最新有机化学中碳链增长的反应

合集下载

有机合成中碳链上增加一个碳原子的方法

有机合成中碳链上增加一个碳原子的方法

有机合成中碳链上增加⼀个碳原⼦的⽅法⼀、以甲醛或甲醛等价物为底物进⾏反应增加碳链1、羟醛缩合反应(Aldol condensation)醛酮在碱性条件下得到烯醇盐和另⼀个羰基化合物缩合得到β-羟基醛酮的反应。

当利⽤甲醛作为底物时则底物增加⼀个碳。

Evans羟醛缩合反应,Abiko-Masamune羟醛缩合反应,Mukaiyama羟醛缩合反应2、Arens-van Dorp反应烷氧基⼄炔在强碱条件下对醛酮加成得到烷氧基炔甲醇的反应。

3、Stobbe condensation丁⼆酸⼆⼄酯及其衍⽣物和羰基化合物在碱性条件下进⾏缩合的反应。

4、Knoevenagel缩合反应羰基化合物和活泼亚甲基化合物在胺催化下缩合的反应。

5、Stetter反应醛和α,β-不饱和酮在噻唑盐的催化下反应制备1,4-⼆羰基化合物的反应。

噻唑盐是氰离⼦的安全替代试剂。

此反应也被称为 Michael-Stetter反应,机理和安息⾹缩合类似。

此反应直接利⽤甲醛作为底物的报道较少,但是有⽂献报道利⽤糖作为甲醛替代物进⾏反应可以得到多⼀个碳的1,4-⼆羰基化合物。

【J. Am. Chem. Soc. 2013, 135, 8113–8116】6、Barbier反应在有机⾦属试剂存在下,羰基化合物可以迅速与其反应,这类反应被称为Barbier反应。

7、Grignard反应(格⽒反应)格⽒反应有多多种⽅式增加碳链,可以考虑以甲醛为底物和格⽒试剂进⾏反应增加⼀个碳链得到醇,也可以以⼆氧化碳为底物进⾏加成得到羧酸,或者直接利⽤甲基格⽒试剂对其他亲电试剂进⾏延长碳链。

8、Kagan-Molander偶联反应9、贝蒂反应(Betti Reaction)酚与芳⾹醛和伯胺作⽤得到 α-氨基苯甲酚类。

这个反应可以视为苯酚的Mannich反应。

10、Mannich反应1903年,B. Tollens和von Marle发现苯⼄酮和甲醛,氯化铵反应可以⽣成三级胺。

增长碳链的反应

增长碳链的反应

增长碳链的反应碳链是有机化合物的基本结构之一,它在生物体内起着重要的作用。

而增长碳链的反应是一种可以在有机化学中实现碳链延长的重要反应。

本文将介绍增长碳链的反应原理、常见的反应类型以及应用领域。

一、增长碳链的反应原理增长碳链的反应是指通过在已有碳链上添加新的碳原子,使碳链长度增加的化学反应。

在有机化学中,常用的增长碳链的方法主要有碳碳键形成反应和碳碳键断裂反应。

碳碳键形成反应是指通过碳原子与碳原子之间的化学键形成,使碳链长度增加。

常见的碳碳键形成反应有卤代烃的分子间或分子内的偶联反应,以及烯烃的加成反应等。

例如,卤代烃可以与有机锂试剂反应,生成新的碳碳键,从而实现碳链的延长。

碳碳键断裂反应是指通过碳原子与碳原子之间的化学键断裂,从而在碳链上形成自由基或离子,然后通过其他反应形成新的碳碳键,实现碳链的延长。

常见的碳碳键断裂反应有氢化、卤化、氧化等反应。

例如,烷烃可以与卤素反应,生成卤代烃,然后通过卤代烃的偶联反应形成新的碳碳键。

二、常见的增长碳链反应类型1. 碳碳键形成反应(1)卤代烃的偶联反应:卤代烃与有机锂试剂反应,生成新的碳碳键。

(2)烯烃的加成反应:烯烃与电子亲和性较强的物质反应,生成新的碳碳键。

2. 碳碳键断裂反应(1)氢化反应:烯烃与氢气反应,断裂碳碳双键,生成新的碳碳单键。

(2)卤化反应:烷烃与卤素反应,生成卤代烃,然后通过卤代烃的偶联反应形成新的碳碳键。

(3)氧化反应:醇与氧气反应,生成酮或醛,然后通过酮或醛的加成反应形成新的碳碳键。

三、增长碳链反应的应用领域增长碳链的反应在有机合成中具有广泛的应用。

它可以用于合成复杂的有机分子,如药物、天然产物等。

例如,通过控制不同反应条件,可以实现对具有特定生物活性的天然产物的合成,从而为药物研发提供了重要的手段。

增长碳链的反应还可以用于材料科学领域。

通过合成具有特定碳链结构的聚合物或杂化材料,可以获得具有特殊性能的材料,如高分子电子材料、光学材料等。

有机化学中碳链的增减方法

有机化学中碳链的增减方法

有机化学中碳链的增减方法我折腾了好久有机化学中碳链的增减方法,总算找到点门道。

先说碳链增长吧。

我试过用卤代烃和金属钠反应来增长碳链,就像搭积木一样把零碎的部分拼成更长的碳链。

这反应还挺神奇的。

不过刚开始的时候,我老是掌握不好反应的条件。

有一回,反应温度没控制好,结果感觉就乱套了,生成了一些奇奇怪怪的东西,根本不是我想要的长碳链产物。

后来我才知道,温度啊、反应物的浓度啊这些都特别关键,就像做菜,盐多盐少、火大火小那做出来的味道差老远了。

还有用格氏试剂和羰基化合物反应这个方法呢。

刚开始接触格氏试剂的时候,我感觉它像个调皮的小精灵,特别难伺候。

我制备格氏试剂的时候就失败了好几次,有时候是镁条没处理好,上面有脏东西,就影响反应。

好不容易制备出来格氏试剂,和羰基化合物反应的时候又得小心翼翼,溶剂要是没选对,反应又达不到预期的效果。

不过呀,如果这些都做到位了,那增长碳链就特别有效。

再说说碳链缩短吧。

我记得用过的一个方法是氧化反应。

就像把一根长长的绳子从中间剪断一段似的。

比如说用酸性高锰酸钾氧化这种。

但是这个得十分谨慎才行。

有次我想当然地用酸性高锰酸钾去氧化一个有机物,没先好好分析有机物的结构,结果把整个分子都给破坏得乱七八糟的,完全没法控制只缩短特定的碳链部分。

这也让我明白,在做反应之前,仔细分析有机物结构那可是太重要了。

我还知道还有像脱羧反应之类的也能让碳链缩短,不过我对这个的尝试不如前面那两种多,还不是特别熟悉,这脱羧反应感觉就像是把长链条上多出来的一节珠子直接拿掉一样,但是具体怎么做,很多细节我还得再摸索摸索呢。

还有,进行任何反应之前,杂质是个大问题。

就像汤里的沙子,会毁了一整锅好汤。

哪怕一点点杂质,可能都会让碳链增减这个过程出岔子。

所以反应的仪器要清洁干净,反应物的纯度得尽可能高。

在做实验的过程中,记录也是相当重要的事情。

每一次反应的条件、得到的结果,哪怕是失败的结果都要详细记录。

这样下次再做的时候就能吸取教训,也能更快找到最适合的反应方法来控制碳链的增减。

有机化学增长和缩短碳链的反应

有机化学增长和缩短碳链的反应

有机化学增长和缩短碳链的反应碳链增长和减短反应的总结有机合成中,碳⾻架的构建是极其重要的⼀步,这就涉及到了碳链的增长。

有机化学的碳链增长的反应众多,适⽤场合不⼀,若⽆法很好的理解各个反应的优缺点,便很难得⼼应⼿的完成有机合成。

因此,我们对⼏个常见的碳链增长反应进⾏了总结。

1、⾃由基聚合烯在⾼压下,在体系少量氧的引发下可进⾏⾃由基加成的链式反应,最后形成⼤分⼦聚合物,共轭双烯尤其容易聚合。

改反应可制备⾼聚物,是合成塑料、橡胶的基础。

该反应⽆法合成特定碳链个数的⼩分⼦。

2、炔钠的应⽤缺氢具有⼀定的酸性,可以与活泼⾦属,如钠,或氨基钠反应,⽣成炔负离⼦。

炔负离⼦具有较强的亲核性,可以与卤代烃发⽣亲核取代。

反应所⽤的卤代烃必须是伯卤代烃,仲卤、叔卤与炔钠反应主要⽣成相应的消除产物。

⼄烯型卤也不与炔钠反应。

该反应是由低级炔制备⾼级炔的重要⽅法,之后可由炔烃的还原,制备⽴体专⼀的顺式烯烃或反式烯烃。

还可以直接⽔合成酮。

如果是⼄炔,还可以⽣成第⼆个炔钠进⾏第⼆次亲核取代。

3、炔烃的亲核加成反应由于炔烃与烯烃相⽐,采⽤的杂化不同,炔烃为SP杂化,其中S轨道占有的成分⾼,对电⼦的吸引能⼒强,所以炔烃可⼀发⽣亲核加成⽽烯烃不能,利⽤这个性质,可以⽤来延长碳链这⾥以⼄炔为例。

Nu为带有碳链的亲核基团利⽤炔烃可以进⾏亲核加成的特性可以让炔与羧酸反应制备⽆法⽤烯醇直接酯化制得的酸烯酯。

还可是让炔与氢氰酸⽣成烯腈,烯腈再⽔解就可以得到α,&不饱和酸,以此衍⽣制备各种α,&不饱和不饱和化合物。

4、狄-阿(Diels –Alder )反应共轭双烯与亲双烯体⽣成环⼰烯的反应。

狄尔斯-阿尔德反应可以合成带有不饱和键六元环和桥环化合物,是有机化学合成反应中⾮常重要的碳碳键形成的⼿段之⼀,也是现代有机合成⾥常⽤的反应之⼀。

该反应条件所需条件不严格,只需加热便可进⾏。

亲双烯体上带有吸电⼦基可以更好的进⾏D-A 反应。

CHO +CHO以此制备含侧链官能团的六元环,侧链上的官能团还可以进⾏其他碳链增长的反应。

有机化学增长碳链,减短碳链,成环,开环,引入,消除的反应方程式,分类

有机化学增长碳链,减短碳链,成环,开环,引入,消除的反应方程式,分类

有机化学增长碳链,减短碳链,成环,开环,引入,消除的反应方程式,分类有机化学的增长碳链反应是有机分子变换的重要步骤,也是有机分子催化反应的基本过程,对实现有机分子的转化及合成具有重要意义。

总体上可以将有机化学增长碳链反应分为减短碳链、成环、开环、引入和消除五大类。

减短碳链是指有机分子由较长的碳链变为短碳链,通常采用加氢或氧化反应实现,如:CH3—CH2—CH2—CH3+H2→CH3—CH2—H2+CH3—CH3。

成环反应即通过两个有机分子反应而形成环状有机化合物的反应,如:丙烯醛和氯乙烯的开环合成环氧乙烯,反应方程式为:C3H4O + CH2=CHCl → CH2=CH—O—CH2—CH2—Cl。

开环反应是指环状化合物由环路断裂变为直链有机物,通常采用溶剂、氧化剂、活性催化剂所起作用的氧化还原反应实现,如:CH2=CH—O—CH2—CH2—Cl → C3H4O + CH2=CHCl。

引入反应就是把特定的基团加入到分子内的反应,它一般通过氧化还原反应实现,如:CH3—CH2—CH2—CH3 + CH3—OH → CH3—CH2—CH(OH)CH3 + H2。

消除反应,消除反应也称为脱水缩合反应,是指在活性催化剂的作用下,两个原子中的水分子被溶剂所取代,两个分子发生缩合反应,两个分子原子之间的精细键断裂,同时生成新的键,如:2 CH3CH2—OH → CH3CH2—CH2—CH3 + H2O。

有机化学增长碳链反应不仅在有机合成中扮演着重要角色,而且也在生物系统中也起到了重要作用。

为解决有机合成反应的效率问题,研究人员近几年重点研究,对生物有机合成及其相关催化动力学机制也进行了有益的研究,其中有机化学增长碳链反应是值得深入研究的一个环节。

从宏观和微观方面来看,催化反应有机分子的转化及合成都是一个有趣而复杂、丰富又有价值的研究领域,其发展前景崭露,发展前景广阔,对于实现有机分子的转化和合成具有重要意义。

碳链增长反应的总结

碳链增长反应的总结

碳链增长反应的总结林剑锋罗祎迩洪宇浩张述熙吴明【摘要】本文主要总结了几个常见的有机合成中碳链增长的反应,阐述了其适应范围和优缺点。

【关键词】碳链增长有机合成有机合成中,碳骨架的构建是极其重要的一步,这就涉及到了碳链的增长。

有机化学的碳链增长的反应众多,适用场合不一,若无法很好的理解各个反应的优缺点,便很难得心应手的完成有机合成。

因此,我们对几个常见的碳链增长反应进行了总结。

1、自由基聚合烯在高压下,在体系少量氧的引发下可进行自由基加成的链式反应,最后形成大分子聚合物,共轭双烯尤其容易聚合。

改反应可制备高聚物,是合成塑料、橡胶的基础。

该反应无法合成特定碳链个数的小分子。

2、炔钠的应用缺氢具有一定的酸性,可以与活泼金属,如钠,或氨基钠反应,生成炔负离子。

炔负离子具有较强的亲核性,可以与卤代烃发生亲核取代。

反应所用的卤代烃必须是伯卤代烃,仲卤、叔卤与炔钠反应主要生成相应的消除产物。

乙烯型卤也不与炔钠反应。

该反应是由低级炔制备高级炔的重要方法,之后可由炔烃的还原,制备立体专一的顺式烯烃或反式烯烃。

还可以直接水合成酮。

如果是乙炔,还可以生成第二个炔钠进行第二次亲核取代。

3、炔烃的亲核加成反应由于炔烃与烯烃相比,采用的杂化不同,炔烃为SP杂化,其中S轨道占有的成分高,对电子的吸引能力强,所以炔烃可一发生亲核加成而烯烃不能,利用这个性质,可以用来延长碳链这里以乙炔为例。

Nu 为带有碳链的亲核基团利用炔烃可以进行亲核加成的特性可以让炔与羧酸反应制备无法用烯醇直接酯化制得的酸烯酯。

还可是让炔与氢氰酸生成烯腈,烯腈再水解就可以得到α,&不饱和酸,以此衍生制备各种α,&不饱和不饱和化合物。

4、狄-阿(Diels –Alder )反应共轭双烯与亲双烯体生成环己烯的反应。

狄尔斯-阿尔德反应可以合成带有不饱和键六元环和桥环化合物,是有机化学合成反应中非常重要的碳碳键形成的手段之一,也是现代有机合成里常用的反应之一。

该反应条件所需条件不严格,只需加热便可进行。

有机化学中碳链增长的反应

有机化学中碳链增长的反应

有机化学中碳链增长的反应姓名:应化10(本1)汪吉伟100712024摘要:在对有机化学反应的研究过程中,有机合成是必不可少的一个重要环节,然而碳骨架的构建是极其关键的一步,碳链的增长是形成分子骨架的主要手段之一。

在有机化学反应中碳链增长的反应有很多,不同的方法都有其不同的特点及适用范围,因此熟悉并掌握有机反应中各种增加碳链方法的机理和优缺点将有助于我们对有机合成反应的研究,以下是对几种常见的碳链增长反应的总结。

关键词:碳链增长有机金属烃基化亲核加成正文:一、利用有机金属化合物增长碳链卤代烷能和某些金属发生反应,生成有机金属化合物。

有机金属化合物是指金属原子直接与碳原子相连的一类化合物。

有机反应中利用有机金属化合物增长碳链是重要的手段之一。

1.与格氏试剂的反应“格氏试剂”是含卤化镁的有机金属化合物(在常温下把镁屑放在无水乙醚中,滴加卤代烷,卤代烷与镁作用生成的有机镁化合物,该化合物不需分离即可直接用于有机合成反应),是一类亲核试剂,在有机合成中应用十分广泛。

(1)格氏试剂与醛、酮、酯、环氧烷发生亲核加成反应成相应的醇:R MgX R''R'(H)ORCR'(H)OMgXR''H3O+RCR'(H)OHR''反应若生成二级醇,还可以氧化成酮,再继续与格氏试剂反应生成三级醇。

(2)格氏试剂和CO2进行亲核加成后经水解可以可制备多一个碳的羧酸,反应可以从卤代烃出发,得到碳链增长的羧酸,适合伯、仲、叔卤代烃以及烯丙基和苯基卤代烃。

2.与二烃基铜锂的反应二分子烃基锂与一分子卤化亚铜在醚中、低温下与氮气流和氩气流中进行反应,可以形成二烃基铜锂。

二烃基铜锂也是一个反应适用范围很广的试剂。

RLi+CuX→RCu+LiX RCu+RLi→R2CuLi二烃基铜锂的烃基可以是甲基,一级烷基,二级烷基,也可以是烯丙基、苄基、乙烯基、芳基等烃基,故可称为二烃基铜锂或有机锂试剂。

增长碳链的反应

增长碳链的反应

增长碳链的反应碳链是一种重要的有机化合物,常见于生物体内和化学反应中。

在有机合成中,增长碳链的反应是非常关键和常见的步骤。

本文将介绍一些常用的方法和机制,供读者参考和学习。

首先,碳链的增长可以通过碳原子的亲核加成实现。

亲核试剂(如等电子体)攻击烯烃或卤代烷,形成碳碳键,从而增长碳链。

常见的亲核试剂包括酮盐、炔基或酰基金属试剂等。

这些试剂可以与碳原子中不饱和键或碳卤键发生反应,形成新的碳碳键,从而延长碳链长度。

其次,还有许多反应能够实现碳链的增长。

例如,格氏反应是一种常用的方法,它通过亲核试剂与卡宾中间体发生反应,形成新的碳碳键,从而增加碳链长度。

此外,还有一些重要的反应如克鲁福德反应、金属催化的碳-碳键形成反应等也可以实现碳链的延伸。

在化学反应中,碳链的增长往往需要依赖催化剂。

金属催化剂如钯、铂、镍等常用于碳-碳键形成反应,它们能够提供活性位点,催化有机分子的加成反应。

有机催化剂也是常见的选择,它们能够在不需要金属的情况下促进碳链的增长。

除了上述反应,还有一些特殊的方法能够实现碳链的增长。

例如,通过自由基聚合反应可以实现碳链的延伸。

此外,还有一些特殊的催化剂和反应条件,如负离子聚合反应、自催化反应等,也可以实现碳链的增长。

总之,碳链的增长反应是有机合成中不可或缺的步骤。

通过亲核加成、金属催化反应、聚合反应等多种方法,我们能够有效地实现碳链的延伸。

在化学研究和工业生产中,这些反应对于合成大分子、药物及高分子材料具有重要的意义。

希望本文介绍的方法和机制能够为读者提供一些参考和启发,促进有机合成领域的发展和创新。

有机化学中碳链增长的反应

有机化学中碳链增长的反应
二分子烃基锂与一分子卤化亚铜在醚中、低温下与氮气流和氩气流中进行反应,可以形成二烃基铜锂。二烃基铜锂也是一个反应适用范围很广的试剂。
RLi+CuX→RCu+LiX RCu+RLi→R2CuLi
二烃基铜锂的烃基可以是甲基,一级烷基,二级烷基,也可以是烯丙基、苄基、乙烯基、芳基等烃基,故可称为二烃基铜锂或有机锂试剂。
(2)傅-克酰基化反应
在路易斯酸催化下,酰氯或酸酐等与芳烃能发生与烷基化相似的亲电取代反应。例如苯与酰卤或酸酐在三氯化铝的催化下反应成芳酮:
酰基化反应和烷基化都使用相同的催化剂,反应机理也相似,环上连有硝基、磺酸基、酰基和氰基等吸电子基团时不发生反应,但是酰基化反应没有异化产物,也没有多元取代产物生成。因此制备含有3个或3个以上碳原子的直链烷基时,可采取先进行酰基化反应,然后将羰基还原的方法。例如:
(2)与磷叶立德(维蒂稀试剂)的加成反应
带有相邻的“+”、“-”电荷的分子称为内鎓盐,有音译为叶立德(例如磷叶立德)。醛酮与维蒂稀试剂的加成反应称为维蒂稀反应,是合成烯烃和共轭烯烃的好方法。反应特点是:可用于合成特定结构的烯烃;醛酮分子中的 C=C、C≡C对反应无影响,分子中的COOH对反应也无影响;维蒂稀反应不发生分子重排,产率高;能合成指定位置的双键化合物。
5、狄尔斯-阿尔德(Diels–Alder)反应
共轭双烯与亲双烯体生成环己烯的反应。狄尔斯-阿尔德反应可以合成带有不饱和键六元环和桥环化合物,是有机化学合成反应中非常重要的碳碳键形成的手段之一,也是现代有机合成里常用的反应之一。该反应条件所需条件不严格,只需加热便可进行。
亲双烯体上带有吸电子基可以更好的进行,以此制备含侧链官能团的六元环,侧链上的官能团还可以进行其他碳链增长的反应。

增长碳链的反应

增长碳链的反应

增长碳链的反应碳链是有机化合物中碳原子按照一定的顺序连接形成的链状结构。

增长碳链的反应是指在有机化学中,通过一系列化学反应使碳链长度增加的过程。

这种反应在有机合成中具有重要的意义,可以合成更复杂的有机分子,拓展有机化合物的结构。

增长碳链的反应可以通过不同的方法实现,下面将介绍几种常见的反应途径。

1. 烷基化反应烷基化反应是指通过添加烷基基团来增长碳链长度。

常见的烷基化试剂有卤代烷、醇和烷基锂等。

例如,可以使用溴代烷与有机金属试剂(如烷基锂)反应,生成更长的碳链。

2. 烯烃合成反应烯烃合成反应是指通过烯烃类化合物进行反应来增长碳链长度。

常见的烯烃合成反应有烯烃的加成反应、烯烃的重排反应等。

例如,可以通过烯烃的重排反应将一个碳原子的烯烃转化为两个碳原子的烯烃,从而增长碳链长度。

3. 碳碳键形成反应碳碳键形成反应是指通过在有机分子中形成新的碳碳键来增长碳链长度。

常见的碳碳键形成反应有羟基化反应、烯烃的环化反应等。

例如,可以通过羟基化反应将一个碳原子的化合物转化为两个碳原子的化合物,从而增长碳链长度。

4. 碳氢键活化反应碳氢键活化反应是指通过活化碳氢键来增长碳链长度。

常见的碳氢键活化反应有烃烃偶联反应、烃的氧化反应等。

例如,可以通过烃烃偶联反应将两个烃分子连接在一起,从而增长碳链长度。

增长碳链的反应在有机合成中具有广泛的应用。

通过增长碳链长度,可以合成更复杂的有机分子,拓展有机化合物的结构。

这对于药物合成、材料科学等领域具有重要的意义。

增长碳链的反应也面临着一些挑战。

有机化合物的合成通常需要考虑反应的选择性、收率和副反应等因素。

在设计和优化反应条件时,需要综合考虑这些因素,以实现高效、高选择性的反应。

增长碳链的反应是有机化学中一类重要的反应。

通过烷基化反应、烯烃合成反应、碳碳键形成反应和碳氢键活化反应等途径,可以增加碳链长度,合成更复杂的有机分子。

这对于有机合成和材料科学等领域具有重要的意义,为人类的科学研究和技术发展提供了重要的支持。

有机化学碳链增长反应的探讨

有机化学碳链增长反应的探讨
应中一类反应 , 如碳链增长 的反应来进行分析 , 重在
位阻较大的非末端双键碳上 , 加成符合反马氏规则。 生成的比原料烯烃多一个碳原子 的醛 , 继续可 以 被氧化制备羧酸; 通过加氢还原为醇 ; 醇经过脱水又
可得烯烃等。因此利用末端烯烃碳链增长的反应 , 可 以制备 比原料烯烃多一个碳 原子 的醛 、 羧酸、 醇和烯
的催化剂 , 加氢还原为烷烃。因此利用末端炔烃碳链 增长反应 , 可以制备碳原子数 目比原料中碳原子数 目 多的炔烃 、 烯烃和烷烃。
C; a CmNN,( 炔 的 眭 H } ‘ HC + ’ 烃 酸 ) \ 一 互 aH 末 端
炔钠是强电解质 , 解离生成的炔基负离子是很强


鱼 : c 删训… ,
R C 3 Mg . C + H - C 一 H

CH, I

C H3
a t
…删

R = R +" H3 l - -C ' ' C -  ̄ C 一 l g
4 3 羟 醛缩 合反 应 .
( ) 羟基醛受热脱水 , 3 B一 生成 了 , 不饱和 p一
、一N H\一 IN 生成的 一 —。 C 羟基腈在酸性
6 6 6 8 ’ — 一
条件下很容易水解为羧酸 , 在浓硫酸催化下脱水 , 进

3 一 6
徐 军 有 化 碳 增 反 的讨 向 等 机学 链 长 应 探
5+
21o 5 o 0 . 1 ,. 1V. N6■皿 2
H H + CH ̄ M¥ 。 C - C一

B一 不饱和醛或酮 。
cI } ,
从上面乙醛发生羟醛反应机理来看 , 羟醛或酮反 应 的实质是具有 一 H的醛或酮在碱性条件下 , 分子 间脱水生成 , 不饱和醛或酮。其中一分子的醛 B一 或酮提供两个 — 另一分子的醛或 酮提供羰基氧 H,

有机化学中碳链增长的反应

有机化学中碳链增长的反应

有机化学中碳链增长的反应姓名:应化10(本1)汪吉伟100712024摘要:在对有机化学反应的研究过程中,有机合成是必不可少的一个重要环节,然而碳骨架的构建是极其关键的一步,碳链的增长是形成分子骨架的主要手段之一。

在有机化学反应中碳链增长的反应有很多,不同的方法都有其不同的特点及适用范围,因此熟悉并掌握有机反应中各种增加碳链方法的机理和优缺点将有助于我们对有机合成反应的研究,以下是对几种常见的碳链增长反应的总结。

关键词:碳链增长有机金属烃基化亲核加成正文:一、利用有机金属化合物增长碳链卤代烷能和某些金属发生反应,生成有机金属化合物。

有机金属化合物是指金属原子直接与碳原子相连的一类化合物。

有机反应中利用有机金属化合物增长碳链是重要的手段之一。

1.与格氏试剂的反应“格氏试剂”是含卤化镁的有机金属化合物(在常温下把镁屑放在无水乙醚中,滴加卤代烷,卤代烷与镁作用生成的有机镁化合物,该化合物不需分离即可直接用于有机合成反应),是一类亲核试剂,在有机合成中应用十分广泛。

(1)格氏试剂与醛、酮、酯、环氧烷发生亲核加成反应成相应的醇:R MgX R''R'(H)ORCR'(H)OMgXR''H3O+RCR'(H)OHR''反应若生成二级醇,还可以氧化成酮,再继续与格氏试剂反应生成三级醇。

(2)格氏试剂和CO2进行亲核加成后经水解可以可制备多一个碳的羧酸,反应可以从卤代烃出发,得到碳链增长的羧酸,适合伯、仲、叔卤代烃以及烯丙基和苯基卤代烃。

2.与二烃基铜锂的反应二分子烃基锂与一分子卤化亚铜在醚中、低温下与氮气流和氩气流中进行反应,可以形成二烃基铜锂。

二烃基铜锂也是一个反应适用范围很广的试剂。

RLi+CuX→RCu+LiX RCu+RLi→R2CuLi二烃基铜锂的烃基可以是甲基,一级烷基,二级烷基,也可以是烯丙基、苄基、乙烯基、芳基等烃基,故可称为二烃基铜锂或有机锂试剂。

有机物中增减碳链的常用方法

有机物中增减碳链的常用方法

有机物中增减碳链的常用方法一、增加碳链的反应:1.1-烯烃与CO、H2(催化剂)反应增加一个碳2.格氏试剂与酮、醛、CO2、环氧乙烷的反应3.卤代物与KCN的反应4.缩醛、醛酮与胺衍生物的加成5.羟醛缩反应等二、减碳链的反应1、增长:a、双烯合成:在无水AlCl3的作用下,两个分子的烯结合成一新的分子;b、羟醛缩合:如聚乙烯醇缩丁醛;c、成酯:聚酯;d、成酰胺:尼龙;e、格列亚反应:与烷基卤化镁反应;f、亲和取代:卤代烷与烷基铜锂的反应;2、缩短:a、高锰酸钾氧化;与酸性或碱性高锰酸钾反应;b、臭氧化;臭氧化后水解;c、脱羧基:d、霍夫曼重排:酰胺转变成胺;e、二醇的氧化:脱羧反应脂肪酸这个反应对一般的脂肪酸,特别是长链的脂肪酸,由于反应温度太高,产率低,加之不易分离,所以一般不用来制备烷烃。

但是若脂肪酸的α-碳原子上带有吸电子基团如硝基、卤素、羰基、氰基等时,则使得脱羧容易而且产率也高,但是它们的反应历程不完全一样。

例如三氯乙酸的钠盐在水中50℃就可脱羧生成氯仿。

羧酸分子中失去羧基放出二氧化碳的反应叫做脱羧反应(decarboxylation)。

一般情况下,羧酸中的羧基较为稳定,不易发生脱羧反应,但在特殊条件下,羧酸能脱去羧基(失去二氧化碳)而生成烃。

最常用的脱羧方法是将羧酸的钠盐与碱石灰(CaO+NaOH)或固体氢氧化钠强热。

脱羧反应化学方程式示意图三氯乙酸盐三氯乙酸的钠盐在水中完全离解成负离子,由于三个氯原子具有强的吸电子作用,就使得碳碳之间的电子云偏向于有氯取代的碳一边,这样形成的负碳离子就更加稳定,然后和质子结合形成氯仿,而羧基负离子上的电子转移到碳氧之间而形成二氧化碳。

此反应是通过负离子进行的脱羧反应。

β-酮酸β-酮酸很易脱羧,其反应过程与上述不同,而是通过一个六元环进行的协同反应,首先生成烯醇,然后经重排得到酮。

由于反应的过渡态是一个六元环,能量低,因而反应很易进行。

此反应在合成上很重要,丙二酸型化合物以及α,β-不饱和酸等的脱羧,一般都属于这一类型的反应。

有机化学中碳链增长的反应

有机化学中碳链增长的反应

有机化学中碳链增长的反应有机化学中的碳链生长反应姓名:华英10(本1)王记伟100712024在有机化学反应的研究过程中,有机合成是一个必不可少的重要环节。

然而,碳骨架的构建是至关重要的一步。

碳链的生长是形成分子骨架的主要手段之一。

有机化学反应中有许多碳链生长反应。

不同的方法有不同的特点和适用范围。

因此,熟悉和掌握有机反应中各种碳链生长方法的机理、优缺点将有助于我们研究有机合成反应。

以下是几种常见碳链生长反应的总结。

关键词:碳链增长有机金属烃化亲核加成文本:首先,使用有机金属化合物来生长碳链哈龙可以与一些金属反应形成有机金属化合物。

有机金属化合物是指一类金属原子直接与碳原子相连的化合物。

使用有机金属化合物在有机反应中生长碳链是重要的手段之一。

1.与格氏试剂的反应“格氏试剂”是一种含卤化镁的有机金属化合物(常温下将镁废料置于无水乙醚中,滴加卤代烷烃,卤代烷烃与镁作用生成的有机镁化合物可直接用于有机合成反应,无需分离)。

它是一种亲核试剂,广泛用于有机合成。

(1)格氏试剂与醛、酮、酯和烯化氧发生亲核加成反应形成相应的醇;奥格XR’(H)RCR’’R’(H)高级驻地协调员’ ‘ R’(H)RMgXR’’H3O+如果在反应中生成仲醇,它也可以被氧化成酮,然后继续与格氏试剂反应生成叔醇。

(2)在格氏试剂和CO2的亲核加成后,通过水解可以制备多一个碳的羧酸。

具有碳链延伸的羧酸可以从卤代烃中获得,其适用于伯、仲和叔卤代烃、烯丙基和苯基卤代烃。

2.与二烃基铜锂的反应二烃基锂可以通过卤化亚铜分子与氮气和氩气在乙醚中低温反应而形成。

二烃基铜锂也是一种应用广泛的试剂。

RLi+CuX→RCu+LiX RCu+RLi→R2CuLi二烷基铜锂的烃基可以是甲基、伯烷基、仲烷基或烃基如烯丙基、苄基、乙烯基、芳基等,因此它可以被称为二烷基铜锂或有机锂试剂。

二烃基铜锂可以与卤代烃偶联,反应如下:卤代烃中的烃基可以是伯或仲烷基,或乙基烯烃、芳香烃、烯丙基和苄基。

有机合成基础知识点总结

有机合成基础知识点总结

有机合成基础知识点总结一、有机合成的概念。

有机合成是指利用简单、易得的原料,通过有机化学反应,生成具有特定结构和功能的有机化合物的过程。

其目的包括合成天然产物、制备具有特殊性能的有机材料等。

二、有机合成的任务。

1. 构建碳骨架。

- 增长碳链的反应。

- 卤代烃与氰化钠(NaCN)反应:R - X+NaCN→R - CN + NaX,然后R - CN水解可得到羧酸R - COOH,实现了碳链的增长。

- 醛、酮与格氏试剂(RMgX)反应:R - CHO+R'MgX→R - CH(OH)R'(产物为醇,增长了碳链);R - CO - R'+R''MgX→R - C(OH)(R'')R'。

- 羟醛缩合反应:在稀碱作用下,含有α - H的醛发生自身加成反应。

例如2CH_3CHO→(稀碱)CH_3CH(OH)CH_2CHO,产物加热失水可得到CH_3CH = CHCHO,实现碳链增长。

- 缩短碳链的反应。

- 烷烃的裂化反应:如C_16H_34→(高温)C_8H_18+C_8H_16。

- 烯烃、炔烃的氧化反应:例如R - CH = CH - R'→(KM nO_4/H^+)R - COOH+R' - COOH,碳碳双键断裂,碳链缩短。

- 脱羧反应:R - COOH→(碱石灰)R - H+CO_2↑,常用于制备少一个碳原子的烃类。

2. 引入官能团。

- 引入卤素原子(-X)- 烷烃的卤代反应:CH_4+Cl_2→(光照)CH_3Cl+HCl,反应逐步进行,可得到多卤代物。

- 烯烃、炔烃与卤素单质或卤化氢的加成反应:CH_2 =CH_2+Br_2→CH_2Br - CH_2Br;CH≡ CH+HCl→CH_2 = C HCl。

- 芳香烃的卤代反应:在催化剂作用下,苯与液溴反应C_6H_6+Br_2→(FeBr_3)C_6H_5Br+HBr。

高中化学增长碳链的方法

高中化学增长碳链的方法
2
A.硝基苯 B.环己烷 C.苯酚 D.溴苯 ( ) 2.在有机物分子中,不能引入羟基的反应是 A.氧化反应 B.水解反应 C.消去反应 D.加成反应 ( ) 3.“绿色、高效”概括了 2005 年诺贝尔化学奖成就的 特点。换位合成法在化学工业中每天都在应用,主要用于研 制新型药物和合成先进的塑料材料。在“绿色化学工艺”中, 理想状态是反应中的原子全部转化为欲制得的产物,即原子 利用率为 100%。①置换反应 ②化合反应 ③分解反应 ④取 代反应 ⑤加成反应 ⑥消去反应 ⑦加聚反应 ⑧缩聚反应 等反应类型中能体现这一原子最经济原则的是 A.①②⑤B.②⑤⑦C.只有⑦⑧ D.只有⑦ ( ) 4.由 1-丙醇制取,最简便的流程需要下列反应的顺 序应是 a.氧化 b.还原 c.取代 d.加成 e.消去 f.中和 g.缩 聚 h.酯化 A.b、d、f、g、h B.e、d、c、a、h C.a、 e、d、c、h D.b、a、e、c、f 浓硫酸,△Br2,CCl4 ( ) 5 . 化 合 物 丙 (C4H8Br2) 由 如 下 反 应 得 到 : C4H10O――→C4H8――→丙(C4H8Br2) 则丙的结构不可 能是
____________________


___________________________________________________ ____________________。 ④ 。
8.香豆素是广泛存在于植物中的一类芳香族化合物,大多 具有光敏性,有的还具有抗菌和消炎作用。它的核心结构是 芳香内酯 A,其分子式为 C9H6O2。该芳香内酯 A 经下列步 骤转变为水杨酸和乙二酸。
+H2O A 中含有碳氧双键,与 A 相关的反应如下:
( 3 ) 写 出 A→E,E→F 的 反 应 类 型 : A→F_________________、E→F________________。 (4)写

有机化学中的增碳反应发展史

有机化学中的增碳反应发展史

有机化学中的增碳反应发展史羧酸的结构决定了其高氧化态,因而在其中进行碳链延长相当困难,只有利用重排反应得到相应的亚甲基羧酸。

最常用的亚甲基等价物就是重氮甲烷了,重金属离子可以促进重氮化合物的分解,并结合氯离子。

氯甲酸乙酯是一种常用的羧酸活化试剂,类似的化合物还有氯化亚矾和五氯化磷。

首先利用氯甲酸乙酯将羧酸活化为酰氯,用来提高炭基的亲核性。

第一步是羧酸对氯甲酸乙酯进行亲核加成消除,得到酸酐结构。

第二步是酸酐被氯离子进攻,得到酰氯,二氧化碳以气体形式离开反应体系。

重氮甲烷由于具有负的形式电荷,由碳原子亲核,得到酰基重氮化合物。

重氮化合物很容易分解,脱去氮气,产生卡宾。

卡宾和羧基作用发生重排,得到烯酮。

有机化学是研究有机化合物的化学,更科学的说法是研究碳化合物的化学,因为所有有机化合物中都含有碳元素。

有机化合物简称为有机物,英文是“organic matter”。

最初,有机物是指由动物和植物有机体中得到的物质,如糖、醋、酒精等。

人类很早以前就开始利用有机物了,如古代西方人用柳树皮泡水来止痛,当时他们并不知道这样做的科学道理,不知道柳树皮中含有乙酰水当然,那时候的有机物都不是纯物质,比如酒并非是纯乙醇,醋也并非是纯醋酸。

对纯有机物质的认识和获得是从16世纪开始的。

最早获得的是纯有机酸,如从葡萄汁中提取了纯酒石酸,从柠檬汁中提取了纯柠檬酸,从酸牛奶中提取了纯乳酸等。

到了16世纪末和17世纪初,当时的科学家从尿液中分离了尿素,从罂粟(鸦片)中分离出第一个生物碱--吗啡。

当时只有“化学”,并没有“有机化学”的说法。

但有了如此丰富的成果后,科学家们发现有机物和无机物在组成和性质上都有很大的不同,因此产生了把有机物和无机物区分开的需求。

瑞典科学家贝采里乌斯(Jons Jacob Berzelius)在当时是享有盛誉的科学家,他在1806年率先引用了“有机化学Organic Chemistry”这个名称,从此有机化学成为一个相对独立的学科并在后来的岁月中得到了快速的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机化学中碳链增长的反应姓名:应化10(本1)汪吉伟100712024摘要:在对有机化学反应的研究过程中,有机合成是必不可少的一个重要环节,然而碳骨架的构建是极其关键的一步,碳链的增长是形成分子骨架的主要手段之一。

在有机化学反应中碳链增长的反应有很多,不同的方法都有其不同的特点及适用范围,因此熟悉并掌握有机反应中各种增加碳链方法的机理和优缺点将有助于我们对有机合成反应的研究,以下是对几种常见的碳链增长反应的总结。

关键词:碳链增长有机金属烃基化亲核加成正文:一、利用有机金属化合物增长碳链卤代烷能和某些金属发生反应,生成有机金属化合物。

有机金属化合物是指金属原子直接与碳原子相连的一类化合物。

有机反应中利用有机金属化合物增长碳链是重要的手段之一。

1.与格氏试剂的反应“格氏试剂”是含卤化镁的有机金属化合物(在常温下把镁屑放在无水乙醚中,滴加卤代烷,卤代烷与镁作用生成的有机镁化合物,该化合物不需分离即可直接用于有机合成反应),是一类亲核试剂,在有机合成中应用十分广泛。

(1)格氏试剂与醛、酮、酯、环氧烷发生亲核加成反应成相应的醇:R MgX R''R'(H)ORCR'(H)OMgXR''H3O+RCR'(H)OHR''反应若生成二级醇,还可以氧化成酮,再继续与格氏试剂反应生成三级醇。

(2)格氏试剂和CO2进行亲核加成后经水解可以可制备多一个碳的羧酸,反应可以从卤代烃出发,得到碳链增长的羧酸,适合伯、仲、叔卤代烃以及烯丙基和苯基卤代烃。

2.与二烃基铜锂的反应二分子烃基锂与一分子卤化亚铜在醚中、低温下与氮气流和氩气流中进行反应,可以形成二烃基铜锂。

二烃基铜锂也是一个反应适用范围很广的试剂。

RLi+CuX→RCu+LiX RCu+RLi→R2CuLi二烃基铜锂的烃基可以是甲基,一级烷基,二级烷基,也可以是烯丙基、苄基、乙烯基、芳基等烃基,故可称为二烃基铜锂或有机锂试剂。

二烃基铜锂可与卤代烃发生偶联反应,反应如下:卤代烃中的烃基可以是一级、二级烷基,也可以是乙烯烃、芳烃、烯丙基和苯甲基,二烃基铜锂中的烃基可以是一级烷基,也可以是其它烃基如乙烯基、芳基和稀丙基等,因此这个偶联反应选用范围很广。

3.与炔钠的反应缺氢具有一定的酸性,可以与活泼金属,如钠,或氨基钠反应,生成炔负离子。

炔负离子具有较强的亲核性,可以与卤代烃发生亲核取代:R'C CNa+R X R'C CR+NaX反应所用的卤代烃必须是伯卤代烃,仲卤、叔卤与炔钠反应主要生成相应的消除产物。

乙烯型卤也不与炔钠反应。

该反应是由低级炔制备高级炔的重要方法,之后可由炔烃的还原,制备立体专一的顺式烯烃或反式烯烃,还可以直接水合成酮。

如果是乙炔,还可以生成第二个炔钠进行第二次亲核取代:CH CHNaNH2RC CNa R XHC CRHC CNaR'XNaNH2RC CR'4.与碱金属反应卤代烷可与金属钠反应,生成的有机钠化合物立即再与卤代烷反应生成烷烃。

该反应称为“武尔兹反应”。

2RX + 2Na R-R + 2NaX例如:2CH3CH2CH2Br + 2Na CH3CH2CH2CH2CH2CH3 + NaBr武尔兹反应可以用来从卤代烷(主要是伯卤代烷)制备含偶数碳原子、结构对称的烷烃。

但是如果将两种不同的卤代烃放在一起反应会产生两种不同的烷烃,分离十分困难。

反应含有自由基还会产生烯烃的副产物,当卤代烃的无卤连接碳太大时,这个副反应便显得更为突出。

因该反应产率较低,合成中较少使用。

5.威廉姆逊(Williamson)合成法威廉姆逊合成法是制备混合醚的一种好方法,由卤代烃与醇钠或酚钠作用而得。

威廉姆逊合成法中只能选用伯卤代烷与醇钠为原料。

因为醇钠即是亲核试剂,又是强碱,仲、叔卤代烷(特别是叔卤代烷)在强碱条件下主要发生消除反应而生成烯烃。

这个方法即可合成对称醚,有可合成不对称醚。

该反应是S N2反应,两个试剂中的烷基结构对反应很有影响。

若烷基是三级烷基,不利于进行S N2反应,而有利于E2消除反应,得到烯烃。

因此如欲得醚,最好用一级卤代烃。

例如:S N2反应: (CH3)3CO-Na + CH3I → (CH3)3COCH3 + NaIE2消除反应:(CH3)3CBr + CH3ONa → (CH3)2C=CH2 + CH3OH + NaBr 除用卤代烷以外,磺酸酯、硫酸酯也可用于合成醚:芳香醚可用苯酚与卤代烷或硫酸酯在氢氧化钠的水溶液中制备:苯甲醚(茴香醚)二、利用碳原子上的烃基化反应增长碳链1.傅-克(Friedel-Crafts)反应在路易斯酸存在下芳烃与烷基卤和酰卤的反应叫傅克反应,可分为烷基化和酰基化两类。

(1)傅-克烷基化反应氯乙烷在三氯化铝催化下与苯发生取代反应,生成乙苯,放出氯化氢。

凡在有机化合物中引入烷基的反应,称为烷基化反应。

反应历程经过碳正离子中间体,以碳正离子为亲电试剂进攻苯环,故可能发生重排。

AlCl3是傅-克反应的催化剂,起的是路易斯酸的作用,FeCl3、BF3、HF等也可作为催化剂,同时,可以产生碳正离子其他物质也可作为烷基化试剂,如醇和烯。

烷基是个活化基团,因此,傅-克烷基化经常会得到多取代产物,且伴随着碳正离子的重排,因此反应很难得到单一的产物,故应用并不是很广泛。

而傅-克酰基化刚好可以克服烷基化的以上缺点,因此应用得较为广泛。

(2)傅-克酰基化反应在路易斯酸催化下,酰氯或酸酐等与芳烃能发生与烷基化相似的亲电取代反应。

例如苯与酰卤或酸酐在三氯化铝的催化下反应成芳酮:有硝基、磺酸基、酰基和氰基等吸电子基团时不发生反应,但是酰基化反应没有异化产物,也没有多元取代产物生成。

因此制备含有3个或3个以上碳原子的直链烷基时,可采取先进行酰基化反应,然后将羰基还原的方法。

例如:但酰基化反应的催化剂用量(AlCl3)要比烷基化多,因为酰基化产物能通过氧原子与等量AlCl3生成络合物。

2.酯化反应羧酸与醇在酸的催化作用下失去一分子水而生成酯的反应称为酯化反应。

不同的醇和羧酸发生酯化反应的机理不同,其中:(1)一级醇和二级醇酯化时按加成-消除机理进行,反应中酰氧键断裂。

例如: CH3COOH + C2H5OH → CH3COOC2H5 + H2O该反应机理为:(2)三级醇按碳正离子反应机锂进行酯化,醇在酸性条件下与氢离子结合形成详盐,然后脱去一分子水,羧酸作为亲核试剂进攻碳正离子,再脱去一个氢离子得到酯,此时的酸作为催化剂。

例如:(CH3)3C-OH + R-COOH → (CH3)3COOC-R + H2O其反应机理如下:一般情况下R3C+易与碱性较强的水结合,不易与羧酸结合,故逆向反应比正向反应易进行。

所以三级醇的酯化反应产率很低。

三、利用醛酮的加成反应来增长碳链醛酮的C=O中,氧原子的电负性大于碳原子的,因此碳氧双键是极性共价键,C=O中的π键很容易断裂,与其它亲和试剂可以发生加成反应,用于醛酮碳链的增长。

(1)羟醛缩合反应在稀碱的作用下,两分子含有α-H的醛或酮可以相互加成,生成β-羟基醛或酮的反应,称为羟醛或酮缩合。

生成的羟醛或酮在加热下易失水,生成α,β-不饱和醛或酮。

例如:两分子丙酮加成失水后生成3-羟基己烯酮。

其反应机理如下:其反应过程可以归纳如下:在碱性条件加快了丙酮的酸式电离,进而有利于碳负离子的产生;碳负离子带着负电荷进攻丙酮的带有部分正电荷的羰基碳原子,羰基π电子发生转移,生成的氧负离子从水中夺氢,生成了β-羟基醛;然后β一羟基醛再受热脱水,生成了α,β-不饱和酮,脱水时总是从含氢较少的碳上脱氢。

(2)与磷叶立德(维蒂稀试剂)的加成反应带有相邻的“+”、“-”电荷的分子称为内鎓盐,有音译为叶立德(例如磷叶立德)。

醛酮与维蒂稀试剂的加成反应称为维蒂稀反应,是合成烯烃和共轭烯烃的好方法。

反应特点是:可用于合成特定结构的烯烃;醛酮分子中的 C=C 、C ≡C 对反应无影响,分子中的COOH 对反应也无影响;维蒂稀反应不发生分子重排,产率高;能合成指定位置的双键化合物。

例如:魏悌希反应虽然反应立体选择性高、能在特定位置引入双键,但叔膦较贵、产物烯烃与氧化膦不易分离、有些磷叶立德稳定性差等缺点。

1958年,霍纳(Horner )对维蒂稀反应进行了改进,后称为维蒂稀—霍纳(Wittig-Honer )反应。

PO OR EtONa R 1R 2O RCH R 1R 2+NaO PO OR RCH 2(3)与HCN 的加成反应甲基酮和少于8个碳原子的环酮的C=O 双键都可以与HCN 加成,主要生成α一羟基腈,生成的α一羟基腈在酸性条件下很容易水解为羧酸,在浓硫酸催化下脱水,进而转化为α,β一不饱和的酸。

例如 :四、炔烃的亲核加成反应由于炔烃与烯烃相比,采用的杂化不同,炔烃为SP 杂化,其中S 轨道占有的成分高,对电子的吸引能力强,所以炔烃可一发生亲核加成而烯烃不能,利用这个性质,可以用来延长碳链,这里以乙炔为例。

(Nu 为带有碳链的亲核基团)C C H H H Nu CCH HH Nu C CH H H Nu利用炔烃可以进行亲核加成的特性可以让炔与羧酸反应制备无法用烯醇直接酯化制得的酸烯酯。

还可是让炔与氢氰酸生成烯腈,烯腈再水解就可以得到α,β不饱和酸,以此衍生制备各种α,β不饱和不饱和化合物。

五、狄尔斯-阿尔德(Diels –Alder )反应共轭双烯与亲双烯体生成环己烯的反应。

狄尔斯-阿尔德反应可以合成带有不饱和键六元环和桥环化合物,是有机化学合成反应中非常重要的碳碳键形成的手段之一,也是现代有机合成里常用的反应之一。

该反应条件所需条件不严格,只需加热便可进行。

亲双烯体上带有吸电子基可以更好的进行,以此制备含侧链官能团的六元环,侧链上的官能团还可以进行其他碳链增长的反应。

CHO +CHO六、烯烃的加聚反应烯烃在高压下,在体系少量氧的引发下可进行自由基加成的链式反应,最后形成大分子聚合物,共轭双烯尤其容易聚合。

该反应可制备高聚物,是合成塑料、橡胶的基础。

该反应无法合成特定碳链个数的小分子。

这里仅归纳了一些在有机化学反应中增长炭链的例子,还有一些方法没有列举出来,这些在今后的学习生活中我还会遇到,所以我还需努力学习有关专业知识,将自己的专业水平提升到一个新的高度!历史短剧秦朝开国大典角色:礼仪官众大臣秦始皇李斯老板顾客道具:告示旁白:公元前230年,秦国发动强大的攻势,开始了统一六国的战争。

秦国的军队势如破竹,先后功灭韩、赵、魏、楚、燕、齐六国。

公元前221年,秦国完成统一大业。

让我们穿越大秦时空隧道回到公元前221年秦朝开国大典这一盛大时刻。

第一幕礼仪官:秦国大典现在开始,有请大王登基。

相关文档
最新文档