矩形的折叠问题(专题)

合集下载

矩形的折叠问题(专题)

矩形的折叠问题(专题)

→ Bx
D
,故OE= 。
练习8 如图,在直角三角形ABC中, C ∠C=90º ,沿着B点的一条直线BE折 叠这个三角形,使C点与AB边上的 一点D重合。当∠A满足什么条件时, 点D恰好是AB的中点?写出一个你 B 认为适当的条件,并利用此条件证 明D为AB中点。 条件:∠A=30º
E D A
证明:由轴对称可得,△BCE≌△BDE,∴ BC=BD , 在△ABC中,∵ ∠C=90º,∠A=30º, ∴ BC= ∴ BD =
答案:矩形的长为10,宽为8。
D F E A
C
B
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x. (1)用x表示△AMN的面积SΔ AMN。 (2)Δ AMN沿MN折叠,设点A关于Δ AMN对称的点为A¹ , Δ A¹ MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
矩形的折叠问题
(复习课)
练习1 如图,有一块直角三角形纸片,两 直角边AC=6,BC=8,现将直角边AC沿 直线AD折叠,使它落在斜边AB上,且与AE 重合,求CD
A E C B D
如图,折叠矩形的一边AD,点D 落在BC边上点F处,已知AB=8, BC=10,求EC的长 D A
E B F C
练习2 如图,在梯形ABCD中, DCAB,将梯形对折,使点D、 C分别落在AB上的D¹ 、C¹ 处, 折痕为EF。若CD=3,EF=4, 则AD¹ +BC¹ = 。

3.微专题 矩形折叠问题

3.微专题 矩形折叠问题

图②
18
(3)如图③,当点E为BC边的中点,连接B′C,则B′C的长是____5____; (4)如图④,当点B′刚好落在矩形对称轴上时,则BE的长为_4_3_3__或__1_6-_43__7__;
(5)如图⑤,连接B′C,B′D,当△B′DC是以B′D为腰的等腰三角形时,BE的长为 4_3_3__或__1_6-_43__7_.
微专题 矩形折叠问题
与折叠有关的计算常用性质: (1)折叠问题的本质是全等变换,折叠前的部分与折叠后的部分是全等图形; (2)折痕可看作垂直平分线(对应两点之间的连线被折痕垂直平分); (3)折痕可看作角平分线(对应线段所在的直线与折痕的夹角相等).
折法1 沿矩形ቤተ መጻሕፍቲ ባይዱ角线折叠
例 1 如图,在矩形ABCD中,AB=12,AD=18,将△ADC沿AC折叠至 △AD′C(点D的对应点为D′),AD′交BC于点E. (1)BE的长为__5___; (2)△ACE的面积为_7_8___.
例1题图
折法2 折痕过矩形的一个顶点
例 2 在矩形ABCD中,AB=4,BC=6,点E为BC边上的一点,将△ABE沿AE折 叠至△AB′E(点B的对应点为点B′). (1)如图①,当点B′落在AD边上时,则CE的长为__2___; (2)如图②,当B′C∥AE时,则BE的长为___3__;
图①
例2题图
3
4
的对称点分别记为点F、B′.当点B′恰好落在线段AC上时,则AP的长为___3_____;
图③
图④
例3题图
图⑤
(6)如图⑥,点P在边AD上且AP=3,点E是边BC上一动点,将矩形ABCD沿直线PE
翻折,A、B的对应点分别为A′、B′,当点A′、B′、D在同一直线上时,则BE =

矩形的五种折叠方法

矩形的五种折叠方法

矩形的五种折叠方法折叠问题的实质是轴对称问题,折叠原理实际上是图形的全等问题,对应角相等,对应线段相等。

对应点的连线被折痕垂直平分。

矩形在日常生活中随处可见,矩形的性质又具有平行四边形的所有性质,并且具有对角线互相平分且相等的特有性质,它不仅是中心对称图形,而且还是轴对称图形.所以矩形的折叠问题是中考热点问题,并且折叠的方法不同,问题不同,给参加中考的考生带来各种各样的困境,为了让参加中考的孩子们轻松应考,先把矩形的折叠问题进行总结一下.一.沿对角线折叠例1.在平面直角坐标系中,矩形OABC的两边OA、OC分别落在x轴,y轴上,且OA=4,0C=3。

如图,将△OAB沿对角线OB翻折得到△OBN,ON与AB交于点M。

(1)判断△OBM是什么三角形,并说明理由,并求出△OBM的面积(2)求MN的长.【分析】由矩形性质可知,AB=OC=3,BC=OA=4,∠COA=∠OAB=90°OA∥BC 所以∠AOB=∠MBO根据折叠原理得∠AOB=∠MOB,所以∠MBO=∠MOB,∴MB=MO所以△OBM是等腰三角形,二.折一角,使直角顶点到对边例2.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC =4.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.则点D 的坐标是 .【分析】折叠原理知,AE=AO=5,AB=OC=4,OD=ED 由勾股先求得BE=3,∴CE=2,然后设OD=x ,则CD=4-x在Rt △DCE 中由勾股定理即可求得OD 的长,然后就得到点D 的坐标。

练习:如图,折叠矩形的一边AD ,点D 落在BC 边上点F 处,已知AB=8,BC=10,则EC 的长是 。

(这道题目先求BF 的长,再求CF 的长,然后再勾股定理)练习2.如图,矩形纸片ABCD ,若把△ABE 沿折痕BE 上折叠,使A 点恰好落在CD 上,此时,AE:ED=5:3,BE=55,求矩形的长和宽。

专题训练(一)矩形中的折叠问题

专题训练(一)矩形中的折叠问题

专题训练(一) 矩形中的折叠问题(本专题部分习题有难度,请根据实际情况选做)1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为( )A.12 B.10 C.8 D.62.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG=60°.现沿直线GE将纸片折叠,使点B落在纸片上的点H处,连接AH,则图中与∠BEG相等的角的个数为( )A.5个B.4个C.3个D.2个3.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于________.4.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是________cm2.5.如图,折叠矩形一边AD,点D落在BC边的点F处,BC=10 cm,AB=8 cm,求:(1)FC的长;(2)EF的长.6.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF,且AB=10 cm,AD=8 cm,DE=6 cm.(1)求证:四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.7.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,求点B的坐标和点E的坐标;(自己重新画图)(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.8.如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;②点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.参考答案1.B2.A3.56°4.5.15.(1)由题意可得AF=AD=10 cm,在Rt△ABF中,AB=8 cm,AF=10 cm,∴BF=6 cm.∴FC=BC-BF=10-6=4(cm).(2)由题意可得EF=DE,可设EF的长为x,则在R t△EFC中,(8-x)2+42=x2,解得x=5,即EF的长为5 cm.6.(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100.又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2.∴△ADE是直角三角形,且∠D=90°.又∵四边形ABCD为平行四边形,∴四边形ABCD是矩形.(2)设BF=x,则EF=BF=x,EC=CD-DE=10-6=4(cm),FC=BC-BF=8-x,在Rt△EFC中,EC2+FC2=EF2,即42+(8-x)2=x2.解得x=5.故BF=5 cm.(3)在Rt△ABF中,由勾股定理得AB2+BF2=AF2,∵AB=10 cm,BF=5 cm,∴AF=102+52=55(cm).7.(1)如图,点B的坐标为(3,4).∵AB =BD =3,∴△ABD 是等腰直角三角形.∴∠BAD =45°.∴∠DAE =∠BAD =45°.∴E 在y 轴上.AE =AB =BD =3,∴四边形ABDE 是正方形,OE =1. ∴点E 的坐标为(0,1).(2)点E 能恰好落在x 轴上.理由如下:∵四边形OABC 为矩形,∴BC =OA =4,∠AOC =∠DCO =90°.由折叠的性质可得:DE =BD =OA -CD =4-1=3,AE =AB =OC =m. 假设点E 恰好落在x 轴上,在Rt △CDE 中,由勾股定理可得EC =DE 2-CD 2=32-12=2 2. 则有OE =OC -CE =m -2 2.在Rt △AOE 中,OA 2+OE 2=AE 2.即42+(m -22)2=m 2.解得m =3 2.8.(1)周长为2×(10+8)=36.(2)①∵四边形ABCD 是矩形,由折叠对称性得AF =AD =10,FE =DE.在Rt △ABF 中,由勾股定理得BF =6,∴FC =4.在Rt △ECF 中,42+(8-DE)2=EF 2,解得DE =5.②分三种情形讨论:若AP =AF ,∵AB ⊥PF ,∴PB =BF =6;若PF =AF ,则PB +6=10.解得PB =4;若AP =PF ,在Rt △APB 中,AP 2=PB 2+AB 2,设PB =x ,则(x +6)2-x 2=82.解得x =73. ∴PB =73. 综合得PB =6或4或73. (3)当点N 与C 重合时,CT 取最大值是8,当点M 与A 重合时,CT 取最小值为4,所以线段CT 长度的最大值与最小值之和为12.。

人教版中考数学考点系统复习 第五章 四边形 微专题(四) 矩形的折叠问题

人教版中考数学考点系统复习 第五章 四边形 微专题(四) 矩形的折叠问题

EA′=EA
拓展折法:如图⑤,当点B′恰 好落在CD边上时,设A′B′交AD
于点P.
图⑤:过点E作 EG⊥BC,则
△EFG∽△BB′C △A′EP∽△DB′P △CFB′∽△DB′P △BB′F为等腰三角形
4.★如图,将边长为9的正方形纸片ABCD沿MN折叠,使点A落在BC边上 的点A′处,点D的对应点为点D′.若A′B=3,则DM=2 2 .
4 B.3
3 C.2 D.53
类型三:折痕过两边
基本折法
结论
如图④,在矩形ABCD中,点E,F分别在边AD, 图④:△ABE≌△A′B
BC上,沿EF将四边形ABFE折叠得到四边形A′B
′E
′FE,点B′恰好落在AD边上.
四边形BFB′E是菱形
△B′EF为等腰三角形
∠B′FE=∠BFE
FB′=FB,
基本折法
结论 图②:△DBC∽△PDE △BDA∽△PDE △BPE≌△BPA
基本折法
结论
图③:△GCB∽△GEF △GEF∽△PDF △BPE≌△BPA
3.★(2021·遂宁)如图,在矩形ABCD中ห้องสมุดไป่ตู้AB=5,AD=3,点E为BC上一
点,把△CDE沿DE翻折,点C恰好落在AB边上的点F处,则CE的长( D ) A.1
微专题(四) 矩形的折叠 问题
类型一:折痕过对角线 基本折法
如图,点P是矩形ABCD边AD上一点, 当点P与点D重合时,将△ABP沿BP折
叠得到△EBP,BE交CD于点H.
结论
△BPE≌△BPA; △BCH≌△DEH; △DEH是直角三角形; △BHD是等腰三角形
1.如图,在矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落 在点E处,AE交DC于点O,若AO=5 cm,则AC的长为4 5 cm,S△COE= 66 cm2.

专题36 矩形与折叠问题(解析版)

专题36 矩形与折叠问题(解析版)

专题36 矩形与折叠问题一、单选题1.如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm .现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CB 1的长为( )A .cmB .C .8cmD .10cm【答案】B【分析】 根据翻折变换的性质可以证明四边形ABEB 1为正方形,得到BE =AB ,根据EC =BC ﹣BE 计算得到EC ,再根据勾股定理可求答案.【详解】解:∵∵AB 1E =∵B =90°,∵BAB 1=90°,∵四边形ABEB 1为矩形,又∵AB =AB 1,∵四边形ABEB 1为正方形,∵BE =AB =6cm ,∵EC =BC ﹣BE =2cm ,∵CB 1cm .故选B .【点睛】本题考查的是翻折变换、矩形和正方形的判定和性质,掌握翻折变换的性质及矩形、正方形的判定定理和性质定理是解题的关键.2.如图,矩形ABCD 中,3AB =,9AD =,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则ABE ∆的面积为( )A.12B.10C.8D.6【答案】D【分析】根据折叠的条件可得:BE=DE,在直角∵ABE中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点B与点D重合,∵BE=ED.∵AD=AE+DE=AE+BE=9.∵BE=9−AE,根据勾股定理可知AB2∵AE2∵ BE2,32∵AE2∵∵9-AE∵2∵解得AE=4.∵∵ABE的面积为3×4÷2=6.故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.3.如图,在矩形ABCD中,E是BC边的中点,将∵ABE沿AE所在的直线折叠得到∵AFE,延长AF交CD 于点G,已知CG=2,DG=1,则BC的长是()A.B.C.D.【答案】B【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt∵EGF ∵Rt∵EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG ,∵E 是BC 的中点,∵BE =EC ,∵∵ABE 沿AE 折叠后得到∵AFE ,∵BE =EF ,∵EF =EC ,∵在矩形ABCD 中,∵∵C =90°,∵∵EFG =∵B =90°,∵在Rt∵EGF 和Rt∵EGC 中,EF EC EG EG=⎧⎨=⎩, ∵Rt∵EGF ∵Rt∵EGC (HL ),∵FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∵AF =AB =3,∵AG =AF +FG =3+2=5,∵BC =AD =.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.4.在矩形纸片ABCD 中,AB =6,AD =10.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ .当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为( )A .8cmB .6cmC .4cmD .2cm【答案】C【分析】 根据翻折的性质,可得BA ′与AP 的关系,根据线段的和差,可得A ′C ,根据勾股定理,可得A ′C ,根据线段的和差,可得答案.【详解】解:∵当P 与B 重合时,BA ′=BA =6,CA ′=BC ﹣BA ′=10﹣6=4cm ,∵当Q 与D 重合时,由勾股定理,得CA cm ,CA ′最远是8,CA ′最近是4,点A ′在BC 边上可移动的最大距离为8﹣4=4cm ,故选:C .【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.5.如图,把矩形纸片ABCD 沿EF 折叠后得到1∠,再把纸片铺平,若150∠=︒,则AEF ∠的度数为()A .105°B .120°C .130°D .115°【答案】D【分析】 点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,结合∵1的度数即可求出∵EFB 的度数,利用矩形的性质AD∵BC 即可求出结果.【详解】点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,∵∵1=50°,∵∵BFE=(180°-50°)÷2=65°,∵ABCD 是矩形,∵AD∵BC ,∵∵DEF=∵BFE=65°,∵∵AEF=180°-65°=115°,故选:D .【点睛】本题考查了折叠的性质,矩形的性质,平行的性质,掌握折叠的性质是解题的关键.6.如图所示,在矩形ABCD 中,4AB =,8AD =,将矩形沿BD 折叠,点A 落在点E 处,DE 与BC 交于点F ,则重叠部分BDF ∆的面积是( )A .20B .16C .12D .10【答案】D【分析】 根据折叠的性质可得∵ADB=∵EDB,由平行可得∵ADB=∵CBD,推出∵CBD=∵EDB,设BF 为x ,在Rt∵DCF 中根据勾股定理列出方程求出x ,再根据面积公式求出∵BDF 的面积即可.【详解】∵AD∵BC,∵∵ADB=∵CBD,∵∵BDE 是∵BDA 折叠后的图形,∵∵ADB=∵EDB,∵∵CBD=∵EDB,设BF 为x ,则DF 为x ,CF 为8-x ,在Rt∵DCF 中,()22284x x -+=解得:x =5.∵S ∵BDF =154102⨯⨯=. 故选D .【点睛】本题考查折叠中矩形的性质,关键在于利用勾股定理列出方程求解.7.如图,把一张长方形的纸沿对角线BD 折叠,使点C 落到点C '的位置,若BC '平分ABD ∠,则DBC ∠的度数是( )A .15°B .30°C .45°D .60°【答案】B【分析】 根据折叠的性质,得到DBC DBC'∠=∠,再根据角平分线的性质得到''ABC DBC ∠=∠ ,得到∵ABC 被平均分成了3份,求出解决即可.【详解】解:∵把一张长方形纸片ABCD 沿BD 折叠∵DBC DBC'∠=∠∵BC '平分ABD ∠∵''ABC DBC ∠=∠∵DBC ∠=13∵ABC=30° 故选B.【点睛】本题考查了折叠的性质以及角平分线的性质,解决本题的关键是熟练掌握折叠与角平分线的性质,找到相等的角.8.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∵CED'=70°,则∵EAB 的大小是( )A .60°B .50°C .75°D .55°【答案】D【分析】首先根据折叠的性质得出∵DEA=∵D′EA=55°,然后由余角的性质得出∵DEA=∵EAD′=35°,进而得出∵D′AB=20°,最后即可得出∵EAB.【详解】根据折叠的性质,∵CED'=70°,得 ∵DEA=∵D′EA=18070552︒-︒=︒ ∵∵ADE=∵AD′E=90°∵∵DAE=∵EAD′=90°-55°=35°∵∵D′AB=90°-∵DAE -∵EAD′=90°-35°-35°=20°∵∵EAB=∵EAD′+∵D′AB=35°+20°=55°故答案为D.【点睛】此题主要考查折叠的性质以及余角的性质,熟练掌握,即可解题.9.如图,有一张长方形纸片ABCD ,其中15AB cm =,10AD cm =.将纸片沿EF 折叠,//EF AD ,若9AE cm =,折叠后重叠部分的面积为( )A .230cmB .260cmC .250cmD .290cm【答案】B【解析】【分析】 根据折叠的性质,可知折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,即可得解.【详解】根据题意,得折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,∵10AD cm =,9AE cm =,//EF AD∵2=151091060ABCD AEFD S S S AB AD AE AD cm -=-=⨯-⨯=阴影长方形长方形故答案为B.【点睛】此题主要考查折叠的性质和长方形的面积求解,熟练掌握,即可解题.10.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B C D.6【答案】A【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【详解】解:∵∵CEO是∵CEB翻折而成,∵BC=OC,BE=OE,∵B=∵COE=90°,∵EO∵AC,∵O是矩形ABCD的中心,∵OE是AC的垂直平分线,AC=2BC=2×3=6,∵AE=CE,在Rt∵ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=33,在Rt∵AOE中,设OE=x,则AE=33-x,AE2=AO2+OE2,即(33-x)2=32+x2,解得x=3,∵AE=EC=33-3=23.故选:A.【点睛】本题考查翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解题的关键.11.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,恰好使的D 落在边BC 上的点F 处,如果∵BAF =60°,则∵DAE 的大小为( )A .10°B .15 °C .20 °D .25°【答案】B【分析】 由题意可知90BAD ∠=︒,12FAE DAE DAF ∠=∠=∠.再由DAF BAD BAF ∠=∠-∠,即可求出DAE ∠的大小.【详解】∵四边形ABCD 为矩形,∵90BAD ∠=︒,∵FAE 是由DAE △沿AE 折叠而来,且F 点恰好落在BC 上, ∵12FAE DAE DAF ∠=∠=∠, ∵906030DAF BAD BAF ∠=∠-∠=︒-︒=︒, ∵130152DAE ∠=⨯︒=︒. 故选:B .【点睛】 本题考查矩形的折叠问题,根据折叠的性质推出12FAE DAE DAF ∠=∠=∠是解答本题的关键. 12.如图,长方形ABCD 中,点O 是AC 的中点,E 是AB 边上的点,把∵BCE 沿CE 折叠后,点B 恰好与点O 重合,则图中全等的三角形有( )对.A .1B .2C .3D .4【答案】D【分析】 由长方形的性质利用“SSS ”即可证明ADC CBA ≅,再由折叠的性质可知∵BCE ∵∵OCE ,即可得出结论90EOC EBC ∠=∠=︒,从而推出90EOA EOC ∠=∠=︒,最后由O 点为AC 中点,利用“ASA ”即可证明OCE OAE ≅,最后又可推出∵OAE ∵∵BCE ,即可选择.【详解】∵四边形ABCD 为长方形,∵在ADC 和CBA △中AD CB CD AB AC CA =⎧⎪=⎨⎪=⎩,∵()ADC CBA SSS ≅;∵∵BCE 沿CE 折叠后,点B 恰好与点O 重合,∵∵BCE ∵∵OCE ;∵O 点为AC 中点,∵AO =CO .∵∵BCE ∵∵OCE ,∵90EOC EBC ∠=∠=︒,∵在∵OCE 和∵OAE 中,90AO CO EOA EOC OE OE =⎧⎪∠=∠=︒⎨⎪=⎩,∵()OCE OAE ASA ≅;∵∵BCE ∵∵OCE ,OCE OAE ≅,∵∵OAE ∵∵BCE综上,图中全等三角形有4对.故选:D .【点睛】本题考查矩形的性质以及全等三角形的判定和性质.掌握全等三角形的判定条件是解答本题的关键. 13.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .5【答案】A【分析】 根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1,∵A 1B=10-8=2,故选A .【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q 与D 重合时,A 1B 最小是解题的关键.14.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20【答案】C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.15.如图,把一张长方形纸片沿对角线折叠,若∵EDF 是等腰三角形,则∵BDC ( )A .45ºB .60ºC .67.5ºD .75º【答案】C【分析】 由翻折可知:∵BDF∵∵BCD ,所以∵EBD=∵CBD ,∵E=∵C=90°,由于∵EDF 是等腰三角形,易证∵ABF=45°,所以∵CBD=12∵CBE=22.5°,从而可求出∵BDC=67.5°. 【详解】解:由翻折的性质得,∵DBC=∵EBD ,∵矩形的对边AD∵BC ,∵E=∵C=90°,∵∵DBC=∵ADB ,∵∵EBD=∵ADB ,∵∵EDF 是等腰三角形,∵E=90°,∵∵EDF 是等腰直角三角形,∵∵DFE=45°,∵∵EBD+∵ADB=∵DFE , ∵∵DBF=12∵DFE=22.5°, ∵∵CBD =22.5°,∵∵BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识. 16.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A B C.2D【答案】D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∵∵A=90°,∵AB=4,AD=3,∵BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∵DA′G=∵A=90°,∵∵BA′G=90°,BG=AB-AG=4-x,A′B=BD-A′D=5-3=2,∵在Rt∵A′BG中,A′G2+A′B2=BG2,∵x2+22=(4-x)2,解得:x=32,∵AG=32,∵在Rt∵ADG中,DG=故选:D.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.17.如图,在矩形纸片ABCD中,BC a=,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .2aD .3a 【答案】D【分析】首先证明∵OBC 是等边三角形,在Rt∵EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∵OB=OC ,∵BCD=90°,由翻折不变性可知:BC=BO ,∵BC=OB=OC ,∵∵OBC 是等边三角形,∵∵OBC=60°,∵∵EBC=∵EBO=30°,∵BE=2CE根据勾股定理得:EC=3a , 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明∵OBC 是等边三角形. 18.如图,将矩形纸片ABCD 沿EF 折叠,点C 落在边AB 上的点H 处,点D 落在点G 处,若111GEF ∠=︒,则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°【答案】A【分析】 根据翻折的性质,及矩形的性质,求出AEG ∠,再利用“8”字模型求解即可.【详解】由图形翻折的性质可知,111GEF DEF ∠=∠=︒,180111AEF ∴∠=︒-︒=69︒,1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒,90A G ∠=∠=︒,利用“8”字模型,42AHG AEG ∴∠=∠=︒,故选:A .【点睛】本题考查了矩形翻折问题,能够根据图形翻折的性质推理出AEG ∠是解决问题的关键,熟练运用“8”字模型是求最终结果的关键.19.如图,已知长方形ABCD ,将∵DBC 沿BD 折叠得到∵DBC′,BC′与AD 交于点E ,若长方形的周长为20cm ,则∵ABE 的周长是( )A .5cmB .10cmC .15cmD .20cm【答案】B【分析】 根据现有条件推出∵EDB=∵EBD ,得出BE=DE ,可知∵ABE 的周长=AB+AD ,是长方形的周长的一半,即可得出答案.【详解】由折叠可知:∵CBD=∵C′BD,∵四边形ABCD为平行四边形,∵AD∵BC,∵∵ADB=∵CBD,∵∵ADB=∵C′BD,∵∵EDB=∵EBD,∵BE=DE,∵∵ABE的周长=AB+AD,∵长方形的周长为20cm,∵2(AB+AD)=20cm,∵AB+AD=10cm,∵∵ABE的周长为10cm,故选:B.【点睛】本题考查了等腰三角形的性质,折叠的性质,推出BE=DE是解题关键.20.如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∵ADE = 30°,EH = 2,则BC的长度为()A.8B.7C.6.5D.6【答案】D【分析】由折叠的性质可得∵E=∵C=∵A=90°,再证明∵ABH∵∵EDH,得到AB的长,再求出∵DBC=30°,在Rt∵BCD 中即可求解.【详解】∵四边形ABCD是矩形,∵AD∵BC,∵C=90°,∵将一块长方形纸片ABCD 沿BD 翻折后,∵∵E =∵C =∵A=90°,又∵AHB=∵EHD ,AB=ED∵∵ABH∵∵EDH∵∵ABH=∵ADE = 30°,AH=EH = 2∵BH=2AH=4∵CD=AB= =∵∵ABH= 30°,∵∵HBC=60°∵翻折,∵∵DBC=30°6=故选:D .【点睛】本题考查了翻折变换,矩形的性质,含30°的直角三角形的性质,求出AB 的长是本题的关键. 21.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:∵把ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;∵把ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若610AD CD ==,,则EH EF=( )A .32B .53C .43D .54【答案】A【分析】利用翻折不变性可得10AE AB ==,推出8DE =,2EC =,设BF EF x ==,在Rt EFC △中,2222(6)x x =+-,可得103x =,设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,可得3y =,由此即可解决问题.【详解】 解:四边形ABCD 是矩形,90C D ∴∠=∠=︒,10AB CD ==,6AD BC ==,由翻折不变性可知:10AB AE ==,6AD AG ==,BF EF =,DH HG =,4EG ∴=,在Rt ADE △中,8DE ==,1082EC ∴=-=,设BF EF x ==,在Rt EFC △中有:2222(6)x x =+-,103x ∴=, 设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,3y ∴=,5EH ∴=, ∴531023EH EF ==,故选:A .【点睛】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22.如图,将一张矩形纸片ABCD 沿EF 折叠后,点D ,C 分别落在D ′,C ′地位置,ED ′的延长线与BC 相交于点G ,若∵EFG =68°,则∵1的度数是( )A .112°B .136°C .144°D .158°【答案】B【分析】由AD//BC,∵EFG=68°,根据两直线平行,内错角相等,可求得∵DEF的度数,然后由折叠的性质,求得∵DEG 的度数,继而求得答案.【详解】解:∵AD//BC,∵EFG=68°,∵∵DEF=∵EFG=68°,由折叠的性质可得:∵FEG=∵DEF=68°,∵∵DEG=∵DEF+∵FEG=136°,∵AD//BC,∵∵1=∵DEG=136°.故选:B.【点睛】此题考查了平行线的性质以及折叠的性质.注意掌握折叠前后图形的对应关系是解此题的关键.23.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则DE的长为()A.12B.53C.25D.13【答案】B【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt∵ABF 中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt∵ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到DE的长.【详解】解:∵四边形ABCD为矩形,∵AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∵AF=AD=5,EF=DE,在Rt∵ABF中,BF4,∵CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x,在Rt∵ECF中,CE2+FC2=EF2,∵x2+12=(3﹣x)2,解得x=43,∵DE=3﹣x=53,故选:B.【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.24.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上的点G处,并使折痕经过点A,已知2BC=,则线段EG的长度为()A.1B C D.2【答案】B【分析】由折叠的性质可得AE=12AD=12BC=1,AG=AD=2,由勾股定理得出EG即可.【详解】解:如图所示:∵四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF , ∵AE=12AD=12BC=1,EF∵AD , ∵∵AEF=90°,∵再一次折叠,使点D 落到EF 上点G 处∵AG=AD=2,=,故选:B .【点睛】此题主要考查了翻折变换的性质以及矩形的性质,熟练掌握折叠的性质是解题关键.25.如图,将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,若68AFE ∠=︒,则'∠C EB 等于( )A .68︒B .80︒C .44︒D .55︒【答案】C【分析】 根据矩形的性质可得AD//BC ,根据平行线的性质可得∵CEF =∵AFE ,根据折叠的性质可得∵CEF =∵C′EF ,根据平角的定义即可得答案.【详解】解:∵ABCD 是长方形,∵68AFE ∠=︒,∵∵CEF =∵AFE=68°,∵将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,∵∵CEF =∵C′EF =68°,∵'∠C EB =180°-∵CEF -∵C′EF=44°,故选:C .【点睛】本题考查了矩形的性质、平行线的性质,翻折变换的性质,熟记折叠的性质是解题的关键.26.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .∵ABE∵∵CDE【答案】B【分析】 由折叠的性质和平行线的性质可得∵ADB=∵CBD ,可得BE=DE ,可证AE=CE ,由“SAS”可证∵ABE∵∵CDE ,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∵∵CBD=∵DBC',CD=C'D=AB ,AD=BC=BC',∵∵EDB=∵DBC',∵∵EDB=∵EBD ,故选项C 正确;∵BE=DE ,∵AD=BC ,∵AE=CE ,故选项A 正确;在∵ABE 和∵CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ABE∵∵CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 27.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对【答案】C【分析】 因为图形对折,所以首先∵CDB∵∵ABD ,由于四边形是长方形,进而可得∵ABE∵∵CDE ,如此答案可得.【详解】解:∵∵BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∵CD=AB ,AD=BC ,∵BD=BD ,∵∵CDB∵∵ABD (SSS ),∵∵CBD=∵ADB∵EB=ED∵CE=AE又AB=CD∵∵ABE∵∵CDE ,∵图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.28.如图,在矩形ABCD 中,点E 是AD 的中点,EBC ∠的平分线交CD 于点F ,将DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC 、EF 交于点N .有下列四个结论:∵ DF CF =;∵BF EN ⊥;∵BEN 是等边三角形;∵3BEF DEF S S =△△.其中,将正确结论的序号全部选对的是( )A .∵∵∵B .∵∵∵C .∵∵∵D .∵∵∵∵【答案】B【分析】 由折叠的性质、矩形的性质与角平分线的性质,可证得CF =FM =DF ,即可判断∵;易求得∵BFE =∵BFN ,则可得BF∵EN ,即可判断∵;易证得∵BEN 是等腰三角形,但无法判定是等边三角形,即可判断∵;易求得BM =2EM =2DE ,即可得EB =3EM ,根据等高三角形的面积比等于对应底的比,即可判断∵.【详解】∵四边形ABCD 是矩形,∵∵D =∵BCD =90°,DF =MF ,由折叠的性质可得:∵EMF =∵D =90°,即FM∵BE ,CF∵BC ,∵BF 平分∵EBC ,∵CF =MF ,∵DF =CF ;故∵正确;∵∵BFM =90°−∵EBF ,∵BFC =90°−∵CBF ,∵∵BFM =∵BFC ,∵∵MFE =∵DFE =∵CFN ,∵∵BFE =∵BFN ,∵∵BFE +∵BFN =180°,∵∵BFE =90°,即BF∵EN ,故∵正确;∵在∵DEF 和∵CNF 中,90D FCN DF CFDFE CFN ∠∠︒⎧⎪⎨⎪∠∠⎩==== ∵∵DEF∵∵CNF (ASA ),∵EF =FN ,∵BF 垂直平分EN ,∵BE =BN ,假设∵BEN 是等边三角形,则∵EBN =60°,∵EBA =30°,则AE =12BE , 又∵AE =12AD ,则AD =BC =BE ,而明显BE =BN >BC ,∵∵BEN 不是等边三角形;故∵错误;∵∵BFM =∵BFC ,BM∵FM ,BC∵CF ,∵BM =BC =AD =2DE =2EM ,∵BE =3EM ,∵S ∵BEF =3S ∵EMF =3S ∵DEF ;故∵正确.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.29.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .103【答案】B【分析】 由翻折可知:AD=AF=10.DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ECF 中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD 是矩形,∵AD=BC=10,AB=CD=6,∵∵B=∵BCD=90°,由翻折可知:AD=AF=10,DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ABF 中,8BF ===,∵CF=BC -BF=10-8=2,在Rt∵EFC 中,EF 2=CE 2+CF 2,∵(6-x )2=x 2+22, ∵x=83, ∵EC=83. 故选:B .【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.30.如图,已知长方形ABCD 中6cm AB =,10cm BC =,在边CD 上取一点E ,将ADE 折叠使点D 恰好落在BC 边上的点F ,CE 的长是( )A .3B .2.5C .83D .2【答案】C【分析】 要求CE 的长,应先设CE 的长为x ,由将∵ADE 折叠使点D 恰好落在BC 边上的点F 可得Rt∵ADE∵Rt∵AFE ,所以AF=10cm ,EF=DE=6-x ;在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,已知AB 、AF 的长可求出BF 的长,又CF=BC -BF=10-BF ,在Rt∵ECF 中由勾股定理可得:EF 2=CE 2+CF 2,即:(6-x )2=x 2+(10-BF )2,将求出的BF 的值代入该方程求出x 的值,即求出了CE 的长.【详解】∵四边形ABCD 是矩形,∵AD=BC=10cm ,CD=AB=6cm ,根据题意得:Rt∵ADE∵Rt∵AFE ,∵∵AFE=90°,AF=10cm ,EF=DE ,设CE=x cm ,则DE=EF=CD -CE=(6-x )cm ,在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,即62+BF 2=102,∵BF=8cm ,∵CF=BC -BF=10-8=2(cm ),在Rt∵ECF 中,由勾股定理可得:EF 2=CE 2+CF 2,即(6-x )2=x 2+22,∵36-12x +x 2=x 2+4,∵x =83,即CE=83cm . 故选:C .【点睛】本题主要考查了图形的翻折变换以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.如图,将长方形ABCD 沿AC 折叠,使点B 落在点B '处,B C '交AD 于点E ,若125∠=︒,则2∠等于( )A .25︒B .30C .50︒D .60︒【答案】C【分析】 根据折叠的性质得到∵ACB '=125∠=︒,由长方形的性质得到AD∵BC ,即可得到∵2=∵BCB '=2∵1=50︒.【详解】由折叠可知:∵ACB '=125∠=︒,∵四边形ABCD 是长方形,∵AD∵BC ,∵∵2=∵BCB '=2∵1=50︒,故选:C.【点睛】此题考查折叠的性质,长方形的对边平行的性质,平行线的性质:两直线平行内错角相等.32.如图,将长方形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E.若CBD 35∠=︒,则ADE ∠的度数为( ).A .15︒B .20︒C .25︒D .30【答案】B【分析】 根据折叠的性质和平行线的性质,可以得到ADB ∠和EDB ∠的度数,然后即可得到ADE ∠的度数.【详解】解:由折叠的性质可得,CDB EDB ∠∠=,AD //BC ,CBD 35∠=︒,CBD ADB 35∠∠∴==︒,C 90︒∠=,CDB 55∠∴=︒,EDB 55∠∴=︒,ADE EDB ADB 553520∠∠∠∴=-=︒-︒=︒.故选:B .【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.33.如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10AD cm =,则折痕EF 的长为( ).A.2cm B.3cm C.4cm D.5cm【答案】D【分析】根据折叠可得,AD=AF,然后根据勾股定理求出BF,易得CF,再由勾股定理即可求得.【详解】根据折叠可得,AD=AF=10,DE=EF在Rt∵ABF中,根据勾股定理得,BF=6∵CF=4在Rt∵CEF中,EF2=CE2+CF2即EF2=(8-EF)2+42解得EF=5cm故选D【点睛】本题考查勾股定理,掌握折叠的性质是解题关键.34.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若EFC'∠=︒,那么ABE122∠的度数为()A.24︒B.32︒C.30D.26︒【答案】D【分析】由折叠的性质知:∵EBC′、∵BC′F都是直角,∵BEF=∵DEF,因此BE∵C′F,那么∵EFC′和∵BEF互补,这样可得出∵BEF 的度数,进而可求得∵AEB 的度数,则∵ABE 可在Rt∵ABE 中求得.【详解】解:由折叠的性质知,∵BEF=∵DEF ,∵EBC′、∵BC′F 都是直角,∵BE∵C′F ,∵∵EFC′+∵BEF=180°,又∵∵EFC′=122°,∵∵BEF=∵DEF=58°,∵∵AEB=180°-∵BEF -∵DEF=64°,在Rt∵ABE 中,∵ABE=90°-∵AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.35.如图,将矩形纸片ABCD 沿BD 折叠,得到','BC D C D ∆与AB 交于点E ,若140∠=︒,则2∠的度数为( )A .25︒B .20︒C .15︒D .10︒【答案】D【分析】 根据矩形的性质,可得∵ABD=40°,∵DBC=50°,根据折叠可得∵DBC'=∵DBC=50°,最后根据∵2=∵DBC'-∵DBA 进行计算即可.【详解】解:140,//CD AB ∠=︒,40,50ABD DBC ∴∠=︒∠=︒,由折叠可知'50DBC DBC ∠=∠=︒,2504010DBC ABD '∴∠=∠-∠=︒-︒=︒.故选:D .【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∵DBC′和∵DBA 的度数.36.如图,在长方形ABCD 中,将∵ABC 沿AC 对折至∵AEC 位置,CE 与AD 交于点F ,如果AB =2,BC =4,则AF 的长是( ).A .2B .2.5C .2.8D .3【答案】B【分析】 根据题意,根据轴对称的性质,得AB=AE=CD=2,BC=AD=4;通过证明AEF CDF △≌△得=EF FD ,再通过直角AEF 中勾股定理,计算得AF 的长.【详解】根据题意得:AB=AE=CD=2,BC=AD=4设AF=x ,则FD=AD -AF=4-x∵90AEC D AFE DFC AE CD ⎧∠=∠=⎪∠=∠⎨⎪=⎩∵AEF CDF △≌△∵=EF FD∵4EF FD x ==-∵222AE EF AF +=∵()22224x x +-=∵ 2.5x =∵AF 的长是2.5故选:B .【点睛】本题考查了全等三角形、矩形、勾股定理、一元一次方程、轴对称的知识;解题的关键是熟练掌握全等三角形、矩形、勾股定理、轴对称的性质,从而完成求解.37.如图,矩形ABCD 沿着对角线BD 进行折叠,使点C 落在C '处,BC '交AD 于点E ,16AD =,8AB =,则DE 的长( ).A .10B .6C .8D .【答案】A【分析】 先根据翻折变换的性质得出CD=C′D ,∵C=∵C′=90°,再设DE=x ,则AE=16-x ,由全等三角形的判定定理得出Rt∵ABE∵Rt∵C′DE ,可得出BE=DE=x ,在Rt∵ABE 中利用勾股定理即可求出x 的值,进而得出DE 的长.【详解】解:∵Rt DC B '△由Rt DCB △翻折而成,∵8CD C D AB '===,90C C '∠=∠=︒,设DE x =,则16AE x =-,∵90A C '∠=∠=︒,AEB DEC '∠=∠,∵ABE C DE '∠=∠,在Rt ABE △与Rt C DE '△中,90A C '∠=∠=︒,AB C D '=,ABE C DE '∠=∠∵Rt Rt ABE C DE '≌△△,∵BE DE x ==,在Rt ABE △中,222AB AE BE +=,即()222816x x +-=,解得10x =,即10DE =,故选A .【点睛】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.38.如图,长方形ABCD 中,AD BC 6==,10AB CD ==,点E 为射线DC 上的一个动点,ADE 与AD E '关于直线AE 对称,当'AD B 为直角三角形时,DE 的长为() A .2或8B .83或18C .83或2D .2或18【答案】D【分析】 分两种情况: 当E 点在线段DC 上时, 当E 点在线段DC 的延长线上时,利用全等三角形的判定和性质得出答案即可.【详解】解:分两种情况讨论:∵当E 点在线段DC 上时,AD E '△∵ADE ,90AD E D '∴∠=∠=︒,90AD B '∠=︒,180AD B AD E ''∴∠+∠=︒,B ∴、D 、E 三点共线,1122ABE S BE AD AB AD AD AD ''=⋅=⋅=,, BE AB 10∴==,8BD '===,1082DE D E '∴==-=;∵当E 点在线段DC 的延长线上时,如下图,90ABD CBE ABD BAD ''''''∠+∠=∠+∠=︒,CBE BAD ''∴∠=∠,在ABD ''△和BEC △中,D BCE AD BCBAD CBE '''''∠=∠⎧⎪=⎨⎪∠=∠'⎩, ABD ''∴△∵BEC ,BE AB 10∴==,8BD ''==,81018DE D E BD BE ''''∴==+=+=,综上所知,DE 2=或18,故选:D .【点睛】本题考查翻折的性质、三角形全等的判定与性质、勾股定理、掌握翻折的性质、分类探讨的思想方法是解决问题的关键.39.如图,四边形ABCD 是矩形纸片,AB =2.对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕BM 与EF 相交于点Q ;再次展平,连接BN ,MN,延长MN交BC于点G.有如下结论:∵∵ABN=60°;∵AM=1;∵AB∵CG;∵BMG是等边三角形;∵点P为线段BM上一动点,点H是BN的中点,则PN+PH.其中正确结论有()A.5个B.4个C.3个D.2个【答案】B【分析】∵根据折叠的性质得出AE=BE,AB=BN,∵NEB=90°,再根据含30度的直角三角形判定定理即可得出∵ENB =30°,即可得出∵ABN=60°;∵根据折叠的性质得出∵ABM=∵NBM=30°,设AM=x,根据勾股定理即可求出AM的值;∵直接根据矩形的性质即可得出;∵根据∵ABM=30°,得出∵MBG=∵BMA=60°,再根据折叠的性质和等量代换即可得出∵BGM是等边三角形;∵根据点H是BN的中点即矩形的性质得出BH=BE,结合题意得出PE=PH,再根据三点共线时值最小及勾股定理即可判断.【详解】解:由折叠可知,AE=BE,AB=BN,∵NEB=90°,在Rt∵BEN中,∵BN=AB=2BE,∵∵ENB=30°,∵∵ABN=60°,故∵正确;由折叠可知,∵ABM=∵NBM=30°,设AM=x,则BM=2x,x2+22=(2 x)2,∵x>0,解得:x,即AM =∵错误; ∵∵ABG =90°,∵AB ∵CG ,故∵正确;∵∵ABM =30°,∵∵MBG =∵BMA =60°,由折叠可知,∵BMG =∵BMA =60°,∵∵MBG =∵BMG =∵MGB =60°,∵∵BGM 是等边三角形,故∵正确,连接PE .∵点H 是BN 的中点,∵BH =BE =1,∵∵MBH =∵MBE ,∵E 、H 关于BM 对称,∵PE =PH ,∵PH +PN =PE +PN ,∵E 、P 、N 共线时,PH +PN 的值最小,EN ∵正确,故选为B .【点睛】本题考查翻折变换、等边三角形的判定和性质、直角三角形中30度角的判断、轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.40.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 【答案】B【分析】 如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵PEQ 是等腰直角三角形,进而可得∵MNE 是等腰直角三角形,然后根据等腰直角三角形的性质可得EG =12MN ,而12EG EF A F =-,进一步即可求得答案.【详解】解:如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵EPQ =11904522APQ ∠=⨯︒=︒,∵EQP =11904522DQP ∠=⨯︒=︒, ∵∵PEQ =90°,∵∵PEQ 是等腰直角三角形,如图4,∵MN ∵PQ ,∵∵MNE 是等腰直角三角形,∵EG ∵MN ,∵EG=MG=NG =12MN , ∵12EG EF A F =-=a ﹣2(a ﹣12b )=b ﹣a , ∵MN =2EG =22b a -.故选:B∵【点睛】本题考查了矩形的性质、折叠的性质以及等腰直角三角形的判定与性质,正确理解题意、熟练掌握等腰直角三角形的判定和性质是解题的关键.41.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )AB .2C .1.5 D【答案】D【分析】 设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.【详解】设BC x =,四边形ABCD 是矩形,90,B AD BC x ∴∠=︒==,由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,OA OC x ∴==,四边形AECF 是菱形,AE CE ∴=,。

矩形折叠问题专题训练--详细答案

矩形折叠问题专题训练--详细答案

中考数学矩形折叠问题专题训练一.填空题(共11小题)1.如图,在矩形ABCD中,AB=2,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为时,△CDF是等腰三角形.2.在▱ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为.3.如图是矩形纸片ABCD.AB=16cm,BC=40cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,那么折痕长度为cm.4.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.5.在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.6.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为.7.已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA 沿OD折叠,点A的对应点为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为.8.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N 构成等腰三角形的点P恰好有三个,则x的值是.9.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.10.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD 内一点D′处,若△BCD′为等腰三角形,则DE的长为.11.如图,在矩形ABCD中,AB=6,AD=2,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF 沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为.折叠问题1.如图,在矩形ABCD中,AB=2,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为2或2或4﹣2时,△CDF是等腰三角形.【解答】解:①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,(1分)延长CM交AD于点G,∴AG=GD=2,∴CE=2,∴当BE=2时,△CDF是等腰三角形;②DF=DC时,则DF=DC=AB=2,∵DF⊥AE,AD=2,∴∠DAE=45°,则BE=2,∴当BE=2时,△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB=2,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,即,解得:x=4﹣2或x=4+2(舍去);∴当BE=4﹣2时,△CDF是等腰三角形.综上,当BE=2或2或4﹣2时,△CDF是等腰三角形.故答案为:2或2或4﹣2.2.在▱ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为4或6.【解答】解:当∠B′AD=90°AB<BC时,如图1,∵AD=BC,BC=B′C,∴AD=B′C,∵AD∥BC,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=2,∴∠AB′C=30°,∴GC=B′C=BC,∴G是BC的中点,在Rt△ABG中,BG=AB=×2=3,∴BC=6;当∠AB′D=90°时,如图2,∵AD=BC,BC=B′C,∴AD=B′C,∵由折叠的性质:∠BAC=90°,∴AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=2,∴BC=AB÷=2×=4,∴当BC的长为4或6时,△AB′D是直角三角形.故答案为:4或6.3.如图是矩形纸片ABCD.AB=16cm,BC=40cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,那么折痕长度为10或8cm.【解答】解:分两种情况考虑:(i)如图1所示,过M作ME⊥AD于E,G在AB上,B′落在AE上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又∵BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EMB′中,根据勾股定理得:B′E==12,∴AB′=AE﹣B′E=20﹣12=8,设AG=x,则有GB′=GB=16﹣x,在Rt△AGB′中,根据勾股定理得:GB′2=AG2+A′B′2,即(16﹣x)2=x2+82,解得:x=6,∴GB=16﹣6=10,在Rt△GBM中,根据勾股定理得:GM==10;(ii)如图2所示,过M作ME⊥AD于E,G在AE上,B′落在ED上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EMB′中,根据勾股定理得:B′E==12,∴AB′=AE+B′E=20+12=32,设AG=A′G=y,则GB′=AB′﹣AG=AE+EB′﹣AG=32﹣y,A′B′=AB=16,在Rt△A′B′G中,根据勾股定理得:A′G2+A′B′2=GB′2,即y2+162=(32﹣y)2,解得:y=12,∴AG=12,∴GE=AE﹣AG=20﹣12=8,在Rt△GEM中,根据勾股定理得:GM==8;综上所述,折痕MG=10或8.故答案为:10或8.4.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是3≤x≤4.【解答】解:取BP中点O,以BP为直径作⊙O,连接QO,当QO⊥AC时,QO最短,即BP最短,∵∠OQC=∠ABC=90°,∠C=∠C,∴△ABC∽△OQC,∴=,∵AB=3,BC=4,∴AC=5,∵BP=x,∴QO=x,CO=4﹣x,∴=,解得:x=3,当P与C重合时,BP=4,∴BP=x的取值范围是:3≤x≤4,故答案为:3≤x≤4.5.在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.【解答】解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=×70°=35°.故答案为:55°或35°.6.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为或.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为:或.7.已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA 沿OD折叠,点A的对应点为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为(,3)或(,1)或(2,﹣2).【解答】解:∵点A(0,4),B(7,0),C(7,4),∴BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC的内部时,过A'作OB的垂线交OB于F,交AC于E,如图1所示:①当A'E:A'F=1:3时,∵A'E+A'F=BC=4,∴A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,在Rt△OA'F中,由勾股定理得:OF==,∴A'(,3);②当A'E:A'F=3:1时,同理得:A'(,1);(2)当点A'在矩形AOBC的外部时,此时点A'在第四象限,过A'作OB的垂线交OB于F,交AC于E,如图2所示:∵A'F:A'E=1:3,则A'F:EF=1:2,∴A'F=EF=BC=2,由折叠的性质得:OA'=OA=4,在Rt△OA'F中,由勾股定理得:OF==2,∴A'(2,﹣2);故答案为:(,3)或(,1)或(2,﹣2).8.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N 构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4﹣4或4<x<4.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.9.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DG,EG,且DG=EG=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.10.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD 内一点D′处,若△BCD′为等腰三角形,则DE的长为或.【解答】解:①:CD'=BD'时,如图,由折叠性质,得AD=AD′,∠DAE=∠D′AE,∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCD′为等腰三角形,∴D′B=D′C,∠D′BC=∠D′CB,∴∠DCD′=∠ABD′,在△DD′C和△AD′B中,,∴△DD′C≌△AD′B,∴DD′=AD′,∴DD′=AD′=AD,∴△ADD′是等边三角形,∴∠DAD′=60°,∴∠DAE=30°,∴DE=AE,设DE=x,则AE=2x,(2x)2﹣x2=42,解得:x=,即DE=.②:当CD'=CB时,如图,连接AC,由于AD'=4,CD'=4,而AC==>4+4;故这种情况不存在.③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,由于AD'=BD',D'F=D'F;易知AF=BF,从而由勾股定理求得D'F===,又易证△AD'F∽△D'EG,设DE=x,D'E=x,∴,即;解得x=综上,故答案为:或.11.如图,在矩形ABCD中,AB=6,AD=2,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF 沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为6﹣2或6+2.【解答】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在Rt△BCE中,EC===2,∴CF=CE=2,∵AB=CD=6,∴DF=CD﹣CF=6﹣2,当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=2,∴DF=CD+CF′=6+2故答案为6﹣2或6+2.第11页(共11页)。

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。

中考专题复习矩形折叠问题

中考专题复习矩形折叠问题

中考专题复习矩形折叠问题矩形折叠问题是中考数学中的一个经典题型,要求考生在给定条件下进行折纸后,求出折纸后的面积或者边长等相关问题。

本文将对中考专题复习矩形折叠问题进行详细介绍和分析。

1. 矩形折叠问题简介矩形折叠问题是指将一个完整的矩形纸张按照规定方式进行折叠后,求折叠后的形状和相关属性的问题。

常见的矩形折叠问题包括求折叠后的面积、边长、对角线长度等。

这些问题需要考生设计折纸方式,并利用数学知识进行求解。

矩形折叠问题考察了考生的空间想象能力、几何思维和数学推理能力。

2. 矩形折叠问题的解题步骤矩形折叠问题的解题步骤一般包括以下几步:(1)明确问题:理解题目描述,明确所求的目标。

(2)分析折叠方式:根据题目要求,分析如何将矩形纸张折叠,确定折叠方式,可以画图帮助理解。

(3)建立模型:将折纸过程进行数学建模,标记各个关键点、线段等,建立相应的几何关系。

(4)求解问题:根据已建立的模型,应用数学知识或者几何关系,求解问题,得到所需的结果。

(5)检查答案:将得到的结果与题目要求进行对照,检查是否满足条件。

3. 矩形折叠问题的例题及解析例题1:将一块长20cm、宽10cm的矩形纸张沿中线对折,然后再折叠形成一个三角形后,求该三角形的面积。

解析:首先,将矩形纸张沿中线对折,得到两个相等的长方形,其长为10cm,宽为20cm/2=10cm。

然后将其中一个长方形按对角线进行折叠,即可形成一个三角形。

由于对折前的长方形和对折后的三角形是全等的,所以该三角形的底边长为10cm,高为10cm,因此三角形的面积为(10cm×10cm)/2=50cm²。

例题2:将一块矩形纸张按照下图所示方式进行折叠,求折叠后形成的矩形的面积。

解析:根据题目给出的折叠图形,我们可以看到折叠后的矩形纸张的高等于原矩形纸张的宽,宽等于原矩形纸张的长减去原矩形纸张的宽。

因此,折叠后形成的矩形的面积为(20cm-10cm)×10cm=100cm²。

专题一 矩形中的折叠问题

专题一 矩形中的折叠问题




) - = ,∴FG=2FO= .




平面直角坐标系中的折叠问题
9.如图所示,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x
轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC
边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1Biblioteka 求E,D两点的坐标.第一章
特殊平行四边形
专题一
矩形中的折叠问题

求角度
1.如图所示,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,恰好使点D
落在边BC上的点F处,若∠BAF=60°,则∠DAE的大小为( B )
A.10°
B.15°
第1题图
C.20°
D.25°
2.如图所示,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H
∴Rt△CEP1≌Rt△BME(HL),
∴CP1=BE=3,∴OP1=1,∴P1(0,1).
同理可得CP2=BE=3,∴OP2=7,∴P2(0,7).
当PE=PM时,此时点P在EM的垂直平分线上.设P点坐标为(0,-a)(a>
0).
∵E(2,4),M(5,2),∴EP3= +( + ) ,MP3=
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,∴DF=BF,
∴△BDF是等腰三角形.
(2)如图②所示,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
解:(2)①四边形BFDG是菱形.理由:
∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG.又∵DG∥BE,

八年级数学折叠问题(二)(人教版)(专题)(含答案)

八年级数学折叠问题(二)(人教版)(专题)(含答案)

折叠问题(二)(人教版)(专题)一、单选题(共6道,每道12分)1.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形纸片ABCD(矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF 交AD于F.则∠AFE=( )A.60°B.67.5°C.72°D.75°答案:B解题思路:动手操作,根据题意,画出符合题意的图形,如图所示,由折叠可知,∠BAE=∠FAE=45°,∵∠B=90°,∴∠AEB=45°∴∴∠AEF=∠CEF=67.5°∵AD∥BC∴∠AFE=∠CEF=67.5°故选B试题难度:三颗星知识点:略2.如图,在长方形ABCD中,AB=1,BC=,点P在线段AD上,若将△DCP折叠,使点D落在线段AC上的D′处,则DP的长为( )A. B.C.1D.答案:D解题思路:如图,依题意作出图形,点D的对应点为D′由题意得,在长方形ABCD中,∠D=90°,AB=CD=1,AD=BC=∴在Rt△ADC中,∠D=90°,CD=1,AD=由勾股定理得,AC=2∴∴∠DAC=30°由折叠知,∠PD′C=∠D=90°,PD′=PD,CD′=CD=1∴AD′=AC-CD′=1在Rt△AD′P中,∠PD′C=90°,∠D′AP=30°,AD′=1∴由折叠知:DP=PD′∴故选D.试题难度:三颗星知识点:略3.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP,PC,△BPC是以PB 为腰的等腰三角形,则PB的长为( ).A.2或5B.2或6C.5或6D.2或5或6答案:C解题思路:①如图,BP=BC此时BP=6②如图,PB=PC此时点P在线段BC的垂直平分线上,已知P在AD边上∴P为AD的中点在Rt△ABP中,由勾股定理可得,BP=5故选C试题难度:三颗星知识点:略4.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA 的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为( )A.(3,4)或(2,4)B.(3,4)或(8,4)C.(2,4)或(8,4)D.(3,4)或(2,4)或(8,4)答案:D解题思路:∵OA=10,点D是OA的中点,∴OD=5当△ODP是腰长为5的等腰三角形时①如图,OD=OP=5此时CP=3P(3,4)②DO=DP=5此时点P的位置有两个如图,P在左边时,此时QD=3,OQ=2P(2,4)如图,P在右边时,此时QD=3,OQ=8P(8,4)③OP=OD=PD=5时,不成立故选D试题难度:三颗星知识点:略5.如图,在矩形ABCD中,AB=3,BC=4,E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处.当为直角三角形时,BE的长为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:略6.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′F的长为( )A. B.C. D.答案:A解题思路:△AFB′为直角三角形时,分三种情况①如图,∠A B′F=90°此时,A,B′,E、三点在一条直线上,在Rt△ABE中,可得AE=10,由折叠B′E=BE=6所以AB′=4,设B′F=x,则BF=x,AF=8-x在Rt△A B′F中,由勾股定理得,x=3,即B′F=3;②如图,∠A F B′=90°由折叠可知,四边形BFB′E为正方形,此时FB′=BE=6③∠AF B′=90°不符合题意。

专题1.2 折叠问题(强化)(解析版)

专题1.2 折叠问题(强化)(解析版)

专题1.2 折叠问题【例题精讲】【例1】如图,在矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,则重叠部分AFC D 的面积为( )A .12B .10C .8D .6【解答】解:Q △AD C CBA ¢@D ,\△AD F CBF ¢@D ,\△AD F ¢与CBF D 面积相等,设BF x =,则222(8)4x x -=+,22641616x x x -+=+,1648x =,解得3x =,AFC \D 的面积1148341022=´´-´´=.故选:B .【例2】一张矩形纸ABCD ,将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E .将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F ,折叠出四边形AECF .(1)求证://AF CE ;(2)当BAC Ð= 30 度时,四边形AECF 是菱形?说明理由.【解答】(1)证明:Q四边形ABCD为矩形,//AD BC\,DAC BCA\Ð=Ð,由翻折知,12DAF HAF DACÐ=Ð=Ð,12BCE MCE BCAÐ=Ð=Ð,HAF MCE\Ð=Ð,//AF CE\;(2)解:当30BACÐ=°时四边形AECF为菱形,理由如下:Q四边形ABCD是矩形,90D BAD\Ð=Ð=°,//AB CD,由(1)得://AF CE,\四边形AECF是平行四边形,30BACÐ=°Q,60DAC\Ð=°.30ACD\Ð=°,由折叠的性质得30DAF HAFÐ=Ð=°,HAF ACD\Ð=Ð,AF CF\=,\四边形AECF是菱形;故答案为:30.【题组训练】1.如图,在矩形ABCD中,4AB=,6BC=,点E为BC的中点,将ABED沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )A .95B .125C .165D .185【解答】解:连接BF ,6BC =Q ,点E 为BC 的中点,3BE \=,又4AB =Q ,5AE \==,由折叠知,BF AE ^(对应点的连线必垂直于对称轴)125AB BE BH AE ´\==,则245BF =,FE BE EC ==Q ,\Ð185CF \==.故选:D .2.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C ¢处,点B 落在点B ¢处,其中9AB =,6BC =,则FC ¢的长为( )A .103B .4C .4.5D .5【解答】解:设FC x ¢=,则9FD x =-,6BC =Q ,四边形ABCD 为矩形,点C ¢为AD 的中点,6AD BC \==,3C D ¢=.在Rt △FC D ¢中,90D Ð=°,FC x ¢=,9FD x =-,3C D ¢=,222FC FD C D \¢=+¢,即222(9)3x x =-+,解得:5x =.故选:D .3.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ¢处,若2AE =,6DE =,60EFB Ð=°,则矩形ABCD 的面积是( )A .12B .24C .D .【解答】解:在矩形ABCD 中,//AD BC Q ,60B EF EFB \Т=Ð=°,由折叠的性质得90A A Ð=Т=°,2A E AE ¢==,AB A B =¢¢,18060120A EF AEF Т=Ð=°-°=°,1206060A EB A EF B EF \Т¢=Т-Т=°-°=°.在Rt △A EB ¢¢中,906030A B E Т¢=°-°=°Q ,2B E A E \¢=¢,而2A E ¢=,4B E \¢=,A B \¢¢=,即AB =2AE =Q ,6DE =,268AD AE DE \=+=+=,\矩形ABCD 的面积8AB AD ===g .故选:D .4.如图,在平面直角坐标系中,四边形OABC 是矩形,6OA =,将ABC D 沿直线AC 翻折,使点B 落在点D 处,AD 交x 轴于点E ,若30BAC Ð=°,则点D 的坐标为( )A .2)-B .3)-C .3)-D .(3,-【解答】解:过D 点作DF x ^轴,垂足为F ,则//DF y 轴,Q 四边形AOCB 为矩形,90OAB AOC B \Ð=Ð=Ð=°,6BC AO ==,AB OC =,30BAC Ð=°Q ,12AC \=,OC AB ==,由折叠可知:30DAC BAC Ð=Ð=°,AD AB ==,30OAE \Ð=°,OE \=,AE =,ED \=//DF y Q 轴,30EDF EAO \Ð=Ð=°,EF \=,3DF =,OF OE EF \=+=D \点坐标为,3)-,故选:B .5.如图,把正方形纸片ABCD 沿对边中点所在直线折叠后展开,折痕为MN ;再过点D 折叠,使得点A 落在MN 上的点F 处,折痕为DE ,则EM FN的值是( )A B 1-C .2D .3【解答】解:设正方形纸片ABCD 的边长为2a .由题意可知:AM BM DN NC a ====,2AD DF MN a ===,AE EF =,90EMF DNF Ð=Ð=°,FN \===,(2FM MN FN a \=-=.设AE EF x ==,则EM AM AE a x =-=-.在Rt EMF D 中,222EM MF EF +=Q ,222()[(2]a x a x \-+-=,(4x a \=-,(43)EM a a a \=--=-,\2EM FN ==故选:C .6.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若:2:1BE EC =,则线段CH 的长是( )A .3B .4C .5D .6【解答】解:设CH x =,则9DH EH x ==-,:2:1BE EC =Q ,9BC =,133CE BC \==,\在Rt ECH D 中,222EH EC CH =+,即222(9)3x x -=+,解得:4x =,即4CH =.故选:B .7.如图,将长方形纸片折叠,使A 点落在BC 上的F 处,折痕为BE ,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( )A .邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形【解答】解:Q 将长方形纸片折叠,A 落在BC 上的F 处,BA BF \=,Q 折痕为BE ,沿EF 剪下,\四边形ABFE 为矩形,\四边形ABEF 为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选:A .9.如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知1BE =,则EF 的长为 52 .【解答】解:Q 正方形纸片ABCD 的边长为3,90C \Ð=°,3BC CD ==,根据折叠的性质得:1EG BE ==,GF DF =,设DF x =,则1EF EG GF x =+=+,3FC DC DF x =-=-,312EC BC BE =-=-=,在Rt EFC D 中,222EF EC FC =+,即222(1)2(3)x x +=+-,解得:32x =,32DF \=,35122EF =+=.故答案为52.三.解答题(共8小题)10.如图,在矩形纸片ABCD 中,6AB =,8BC =,将矩形纸片折叠,使点B 与点D 重合,点A 落在点E 处,FG 是折痕,连接BF .(1)求证:四边形BGDF 是菱形;(2)求折痕FG 的长.【解答】(1)证明:Q 将矩形纸片折叠,使点B 与点D 重合,点A 落在点E 处,FG 是折痕,BF DF \=,BG DG =,BFG DFG Ð=Ð,Q 四边形ABCD 是矩形,8AD BC \==,//AD BC ,DFG BGF \Ð=Ð,BFG BGF \Ð=Ð,BF BG \=,BF DF BG DG \===,\四边形BGDF 是菱形;(2)解:过F 作FM BC ^于M ,则90FMC FMB Ð=Ð=°,Q 四边形ABCD 是矩形,90A ABM \Ð=Ð=°,\四边形ABMF 是矩形,6AB FM \==,AF BM =,设AF x =,则8BF DF x ==-,Q 四边形ABCD 是矩形,90BAD \Ð=°,在Rt BAF D 中,由勾股定理得:222AB AF BF +=,即2226(8)x x +=-,解得:74x =,即74AF =,2584BG x =-=,2579442MG BG BM \=-=-=,在Rt FMG D 中,由勾股定理得:152FG ==.11.将矩形ABCD 折叠使A ,C 重合,折痕交BC 于E ,交AD 于F ,(1)求证:四边形AECF 为菱形;(2)若4AB =,8BC =,求菱形的边长;(3)在(2)的条件下折痕EF 的长.【解答】(1)证明:Q 矩形ABCD 折叠使A ,C 重合,折痕为EF ,OA OC \=,EF AC ^,EA EC =,//AD BC Q ,FAC ECA \Ð=Ð,在AOF D 和COE D 中,FAO ECO AO COAOF COE Ð=Ðìï=íïÐ=Ðî,AOF COE \D @D ,OF OE \=,OA OC =Q ,\四边形AECF 为平时四边形,AC EF ^Q ,\四边形AECF 为菱形;(2)解:设菱形的边长为x ,则8BE BC CE x =-=-,AE x =,在Rt ABE D 中,222BE AB AE +=Q ,222(8)4x x \-+=,解得5x =,即菱形的边长为5;(3)解:在Rt ABC D中,AC ===,12OA AC \==,在Rt AOE D中,OE ==,2EF OE\==12.如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM CN=;(2)若CMND的面积与CDND的面积比为3:1,求MNDN的值.【解答】(1)证明:Q将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,ANM CNM\Ð=Ð,Q四边形ABCD是矩形,//AD BC\,ANM CMN\Ð=Ð,CMN CNM\Ð=Ð,CM CN\=;(2)解:过点N作NH BC^于点H,则四边形NHCD是矩形,HC DN\=,NH DC=,CMNDQ的面积与CDND的面积比为3:1,\12312CMNCDNMC NHS MCS NDDN NHDD===g gg g,33MC ND HC\==,2MH HC\=,设DN x=,则HC x=,2MH x=,3CM x CN\==,在Rt CDND中,DC==,HN \=,在Rt MNH D 中,MN ==,\MN DN ==.13.如图,在矩形ABCD 中,15AB =,E 是BC 上的一点,将ABE D 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将ADF D 沿着AF 折叠,点D 刚好落在AG 上点H 处,且45CE BE =.(1)求AD 的长;(2)求FG 的长.【解答】解:(1)45CE BE =Q ,5BE x \=,4CE x =,由折叠的性质可得:15AB AG ==,AD AH =,5EB EG x ==,90B AGE Ð=Ð=°,90D AHF Ð=Ð=°,3CG x \===,90EGC GEC EGC AGD Ð+Ð=°=Ð+ÐQ ,AGD CEG \Ð=Ð,sin sin CG AD CEG AGD EG AG \Ð=Ð==,\3515x AD x =,9AD \=;(2)9AD =Q ,15AG =,6GH AG AH \=-=,cos cos EC GH CEG AGD EG GF Ð=Ð==Q ,\465x x GF=,7.5GF \=.14.如图所示,在矩形ABCD 中,8AB =,6BC =,P 为AD 上一点,将ABP D 沿BP 翻折至EBP D ,PE 与CD 相交于点O ,且OE OD =,BE 与CD 交于G 点.(1)求证:AP DG =;(2)求线段CG 的长.【解答】(1)证明Q 四边形ABCD 是矩形,90D A C \Ð=Ð=Ð=°,6AD BC ==,8CD AB ==,根据题意得:ABP EBP D @D ,EP AP \=,90E A Ð=Ð=°,8BE AB ==,在ODP D 和OEG D 中,D E OD OEDOP EOG Ð=Ðìï=íïÐ=Ðî,()ODP OEG ASA \D @D ,OP OG \=,PD GE =,DG EP \=,AP DG \=;(2)解:设AP EP x ==,则6PD GE x ==-,DG x =,8CG x \=-,8(6)2BG x x =--=+,根据勾股定理得:222BC CG BG +=,即2226(8)(2)x x +-=+,解得: 4.8x =,4.8AP \=,8 4.8 3.2CG \=-=.15.如图,四边形ABCD 为平行四边形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边上,折痕为AF .且10AB cm =,8AD cm =,6DE cm =.(1)求证:平行四边形ABCD 是矩形;(2)求BF 的长;(3)求折痕AF 长.【解答】(1)证明:Q 把纸片ABCD 折叠,使点B 恰好落在CD 边上,10AE AB \==,2210100AE ==,又222286100AD DE +=+=Q ,222AD DE AE \+=,ADE \D 是直角三角形,且90D Ð=°,又Q 四边形ABCD 为平行四边形,\平行四边形ABCD 是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF x =,则EF BF x ==,1064EC CD DE cm =-=-=,8FC BC BF x =-=-,在Rt EFC D 中,222EC FC EF +=,即2224(8)x x +-=,解得5x =,故5BF cm =;(3)解:在Rt ABF D 中,由勾股定理得,222AB BF AF +=,10AB cm =Q ,5BF cm =,AF \==.16.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE D 沿AE 翻折至AFE D ,延长EF 交边BC 于点G ,连接AG 、CF .(1)求证:ABG AFG D @D ;(2)求证:BG GC =;(3)求CFG D 的面积.【解答】(1)证明:Q 四边形ABCD 是正方形,6AB AD \==,90B D Ð=Ð=°,Q 将ADE D 对折得到AFE D ,AF AD \=,90AFE Ð=°,90AFG B \Ð=°=Ð,又AG AG =Q ,ADE AFG \D @D .(2)证明:6AB =Q ,3CD DE =,6DC \=,2DE \=,4CE =,2EF DE \==,设FG x =,则BG FG x ==,6CG x =-,2EG x =+,在Rt ECG D 中,由勾股定理得,2224(6)(2)x x +-=+,解得3x =,3BG FG \==,63CG x =-=,BG CG \=.(3)过点F作FN CG^于点N,则90FNG DCGÐ=Ð=°,又EGC EGCÐ=ÐQ,GFN GEC\D D∽,\GF FN GE EC=,\354FN =,\125FN=,11121832255 CGFS CG FND\==´´=g.。

专题18 矩形折叠问题-2023年中考数学一轮复习热点题型与方法精准突破(解析版)

专题18 矩形折叠问题-2023年中考数学一轮复习热点题型与方法精准突破(解析版)

专题18 矩形折叠问题模型的概述:已知矩形的长与宽,利用勾股定理、相似三角形及翻折的性质,求各线段边长。

解题方法:不找以折痕为边长的直角三角形,利用未知数表示其它直角三角形三边,通过勾股定理/相似三角形知识求解。

问题:根据已知信息,求翻折后各边长。

模型一:思路:模型二:思路:模型三:思路:尝试借助一线三垂直知识利用相似的方法求解模型四:思路:模型五:思路:模型六:点M,点N分别为DC,AB中点思路:模型七:点A’为BC 中点 思路:过点F 作FH ⊥AE ,垂足为点H设AE=A’E=x ,则BE=8-x 由勾股定理解得x=174 ∴BE=154由于△EBA’∽△A’CG ∽△FD’G∴A’G=3415 CG=1615 GD’=2615DF=D’F=AH=134 HE=1 EF=17【培优过关练】1.(2022秋·山东青岛·九年级统考期末)如图,在正方形中,,点、分别在边、上,若将四边形沿折叠,点恰好落在边上,则的长度为( )A .B .C .D .【答案】B【分析】根据翻折的性质和正方形及勾股定理的有关性质求解.【详解】解:在正方形中,,,,,,,,,又,,,,,故选:B.【点睛】本题考查了翻折及正方形的性质,勾股定理的应用是解题的关键.2.(2022秋·江苏徐州·九年级校考阶段练习)如图,在矩形纸片中,点E在边上,沿着折叠使点A落在边上的点F处,若,,则的长为()A.1B.2C.D.【答案】A【分析】先根据折叠的性质和正切的定义得出,再证明,最后利用相似三角形的性质得出结论.【详解】解:由折叠可知,,∴,∴,∵,∴,,∴,∴,∴,∵,∴,故选:A.【点睛】本题考查了矩形中的折叠问题,涉及三角函数,相似三角形判定与性质等知识,解题的关键是证明.3.(2022秋·福建泉州·九年级福建省惠安第一中学校联考期中)如图,在平面直角坐标系中,矩形的边在x轴上,边在y轴上,点B的坐标为,将矩形沿对角线折叠,使点B落在D点的位置,且交y轴交于点E,则点D的坐标是()A.()B.(,2)C.()D.【答案】D【分析】过D作于F,根据折叠可以证明,然后利用全等三角形的性质得到,设,那么,利用勾股定理即可求出m,然后利用已知条件可以证明,而,接着利用相似三角形的性质即可求出、的长度,也就求出了点D的坐标.【详解】如图,过D作于F,∵点B的坐标为,∴,根据折叠可知,而∴,∴,设,那么,在中,,∴,解得,∵,∴,∴而,∴,∴,即,∴,∴,∴D的坐标为,故选:D.【点睛】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.4.(2023春·广东广州·九年级专题练习)如图,矩形纸片中,,,折叠纸片使落在对角线上,折痕为,点的对应点为,那么的长为()A.1B.C.D.2【答案】C【分析】首先设,由矩形纸片中,,,可求得的长,又由折叠的性质,可求得的长,然后由勾股定理可得方程:,解此方程即可解决问题.【详解】解:设,∵四边形是矩形,∴,∵,,∴,由折叠的性质可得:,,,∴,,,∵在中,,∴,解得:,∴.故选:C.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.5.(2022秋·湖南邵阳·九年级校联考期中)如图,在矩形纸片中,,点E在上,将沿折叠,点恰落在边上的点F处;点在上,将△ABG沿折叠,点恰落在线段上的点处,有下列结论:①;②;③四边形的面积等于;④.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【分析】利用折叠性质得,,,,,则可得到,于是可对①进行判断;在中利用勾股定理计算出,则,设,利用勾股定理得到,得到,于是可对④进行判断;接着证明,于是可对②进行判断;根据可对③进行判断.【详解】解:∵沿折叠,点恰落在边上的点处;点在上,将沿折叠,点恰落在线段上的点处,∴,,,,,,∴,所以①正确;在中,,∴,设,则,在中,∵,∴,解得,∴,∴,所以④正确;在中,,设,则∴解得∴∵,,∴.所以③不正确.∵,∴∴故②正确故选:C.【点睛】本题考查了矩形的折叠问题,勾股定理,相似三角形的性质与判定,掌握以上知识是解题的关键.6.(2022秋·广东梅州·九年级校考阶段练习)如图,在矩形中,,,点E为的中点,将沿折叠,使点B落在矩形内点F处,连接,则的长为()A.B.C.D.【答案】D【分析】连接,根据三角形的面积公式求出,得到,根据直角三角形的判定得到,根据勾股定理求出答案.【详解】解:连接,交于H,∵,点E为的中点,∴,又∵,∴,由折叠知,(对应点的连线必垂直于对称轴),∴,则,∵,∴,,∵,∴,∴,故选:D.【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.7.(2022秋·广西贵港·九年级统考期中)如图,在矩形纸片中,,,M是上的点,且,将矩形纸片沿过点M的直线折叠,使点D落在上的点P处,点C落在点处,折痕为,当与线段交于点H时,则线段的长是()A.3B.C.4D.【答案】B【分析】连接,证明即可得到,证明,得出,然后列出关于x的方程,解方程即可.【详解】解:连接,如图所示:∵矩形纸片中,,,∴,,∵,∴,根据折叠可知,,,,∴,∴,∵,∴,∴,∵,,∴,∴,设,则,∵,∴,解得:,∴,故B正确.故选:B.【点睛】本题考查矩形的折叠问题,解题的关键是看到隐藏条件,证明三角形全等,学会利用翻折不变性解决问题.8.(2022秋·山东枣庄·九年级校考期中)如图,边长为2的正方形的对角线与交于点O,将正方形沿直线折叠,点C落在对角线上的点E处,折痕交于点M,则()A.B.C.D.【答案】B【分析】根据题意先求,再求,进而根据的线段比例关系,即可求出的长.【详解】解:如图,连接,∵四边形是正方形,∴,,∴,由折叠的性质可知,,∴,∴,∴是等腰直角三角形,∴,∵,∴,∴,即,∴.故选:B.【点睛】本题主要考查图形的翻折,熟练掌握图形翻折的性质,正方形的性质,等腰直角三角形的性质及相似三角形的判定和性质是解题的关键.9.(2022·辽宁营口·统考中考真题)如图,在矩形中,点M在边上,把沿直线折叠,使点B落在边上的点E处,连接,过点B作,垂足为F,若,则线段的长为()A.B.C.D.【答案】A【分析】先证明△BFC≌△CDE,可得DE=CF=2,再用勾股定理求得CE=,从而可得AD=BC=,最后求得AE的长.【详解】解:∵四边形ABCD是矩形,∴BC=AD,∠ABC=∠D=90°,AD∥BC,∴∠DEC=∠FCB,∵,∴∠BFC=∠CDE,∵把沿直线折叠,使点B落在边上的点E处,∴BC=EC,在△BFC与△CDE中,∴△BFC≌△CDE(AAS),∴DE=CF=2,∴,∴AD=BC=CE=,∴AE=AD-DE=,故选:A.【点睛】本题考查了矩形的性质、全等三角形的判定和性质、折叠的性质,勾股定理的应用,解决本题的关键是熟练掌握矩形中的折叠问题.10.(2022·贵州毕节·统考中考真题)矩形纸片中,E为的中点,连接,将沿折叠得到,连接.若,,则的长是()A.3B.C.D.【答案】D【分析】连接BF交AE于点G,根据对称的性质,可得AE垂直平分BF,BE=FE,BG=FG=,根据E 为BC中点,可证BE=CE=EF,通过等边对等角可证明∠BFC=90°,利用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据计算即可.【详解】连接BF,与AE相交于点G,如图,∵将沿折叠得到∴与关于AE对称∴AE垂直平分BF,BE=FE,BG=FG=∵点E是BC中点∴BE=CE=DF=∴∵∴∴∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF∴∠BFC=∠EFB+∠EFC=∴故选D【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.11.(2022·四川宜宾·统考中考真题)如图,在矩形纸片ABCD中,,,将沿BD折叠到位置,DE交AB于点F,则的值为()A.B.C.D.【答案】C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明,得出,,设,则,根据勾股定理列出关于x的方程,解方程得出x的值,最后根据余弦函数的定义求出结果即可.【详解】解:∵四边形ABCD为矩形,∴CD=AB=5,AB=BC=3,,根据折叠可知,,,,∴在△AFD和△EFB中,∴(AAS),∴,,设,则,在中,,即,解得:,则,∴,故C正确.故选:C.【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明,是解题的关键.12.(2022·浙江湖州·统考中考真题)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.D.GF⊥BC【答案】D【分析】根据矩形的性质以及勾股定理即可判断A,根据折叠的性质即可求得,进而判断B,根据折叠的性质可得,进而判断C选项,根据勾股定理求得的长,根据平行线线段成比例,可判断D选项【详解】BD是矩形ABCD的对角线,AB=6,BC=8,故A选项正确,将△ABE沿BE翻折,将△DCF沿DF翻折,,,故B选项正确,,∴EG∥HF,故C正确设,则,,即,同理可得若则,,不平行,即不垂直,故D不正确.故选D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,平行线分线段成比例,掌握以上知识是解题的关键.13.(2022·江苏连云港·统考中考真题)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【分析】由折叠的性质知∠FGE=90°,∠GEC=90°,点G为AD的中点,点E为AB的中点,设AD=BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b=,然后利用勾股定理再求得DF=FO=,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=(∠DGO+∠AGO) =90°,同理∠GEC=90°,∴∠FGE+∠GEC=180°∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b=,∴AB=2=AD,故②不正确;设DF=FO=x,则FC=2b-x,在Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x==,即DF=FO=,GE=a,∴,∴GE=DF;故③正确;∴,∴OC=2OF;故④正确;∵∠FCO与∠GCE不一定相等,∴△COF∽△CEG不成立,故⑤不正确;综上,正确的有①③④,故选:B.【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14.(2021·广西来宾·统考中考真题)如图,矩形纸片,,点,分别在,上,把纸片如图沿折叠,点,的对应点分别为,,连接并延长交线段于点,则的值为()A.B.C.D.【答案】A【分析】根据折叠性质则可得出是的垂直平分线,则由直角三角形性质及矩形性质可得∠AEO=∠AGD,∠FHE=∠D=90°,根据相似三角形判定推出△EFH∽△GAD,再利用矩形判定及性质证得FH=AB,即可求得结果.【详解】解:如图,过点F作FH⊥AD于点H,∵点,的对应点分别为,,∴,,∴EF是AA'的垂直平分线.∴∠AOE=90°.∵四边形是矩形,∴∠BAD=∠B=∠D=90°.∴∠OAE+∠AEO=∠OAE+∠AGD,∴∠AEO=∠AGD.∵FH⊥AD,∴∠FHE=∠D=90°.∴△EFH∽△GAD.∴.∵∠AHF=∠BAD=∠B=90°,∴四边形ABFH是矩形.∴FH=AB.∴;故选:A.【点睛】本题考查了矩形的折叠问题,掌握折叠的性质、矩形及相似三角形的判定与性质是解题的关键.15.(2011·吉林长春·中考真题)如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3B.4C.5D.6【答案】D【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF==4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点睛】本题考查了翻折变换(折叠问题),勾股定理,解题的关键是利用勾股定理建立等式求解.16.(2020·广东深圳·统考中考真题)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG 交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C 重合时,∠DEF=75°.其中正确的结论共有()A.1个B.2个C.3个D.4个【答案】C【分析】由折叠的性质可得四边形EBFG是菱形从而判断①②正确;由角平分线定理即可判断DG≠GH,由此推出③错误;根据F、C重合时的性质,可得∠AEB=30°,进而算出④正确.【详解】连接BE,由折叠可知BO=GO,∵EG//BF,∴∠EGO=∠FBO,又∵∠EOG=∠FOB,∴△EOG≌△FOB(ASA) ,∴EG=BF,∴四边形EBFG是平行四边形,由折叠可知BE=EG,则四边形EBFG为菱形,故EF⊥BG,GE=GF,∴①②正确;∵四边形EBFG为菱形,∴KG平分∠DGH,∴,DG≠GH,∴S△GDK≠S△GKH,故③错误;当点F与点C重合时,BE=BF=BC=12=2AB,∴∠AEB=30°,,故④正确.综合,正确的为①②④.故选C.【点睛】本题考查矩形的性质,菱形的判断,折叠的性质,关键在于结合图形对线段和角度进行转换.17.(2020·内蒙古呼和浩特·中考真题)如图,把某矩形纸片沿,折叠(点E、H在边上,点F,G在边上),使点B和点C落在边上同一点P处,A点的对称点为、D点的对称点为,若,的面积为8,的面积为2,则矩形的长为()A.B.C.D.【答案】D【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出D′H=x,由S△D′PH=D′P·D′H=A′P·D′H,可解得x=2,分别求出PE和PH,从而得出AD的长.【详解】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为8,△D′PH的面积为2,又∵,∠A′PF=∠D′PG=90°,∴∠A′P D′=90°,则∠A′PE+∠D′PH=90°,∴∠A′PE=∠D′HP,∴△A′EP∽△D′PH,∴A′P2:D′H2=8:2,∴A′P:D′H=2:1,∵A′P=x,∴D′H=x,∵S△D′PH=D′P·D′H=A′P·D′H,即,∴x=2(负根舍弃),∴AB=CD=2,D′H=DH=,D′P=A′P=CD=2,A′E=2D′P=4,∴PE=,PH=,∴AD==,故选D.【点睛】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.18.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为( )A.B.C.D.【答案】C【分析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【详解】根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF=,故选C.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.19.(2022·山东泰安·统考中考真题)如图,四边形为正方形,点E是的中点,将正方形沿折叠,得到点B的对应点为点F,延长交线段于点P,若,则的长度为___________.【答案】2【分析】连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.【详解】解:连接AP,如图所示,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,∵点E是BC的中点,∴BE=CE=AB=3,由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,,∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6−x)2,解得x=2,则DP的长度为2,故答案为:2.【点睛】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.20.(2022·贵州黔东南·统考中考真题)如图,折叠边长为4cm的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm.【答案】##【分析】根据折叠的性质可得DE=DC=4,EM=CM=2,连接DF,设FE=x,由勾股定理得BF,DF,从而求出x的值,得出FB,再证明,利用相似三角形对应边成比例可求出FG.【详解】解:连接如图,∵四边形ABCD是正方形,∴∵点M为BC的中点,∴由折叠得,∠∴∠,设则有∴又在中,,∵∴∴在中,∴解得,(舍去)∴∴∴∵∠∴∠∴∠又∠∴△∴即∴故答案为:【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.21.(2022·浙江丽水·统考中考真题)如图,将矩形纸片折叠,使点B与点D重合,点A落在点P处,折痕为.(1)求证:;(2)若,求的长.【答案】(1)证明见解析(2)cm【分析】(1)利用ASA证明即可;(2)过点E作EG⊥BC交于点G,求出FG的长,设AE=xcm,用x表示出DE的长,在Rt△PED中,由勾股定理求得答案.【详解】(1)∵四边形ABCD是矩形,∴AB=CD,∠A=∠B=∠ADC=∠C=90°,由折叠知,AB=PD,∠A=∠P,∠B=∠PDF=90°,∴PD=CD,∠P=∠C,∠PDF =∠ADC,∴∠PDF-∠EDF=∠ADC-∠EDF,∴∠PDE=∠CDF,在△PDE和△CDF中,,∴(ASA);(2)如图,过点E作EG⊥BC交于点G,∵四边形ABCD是矩形,∴AB=CD=EG=4cm,又∵EF=5cm,∴cm,设AE=x cm,∴EP=x cm,由知,EP=CF=x cm,∴DE=GC=GF+FC=3+x,在Rt△PED中,,即,解得,,∴BC=BG+GC= (cm).【点睛】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,根据翻折变换的性质将问题转化到直角三角形中利用勾股定理是解题的关键.22.(2022·河南·统考中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.【答案】(1)或或或(2)①15,15;②,理由见解析(3)cm或【分析】(1)根据折叠的性质,得,结合矩形的性质得,进而可得;(2)根据折叠的性质,可证,即可求解;(3)由(2)可得,分两种情况:当点Q在点F的下方时,当点Q在点F的上方时,设分别表示出PD,DQ,PQ,由勾股定理即可求解.(1)解:,sin∠BME=(2)∵四边形ABCD是正方形∴AB=BC,∠A=∠ABC=∠C=90°由折叠性质得:AB=BM,∠PMB=∠BMQ=∠A=90°∴BM=BC①∴②(3)当点Q在点F的下方时,如图,,DQ=DF+FQ=4+1=5(cm)由(2)可知,设,即解得:∴;当点Q在点F的上方时,如图,cm,DQ =3cm,由(2)可知,设,即解得:∴.【点睛】本题主要考查矩形与折叠,正方形的性质、勾股定理、三角形的全等,掌握相关知识并灵活应用是解题的关键.23.(2022·吉林长春·统考中考真题)【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中.他先将A4纸沿过点A的直线折叠,使点B落在上,点B的对应点为点E,折痕为;再沿过点F的直线折叠,使点C落在上,点C的对应点为点H,折痕为;然后连结,沿所在的直线再次折叠,发现点D与点F重合,进而猜想.【问题解决】(1)小亮对上面的猜想进行了证明,下面是部分证明过程:证明:四边形是矩形,∴.由折叠可知,,.∴.∴.请你补全余下的证明过程.【结论应用】(2)的度数为________度,的值为_________;(3)在图①的条件下,点P在线段上,且,点Q在线段上,连结、,如图②,设,则的最小值为_________.(用含a的代数式表示)【答案】(1)见解析(2)22.5°,(3)【分析】(1)根据折叠的性质可得AD=AF,,由HL可证明结论;(2)根据折叠的性质可得证明是等腰直角三角形,可求出GF的长,从而可得结论;(3)根据题意可知点F与点D关于AG对称,连接PD,则PD为PQ+FQ的最小值,过点P作PR⊥AD,求出PR=AR=,求出DR,根据勾腰定理可得结论.【详解】(1)证明:四边形是矩形,∴.由折叠可知,,.∴.∴.由折叠得,,∴∴又AD=AF,AG=AG∴(2)由折叠得,∠又∠∴∠由得,∠∠又∠∴∠∴∠∴设则∴∴∴(3)如图,连接∵∴AG是FD的垂直平分线,即点F与点D关于AG轴对称,连接PD交AG于点Q,则PQ+FQ的最小值为PD的长;过点P作交AD于点R,∵∠∴∠∴又∴∴在中,∴∴的最小值为【点睛】本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.24.(2021·湖北荆州·统考中考真题)在矩形中,,,是对角线上不与点,重合的一点,过作于,将沿翻折得到,点在射线上,连接.(1)如图1,若点的对称点落在上,,延长交于,连接.①求证:;②求.(2)如图2,若点的对称点落在延长线上,,判断与是否全等,并说明理由.【答案】(1)①见解析;②;(2)不全等,理由见解析【分析】(1)①先根据同角的余角相等得出∠DCG=∠AGH,再根据两角对应相等,两三角形相似即可得出结论;②设EF=x,先证得△AEF△ADC,得出===,再结合折叠的性质得出AE=EG=2x,AG=4x,AH=2EF=2x,再由△CDG△GAH,得出比例式==,求出EF的长,从而得出的值,即可得出答案;(2)先根据两角对应相等,两三角形相似得出△AEF△ACG,得出比例式=,得出EF=,AE=,AF=,从而判定与是否全等.【详解】(1)①在矩形ABCD中,∠BAD=∠D=90°∴∠DCG+∠DGC=90°又∵∠FGC=90°∴∠AGH+∠DGC=90°∴∠DCG=∠AGH∴△CDG△GAH②设EF=x∵△AEF沿EF折叠得到△GEF∴AE=EG∵EF⊥AD∴∠AEF=90°=∠D∴EF//CD//AB∴△AEF△ADC∴=∴===∴AE=EG=2x∴AG=4x∵AE=EG,EF//AB∴==∴AH=2EF=2x∵△CDG△GAH∴==∴==∴x=∴==∵∠FCG=90°∴tan∠GHC==(2)不全等理由如下:在矩形ABCD中,AC===由②可知:AE=2EF∴AF==EF由折叠可知,AG=2AE=4EF,AF=GF∵∠AEF=∠GCF,∠FAE=∠GAC∴△AEF△ACG∴=∴=∴EF=∴AE=,AF=∴FC=AC-AF=2-=∴AE FC,EF FC∴不全等【点睛】本题考查了矩形的性质,翻折变换,相似三角形的判定和性质,三角函数等知识,得出AE=2EF 是解题的关键.。

初中数学解题技巧专题---矩形中的折叠问题

初中数学解题技巧专题---矩形中的折叠问题
第2页共4页
参考答案与解析 .1 B 解析:由折叠可知∠EFC=∠EFC′=125°.∵在矩形 ABCD 中,AD∥BC,∴∠DEF
=矩形180,°-∠1A2=5°9=0°5,5°∴.根∠据A折BE叠=可11知0°∠-B9E0F°==2∠0°D.故EF选=B5.5°,∴∠BED=110°.∵四边形 ABCD 为 .2 B 3.C 4.C
点 A 恰好落在对角线 BD 上的 F 处,则 DE 的长是( )
. . 24
89
A 3 B. 5 C 5 D.16
5.★(2016·威海中考)如图,在矩形 ABCD 中,AB=4,BC=6,点 E 为 BC 的中点,将
△ABE 沿 AE 折叠,使点 B 落在矩形内的点 F 处,连接 CF,则 CF 的长为 . ________
2.如图,某数第学1兴题趣图小组开展以下折纸活动:(1)对折矩形纸片第AB2C题D图,使 AD 和 BC
重合,得到折痕 点 B,得到折痕
BEMF,,把同纸时片得展到平线;段(B2)N再.观一察次探折究叠可纸以片得,到使∠点AABM落的在度E数F 上是,( 并使) 折痕经过
A◆.类2型5°二
. . B 30° C 36° 折叠中求线段长
与△CDE 中,∠∠FA=EF∠=D∠,CED,∴△AFE≌△CDE. = , AF CD
(2)解:∵AB=4,BC=8,∴CF=AD=8,AF=CD=AB=4.∵△AFE≌△CDE,∴EF =DE.在 △Rt CED 中,由勾股定理得 + = ,即 DE2 CD2 CE2 + = - ,∴ = , DE2 42 (8 DE)2 DE 3
.D 45°
3.(2017·安顺中考)如图,在矩形纸片 ABCD 中,AD=4cm,把纸片沿直线 AC 折叠,

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E 处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EFAF =FHEF ,即EF 2=FH ·AF ,又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ;(3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF ,解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∵∠DCE =∠ADF =90°,∴Rt △DCE ∽Rt △ADF ,∴EC DF =DE AF ,即EC 25=810,∴EC =855,∴BE =BC -EC =1255.02如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F ,若DE =4,BD =8.(1)求证:AF =EF ;(2)求证:BF 平分∠ABD .证明:(1)在矩形ABCD 中,AB =CD ,∠A =∠C =90°, ∵△BED 是△BCD 对折得到的,∴ED =CD ,∠E =∠C ,∴ED =AB ,∠E =∠A ,(2分)又∵∠AFB =∠EFD ,∴△ABF ≌△EDF (AAS),∴AF =EF ;(4分)(2)在Rt △BCD 中,∵DC =DE =4,BD =8,∴sin ∠CBD =DC BD =12, ∴∠CBD =30°,(5分)∴∠EBD =∠CBD =30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F 重合(E、F两点均在BD上),折痕分别为BH、DG。

专题2.3(1)矩形的折叠问题-中考数学二轮复习必会几何模型剖析(全国通用)

专题2.3(1)矩形的折叠问题-中考数学二轮复习必会几何模型剖析(全国通用)
情况一:如图2,
C
由题意可得:DC´=DC=5,DM=4, ∴MC´=3,C´N=2.B N ´ E
对于△ENC´,设CE=x,则C´E=x,EN=4-x.
(4-x)2+22=x2, 解得:x=2.5, CE=2.5.
由勾股定理可得:
情况二:如图3,
易证C´F=CD=5, ∴NF=3,MF=2.
易证
知识梳理
矩形折叠
强化训练
提升能力
1.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>
60º.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与
3
∠BEG相等的角的个数为____.
2.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D´、C´的位置,
50
一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF=______.
E
D
【分析】有特殊位置关系必然有隐藏结论.
A
∴∠CEF=90º,
连接CE,易证
△CED≌△CEG(HL).
CE
=
易证△CDE∽△EAF, 可得:CD
F
EA EF
由CD=3 6,ED=EA=6. ∴CE=3 10 .
B
4 1C
∴∠KFH=75º,∠KFE=30º,
A
∵∠2=75º
3
10
5
,过点K作KP⊥BC交BC于P点,设KP=x,则
FP= 3 x,
B
EP=x.
∴x+ 3 x= 3+1. 解得x=1.
K
H
G
∴BE=KE= 2 CF=KF=2
A
D
, 2+ 3+3

思想方法专题:矩形中的折叠问题

思想方法专题:矩形中的折叠问题

请关注我
谢谢你
4
思想方法专题:矩形中的折叠问题
◆类型一折叠中求角度
1.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.若∠EFC′=125°,那么∠ABE的度数为()
A.15°B.20°C.25°D.30°
第1题图第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD,使AD和BC 重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察探究可以得到∠ABM的度数是() A.25°B.30°C.36°D.45°
◆类型二折叠中求线段长
3.(2017·安顺中考)如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()
A.6cm B.7cm C.8cm D.9cm
第3题图第4题图
4.(2017·宜宾中考)如图,在矩形ABCD中,BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上的F处,则DE的长是()
A.3 B.
24
5C.5 D.
89
16
5.★(2016·威海中考)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为________.
◆类型三折叠中求面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习7 如图,把一张边长为a的正 A E
方形的纸进行折叠,使B点落在AD 上,问B点落在AD的什么位置时,
M
折起的面积最小,并求出这最小值。
B
解: 如图,设MN为折痕,折起部
分为梯形EGNM,B、E关于MN对
AE
称,所以BE⊥MN,且BO=EO,设
AE=x,则BE= 。
MO
由Rt△MOB∽
,得:
,F
使点D落在BC边的一点F处,已知折
痕AE=55 cm,且tanEFC=3/4.
(1)求证:AFB∽FEC;
(2)求矩形ABCD的周长。
B
D E
FC
练习5 如图,将矩形纸片ABCD
E
沿一对角线BD折叠一次(折痕 A
与折叠后得到的图形用虚线表
F
示),将得到的所有的全等三角
形(包括实线、虚线在内)用符 号写出来。
矩形的折叠问题
(复习课)
几何研究的对象是:图形的形状、大小、 位置关系;
主要培养三方面的能力:思维分析能力、 空间想象能力和逻辑推理能力;
折叠型问题的特点是:折叠后的图形具 有轴对称图形的性质;
两方面的应用:一、在“大小”方面的 应用;二、在“位置”方面的应用。
一、在“大小”方面的应
用 折叠型问题在“大小”方面的应用,通常有求
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x.
(1)用x表示△AMN的面积SΔAMN。
(2)ΔAMN沿MN折叠,设点A关于ΔAMN对称的点为A¹, ΔA¹MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?

解 设EC=x,则DE=8-x,由轴对称可 A 知:EF=DE=8-x,AF=AD=10,又因 AB=8,故BF=6,故FC=BC-BF=4。在 RtFCE中,42+x2=(8-x)2,解之得x=3 B
D
E FC
练习2 如图,在梯形ABCD中, DCAB,将梯形对折,使点D、
D
C分别落在AB上的D¹、C¹处, E
B
答案:△ABD≌△CDB, △CDB≌△EDB, △EDB≌△ABD, △ABF≌△EDF.
练习6 如图,矩形纸片ABCD, D F
若把ABE沿折痕BE上翻,使 A点恰好落在CD上,此时,
E
AE:ED=5:3,BE=55,求矩形
的长和宽。
A
答案:矩形的长为10,宽为8。
D C
C B
4、求线段与面积间的变化关系
(1)若∠BAF=60°,求∠EAF的度数; (2)若AB=6cm,
AD=10cm, 求线段CE的 长及△AEF的 面积.
2、如图,矩形纸片ABCD中,现将A、C重合,使
纸片折叠压平,设折痕为EF。 (1)连结CF,四边形AECF是 A 什么特殊的四边形?为什么?
G FD
(2)若AB=4cm,AD=8cm, B
O
B →x
过点D作Y轴垂线,垂足为E,
ED
在直角三角形AED中,ED= ,AE= ,故OE= 。
故点D的坐标为(3/2√3 ,- 3/2)。
练习8 如图,在直角三角形ABC中, ∠C=90º,沿着B点的一条直线BE折
C
E
叠这个三角形,使C点与AB边上的
一点D重合。当∠A满足什么条件时,
点D恰好是AB的中点?写出一个你 B
∴BM=
=
=
.B
D G N
C
D G N
C
作NF⊥AB于F,则有Rt△MNF≌ ,∴FM=AE=x,从
而CN=BM-FM= = 。∴S梯形BCNM=

=½(x-a/2)2+3/8 a2 . ∴当x=a∕2 时,Smin=(3∕8 )a2.
二、在“位置”方面的应用
由于图形折叠后,点、线、面等相应的位置 发生变化,带来图形间的位置关系重新组合。
2
练习1 如图,有一块直角三角形 纸片,两直角边AC=6,BC=8,
A
现将直角边AC沿直线AD折叠,
E
使它落在斜边AB上,且与AE重 合,则CD等于( B )
CD
B
(A)2 (B)3 (C )4 (D)5
例2 如图,折叠矩形的一边AD,点D落在BC边上点F
处,已知AB=8,BC=10,则EC的长是
认为适当的条件,并利用此条件证
DA
明D为AB中点。
条件:∠A=30º
证明:由轴对称可得,△BCE≌△BDE,∴ BC=BD ,
在△ABC中,∵ ∠C=90º,∠A=30º,∴ BC= ½ AB ,

∴ BD = ½ AB ,即点D为AB的中点。
1、如图,将矩形ABCD沿AE折叠,使点D落 在BC边上的F点处。
① 判断△OBM是什么三角形,并说明理由; ② 试求直线MN的解析式.
y
B C
O
Ax
折痕为EF。若CD=3,EF=4,
则AD¹+BC¹=
。2
A
D'
C F
C' B
练习3 如图,将矩形ABCD纸片
对折,设折痕为MN,再把B点叠 B E
C
在折痕线MN上,若AB=3,则
折痕AE的长为(C )。
MG
B'
N
(A) 33/2
(B) 33/4
(C ) 2
(D) 23
A
D
2、求角的度数
例3 将长方形ABCD的纸片, A
1、线段与线段的位置关系
例6 将长方形ABCD的纸片, A
FH D
沿EF折成如图所示,延长C`E 交AD于H,连结GH。求证:
B
G
E
C
EF与GH互相垂直平分。
D'
证明:由题意知FH∥GE,FG∥HE,∴
C'



∴四边形 是
,∴FE与GH互相垂直平分。
2、点的位置的确定
↑y
例7 已知:如图,矩形AOBC, A
F
D
沿EF折成如图所示;已知
EFG=55º,则FGE= 70º。
B
G
E
C
D' C'
练习4 如图,矩形ABCD沿
B
BE折叠,使点C落在AD边上
的F点处,如果ABF=60º,
则CBE等于( A )。
(A)15º (B)30º
A
(C )45º (D)60º
C E
FD
3、求图形的全等、相似和图形的周长
例4 如图,折叠矩形ABCD一边AD,A
C
E
你能求出线段BE及折痕EF的
长吗?
3、在平面直角坐标系中,矩形OABC的两边OA、 OC分别落在x轴,y轴上,且OA=4,0C=3。
(1)求对角线OB所在直线的解析式;
y
B C
O
Ax
3、在平面直角坐标系中,矩形OABC的两边OA、 OC分别落在x轴,y轴上,且OA=4,0C=3。 (2)如图,将△OAB沿对角线OB翻折得到 △OBN,ON与AB交于点M。
线段的长,角的度数,图形的周长与面积的变化关 系等问题。
1、求线段与线段的大小关系
例1 如图,AD是ABC的中线,
ADC=45º,把ADC沿AD对
折,点C落在点C'的位置,求
BC'与BC之间的数量关系。
B
C' A
D
C
解 由轴对称可知 ADC ≌ ADC' , ADC'=ADC=45º, C'D=CD=BD BC´D为Rt BC’=2 BD= 2 BC
C
以O为坐标原点,OB、OA分别
在x轴,y轴上,点A坐标为(0,3), O
∠OAB=60º,以AB为轴对折后, 使C点落在D点处,求D点坐标。
B →x
D
↑y
解由题意知,OA=3,∠OAB=60º, A
C
∴OB=3tan60º=3√3 . ∵Rt△ACB≌Rt△ADB, ∴AD=AC=OB=3√3 .
相关文档
最新文档