )A .常量是2,变量是S 、π、rB .常量是2、π,变量是S 、rC .常量是2,变量是S 、πD .常量是π,变量是S 、r7.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,8.根据图象,可得关于x 的不等式k 1x <k 2x+b 的解集是( )A .x <2B .x >2C .x <3D .x >39.同一平面直角坐标系中,一次函数1y k x b =+的图象与2y k x =的图象如图所示,则关于x 的方程12k x b k x +=的解为( )A .0x =B .1x =-C .2x =-D .以上都不对10.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题11.函数232x y x -=+中,自变量x 的取值范围是 . 12.正比例函数(2)y m x =-的图象从左到右逐渐下降,则m 的取值范围是 .13.将直线21y x =--向左平移a (0a >)个单位长度后,经过点()15-,,则a 的值为 . 14.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1,0.5,2.分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是 .三、解答题15.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.16.正比例函数 y kx = 的图象经过点 ()1,3A - , (),1B a a + 求a 的值.17.已知一次函数的图象经过点A (﹣4,9)与点B (6,3),求这个一次函数的解析式.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?四、综合题19.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时,地砖的费用.20.在平面直角坐标系中,一个正比例函数的图象经过点(12),,把此正比函数的图象向上平移5个单位,得到一次函数:y kx b =+ (1)求一次函数的解析式.(2)直线(0)y kx b k =+≠与x 轴交于点A ,求A 点的坐标.(3)点(1)B n -,是该直线上一点,点C 在x 轴上,当ABC 的面积为154时,请直接写出C 点的坐标.21.如图,一次函数()10y kx b k =+≠的图象分别与x 轴和y 轴相交于C 、()03A ,两点,且与正比例函数22y x =-的图象交于点()1B m -,.(1)求一次函数的解析式;(2)当12y y >时,直接写出自变量x 的取值范围;22.某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位: 千元/吨)品种 先期投资养殖期间投资产值 鲤鱼 9 3 30 龙虾41020苗的投放量为x 吨. (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?参考答案与解析1.【答案】D【解析】【解答】解:当x=5时,y=5+1=6故答案为:D .【分析】将x=5代入y=x+1,求出y 的值即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数单元测试卷(A 卷)
说明:本卷共三大题26小题,满分120分,考试时间90分钟。
一、选择题(每小题3分,共30分)
1.一次函数y =kx +b(k ≠0)的图象如图,则k 和b 的取值围
是( )
A .k>0,b>0
B .k<0,b>0
C .k>0,b<0
D .k<0,b<0
2.下面图象中,关于x 的一次函数y =-mx -(m -3)的图象不可能是( )
3.已知函数y =mx +2x -2,要使函数值y 随自变量x 的增大而增大,则m 的取值围是
( )
A .m ≥-2
B .m>-2
C .m ≤-2
D .m<-2
4.下列四个说法中错误..
的是 ( ) A .若y =(a +1)x(a 为常数)是正比例函数,则a ≠—1;
B .若y =-2a x 是正比例函数,则a =3;
C .正比例函数y =kx(k 为常数,k ≠0)的图象过二、四象限;
D .正比例函数y =k 2x(k 为常数,k ≠0)中,y 随着x 的增大而增大
5.正比例函数y =kx(k<0),当x 1=-3、x 2=0、x 3=2时,对应的y1、y 2、y 3之间的关系
是( )
A y 3<y 2,y l <y 2
B y 1<y 2<y 3
C . y 1>y 2>y 3
D . 无法确定
6.一次函数y =kx +b 的图象经过(m ,1)、(-1,m),其中m>1,则k 、b ( )
A .k>0且b<0
B .k>0且b>0
C .k<0且b<0
D .k<0且b>0
7.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,那么m 的值为( )
A .±2
B .±4
C .2
D .-2
8.星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离s(米)与散
步所用时间t(分)之间的函数关系.依据图象,下面的描述符合小红散步情景的是
( )
A. 从家出发,到了一个公共阅报
栏,看了一会儿报,就回家了;
B .从家出发,到了一个公共阅报栏,
看了一会儿报后,继续向前走了一段,
然后回家了;
C .从家出发,一直散步(没有停留),
然后回家了;
D .从家出发,散了一会儿步,就找
同学去了,18分钟后才开始返回。
9.直线y =-43
x +4和x 轴、y 轴分别相交于点A 、B ,在平面直角坐标系,A 、B 两点到直线a 的距离均为2,则满足条件的直线a 的条数为( )
A .1
B .2 C. 3 D .4
10.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),
超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的最大值是 ( )
A .11
B .8 C. 7 D .5
二、填空题(每小题3分,共30分)
11.已知一次函数y =2x +4的图象经过点(m ,8),则m =_______.
12.若一次函数y =(2-m)x +m 的图象经过第一、二、四象限,则m 的取值围是_______
13.若直线y =-x +a 和直线y =x +b 的交点坐标为(m ,8),则a +b =_______.
14.若正比例函数y =(m -1)x 32-m ,y 随x 的增大而减小,则m 的值是_______.
15.一次函数y =kx +b(k ≠0)的图象过点(1,-1),且与直线y =5-2x 平行,则此一次
函数的解析式为_______,其图象经过_______象限.
16.如果正比例函数y =3x 和一次函数y =2x +k 的图象交点在第三象限,那么k 的取值
围是_______.
17.对于函数y =mx +1(m>0),当m =_______时,图象与坐标轴围成的图形面积等于1.
18.已知一次函数y =-3x +2,当— 13
≤x ≤2时,函数值y 的取值围是_______. 19.已知A 、B 的坐标分别为(-2,0)、(4,0),点P 在直线y =12
x +2上,如果△ABP 为直角三角形,这样的P 点共有_______个。
20.已知m 是整数,且一次函数y =(m +4)x +m +2的图象不经过第二象限,则m =_______。
三、解答题(共60分)
21.(8分)已知直线y=-2x+3与直线y=x-6交于点A,且两直线与x轴的交点分别为
B、C,求△ABC的面积.
22.(10分)某长途汽车客运公司规定旅客可随身携带一定质量的行,如果超过规定的质量,则需购买行票,行费用y(元)是行质量x(千克)的一次函数,其图象如图所示。
(1)根据图象数据,求y与x之间的函数关系式;
(2)旅客最多可免费携带的行质量是多少千克?
23.(10分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆的千克数与他手中持有的钱数(含备用零钱)的关系如图所示.结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元.问:他一共带了多少千克土豆?
24.(10分)已知一次函数y=kx+b(k>0)的图象经过点P(3,2),它与两坐标轴围成的三
角形的面积等于4.求该函数的解析式.
25.(10分)某城市为了尽快改善职工住房条件,积极鼓励个人购房和积累建房基金,决定
(1)某职工每月交纳公积金72元,求他每月的基本工资;
(2)设每月基本工资为x元,交纳公积金后实得金额为y元,试写出当100<x≤200时,y与x之间的关系式.
26.(12分)在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于
研制出一种治疗非典型肺炎的抗生素.据临床观察,如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量y(μg)与时间t(h)之间的关系近似地满足如图所示的折线.
(1)写出注射药液后每毫升血液中含药量y与时间t之间的函数关系式及自变量的取值围;
(2)据临床观察,每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的.如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?
(3)假若某病人一天中第一次注射药液是早晨6点钟,问怎样安排此人从6:00-20:00注射药液的时间,才能使病人的治疗效果最好?。