解题技巧专题:矩形中的折叠问题

合集下载

矩形折叠问题知识点总结

矩形折叠问题知识点总结

矩形折叠问题知识点总结1. 问题概述矩形折叠问题的基本情境是,给定一个长方形纸张,要求将其折叠成一个给定形状,通常是通过将纸张折叠后在两个边缘进行切割。

这个问题最早可以追溯到19世纪,由著名的数学家亨利·杜迪尼(Henri Dudeney)提出。

在这个问题中,关键点在于如何找到最优的折叠方法,使得得到的形状与目标形状最接近。

2. 解决方法矩形折叠问题涉及到了几何学、数学分析、最优化等多个学科知识,因此解决这个问题需要综合运用多种方法。

下面我将介绍一些常见的解决方法。

(1)分割法分割法是解决矩形折叠问题的一种常见方法。

首先将目标形状细分成若干个小矩形,然后将原始的长方形纸张按照这些小矩形进行折叠,最后再将边缘上多余的部分切掉,就可以得到最终的形状。

这种方法的关键在于如何将目标形状进行合理的分割,找到合适的折叠点和切割线。

(2)几何分析法几何分析法是另一种解决矩形折叠问题的常见方法。

通过对目标形状的几何特征进行分析,可以找到最优的折叠方法。

这种方法通常需要借助于数学工具,例如微积分、线性代数等,对目标形状进行数学建模,然后通过求解最优化问题,得到最佳的折叠方案。

(3)仿射变换法仿射变换法是一种比较高级的解决方法,它利用了几何变换的性质,将目标形状通过仿射变换映射成一个简单的形状,然后再将纸张按照这个简单的形状进行折叠,最后再通过逆变换将折叠后的纸张映射回原来的形状。

这种方法需要较强的数学功底和熟练的计算能力,但是可以得到非常优美的折叠结果。

3. 相关知识点解决矩形折叠问题需要涉及到很多相关的数学知识点,下面我将逐一介绍这些知识点。

(1)几何形状矩形折叠问题本质上是一个关于几何形状的问题,因此需要熟悉各种几何形状的性质,包括面积、周长、对称性等方面的知识。

在解决矩形折叠问题时,需要对目标形状进行合理的分割和组合,这就需要对几何形状的特征有深入的了解。

(2)数学分析数学分析是解决矩形折叠问题的重要数学工具,通过对目标形状进行数学建模,并利用微积分、线性代数等数学工具,可以求解最优的折叠方案。

初二数学矩形折叠问题专题讲解,只需三步就能搞定!

初二数学矩形折叠问题专题讲解,只需三步就能搞定!

例1如图,将矩形ABCD沿AE折叠,使点D落在BC边上的点F处,已知AB=6,BC=10,则CE的长为多少?分析:根据折叠可知:△ADE≌△AFE⇒AD=AF=BC=10,DE=EF.在Rt△ABF中,AB=6,AF=10,根据勾股定理,得BF==8,所以CF=10-8=2.设CE的长为x,则DE=EF=6-x.在Rt△CEF中,CF=2,CE=x,EF=6-x,根据勾股定理列出方程,即可求出x的长.例2如图,将矩形ABCD折叠,使点A与点C重合,折痕为EF,若AB=3,AD=4,你能求折痕EF的长吗?分析:连接AC交EF与点O,由翻折可得到FE垂直平分AC,那么AF=FC,易证△AEO≌△CFO.那么求出OF长,乘2后就是EF长,利用直角三角形ABF求解即可.总结矩形折叠问题解题技巧和关键步骤(1)折叠确定全等等量线段转移(2)求出线段长度(3)设未知数,利用勾股关系建立方程好记性不如烂笔头,快快整理笔记在笔记本上,找题目练练哦!题目已经给你们准备好啦专题小练一.选择题1.(2018•牡丹江)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为( )A.6 B.5C.4 D.32.(2019•辽阳)如图,直线EF是矩形ABCD的对称轴,点P在CD边上,将△BCP沿BP 折叠,点C恰好落在线段AP与EF的交点Q处,BC=4,则线段AB的长是( )3.(2019•桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为( )4.(2018•朝阳)如图,在矩形ABCD中,BC=8,CD=6,E为AD上一点,将△ABE沿BE折叠,点A恰好落在对角线BD上的点F处,则折线BE的长为( )5.(2018•毕节市)如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为( )二.填空题(共4小题)6.(2019•盘锦)如图,四边形ABCD是矩形纸片,将△BCD沿BD折叠,得到△BED,BE交AD于点F,AB=3.AF:FD=1:2,则AF= .7.(2019•西藏)如图,把一张长为4,宽为2的矩形纸片,沿对角线折叠,则重叠部分的面积为 .8.(2019•长春)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD 折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC 相交于点G,则△GCF的周长为 .9.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为 cm.三.解答题10.(2019•滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.▍ 声明:本文整理自网络,如有侵权,请联系删除。

七年级折叠问题解题技巧

七年级折叠问题解题技巧

七年级折叠问题解题技巧一、折叠问题中的基本性质与关系1. 折叠性质在折叠过程中,折叠前后的图形全等。

这意味着对应边相等,对应角相等。

例如,将一个三角形沿着某条直线折叠,折叠后的三角形与原三角形的对应边长度不变,对应角的大小也不变。

折痕是对应点连线的垂直平分线。

比如将矩形ABCD沿着EF折叠,使得点A与点C重合,那么EF就是AC的垂直平分线。

2. 常见的几何图形中的折叠三角形折叠例1:在△ABC中,∠C = 90°,将△ABC沿着直线DE折叠,使点A与点B 重合,若AC = 6,BC = 8,求折痕DE的长。

解析:因为点A与点B重合,所以DE是AB的垂直平分线。

先根据勾股定理求出AB=公式。

设AB中点为F,则AF=公式。

由于△ADE和△BDE全等,所以AD = BD。

设BD = x,则AD = x,CD = 8 x。

在Rt△ACD中,根据勾股定理公式,即公式,解得公式。

再根据相似三角形,△ADE∽△ABC,公式,即公式,解得DE=公式。

矩形折叠例2:矩形ABCD中,AB = 3,BC = 4,将矩形沿对角线AC折叠,求重叠部分(△AEC)的面积。

解析:因为矩形沿对角线AC折叠,所以△ADC≌△AEC。

设AE = x,则BE = 4 x。

在Rt△ABE中,根据勾股定理公式,即公式,解得公式。

所以公式。

二、解题步骤与技巧1. 步骤第一步:根据折叠性质确定相等的边和角。

这是解决折叠问题的基础,只有明确了这些关系,才能进一步进行计算。

第二步:设未知数。

通常根据所求的量或者与所求量相关的线段设未知数,然后利用勾股定理、相似三角形等知识建立方程。

第三步:求解方程。

通过解方程得到未知数的值,从而求出最终答案。

2. 技巧利用勾股定理在直角三角形中,折叠后常常会形成新的直角三角形,此时可以利用勾股定理建立方程求解。

如上述矩形折叠的例子中,在Rt△ABE中利用勾股定理求出AE的长度。

利用相似三角形当折叠后的图形与原图形存在相似关系时,利用相似三角形的对应边成比例来求解。

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧初二数学四边形的折叠问题技巧数学中的几何形状是我们学习的重要内容之一。

四边形作为一种常见的几何形状,其折叠问题技巧也是我们需要掌握的。

本文将介绍初二数学中四边形的折叠问题技巧。

一、矩形的折叠问题技巧矩形是一种特殊的四边形,其两对边相等且平行。

在处理矩形的折叠问题时,我们需要注意以下几个技巧。

1. 折叠对角线:将一个矩形沿对角线方向折叠,可以得到重叠的两个直角三角形。

这个技巧在解决一些矩形面积、周长等问题时很有用。

2. 平行线折叠:我们还可以将矩形沿其中一对平行边折叠,使得另外一对平行边重合。

这样可以得到一个与原来矩形相似且大小相等的矩形。

这个技巧在解决一些矩形相似性质的问题时很有帮助。

二、平行四边形的折叠问题技巧平行四边形是一种具有两对平行边的四边形。

在处理平行四边形的折叠问题时,我们也可以运用一些技巧。

1. 对折:可以将平行四边形沿两对平行边分别对折,使得两对对折线上的点重合。

这样可以证明平行四边形的对角线互相平分。

2. 平移:可以将平行四边形平移,使得相邻两边重合,从而得到一个与原平行四边形相似的形状。

这个技巧在解决一些平行四边形相似或面积问题时很有用。

三、菱形的折叠问题技巧菱形是一种特殊的平行四边形,其四条边相等且对角线垂直。

在折叠菱形时,我们可以运用一些技巧。

1. 中点折叠:可以将菱形沿对角线方向折叠,使得两个对角线的中点重合。

这样可以得到一个与原菱形相似的等腰直角三角形。

2. 对称折叠:可以将菱形沿其中一条对称轴折叠,使得两个顶点重合。

这样可以得到一个与原菱形相似的小菱形。

四、梯形的折叠问题技巧梯形是一种具有一对平行边的四边形。

在折叠梯形时,有如下技巧可用。

1. 平行线折叠:可以将梯形沿长边折叠,使得两个平行边重合。

这样可以得到一个与原梯形相似的矩形。

这个技巧在解决一些梯形相似性质的问题时很有帮助。

2. 对称折叠:可以将梯形沿对称轴折叠,使得两个底边重合。

这样可以得到一个与原梯形相似的小梯形。

利用勾股定理解决矩形中的折叠问题

利用勾股定理解决矩形中的折叠问题
2024/7/14
(二)探索新知
1、动手折一折,在矩形纸片ABCD中,将
矩形纸片折叠,使点A与点C重合.请在图
中画出折痕。
D
A
D
F
A
C
(A') C
B
B E
B'
2、用矩形纸片,你还能折出其它的情形吗? 两人一 组,试一试。
2024/7/14
(( 二)探索新知
3、如果对某些线段赋值,你会列方程吗?比 比看, 哪组方程列的快?
3、如果对某些线段赋值,你会列方程吗?比比看,哪 组方程列的快?
(4) 将矩形沿对角线折叠
2024/7/14
2024/7/14
(三)典例解析
例1 :如图,在矩形ABCD中AB=5cm,在边CD
上适当选定一点E,沿直线AE把△ADE折叠,
使点D恰好落在边BC上一点F处,且△ABF的面
积是30cm2。求此时AD的长。若此时要求CE的
(1)将对角顶点重合
2024/7/14
(( 二)探索新知
2、如果对某些线段赋值,你会列方程吗?比 比看, 哪组方程列的快?
(2) 顶点折叠到对边上
2024/7/14
(二)探索新知
3、如果对某些线段赋值,你会列方程吗?比比看,哪 组方程列的快?
(3) 顶点折叠到对角线上
2024/7/14
(二)探索新知
边上一点,连结AE,把∠B沿AE折叠,使点B落
在点B'处,当ΔCEB'为直角三角形时,BE的长
为______
A
D
B'
2024/7/14
B
E
C
(五)小结与反思
今天这节课你有什么收获?204/7/142024/7/14

长方形折叠问题的四个类型

长方形折叠问题的四个类型

长方形折叠问题的四个类型
长方形折叠问题是计算几何学中一个经典的问题,需要将一个矩形
单片纸折叠成不同的形状。

根据折叠的方式不同,长方形折叠问题可
以划分为四个类型。

一、矩形对折型
把矩形沿着某一边对折后再沿着另一边对折,得到的形状为一个小矩形。

其面积为原矩形面积的四分之一。

二、两个小矩形型
把矩形沿着某一边对折后再沿着另一个边对折,将得到两个小矩形。

这两个小矩形的面积之和等于原矩形面积。

三、梯形型
将矩形沿着某一边对折后再折成一三角形,将三角形的一条边与另一
边平行,得到的形状为梯形。

梯形的面积为原矩形面积的一半。

四、折叠成立体型
把矩形按一定方式折叠成一个几何立体体,如立方体、正四棱锥等。

这种类型的长方形折叠问题需要对几何概念和立体几何有一定的认识。

无论是哪种类型的长方形折叠问题,其解题方法都需要灵活掌握,考
虑到折叠的方向和次数,从而推导出最终的形状和面积。

长方形折叠
问题不仅能够训练我们的空间想象力,也有助于提高我们的计算能力和数学应用能力。

矩形中的折叠问题

矩形中的折叠问题

若点E,点F分别是边AB,边AD
上的点,将⊿AEF沿EF对折,使
C
点A落在边BC上,记为A′.观察
图形,请回答下列问题:
D
E
B
图4 A'
F
A
(1)如图1,BA’ = 3 .
(2)如图5,BA’ = 1 ,
5
AE= 3
.
(3)如图4,A’B的范围 是 1≤ A’B≤3 .
C
B (E)
A' 图1
D (F)
x
请探索:是否存在这样的点
F,使得将△CEF沿EF对折
后,C点恰好落在OB上?
若存在,求出点F的坐标;
若不存在,请说明理由.
(2)过点B1作B1F∥x轴,与对角线AC、边OC分别交于 点E、点F。若B1E: B1F=1:3,点B1的横坐标为m,求 点B1的纵坐标,并直接写出m的取值范围。
H B1
备用图
直击中考
(2015•绍兴)在平面直角坐标系中,O为原点,四边 形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P, 点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点 B关于PQ的对称点。 (1)若四边形OABC为矩形,如图1,①求点B的坐标;
(1)根据勾股定理得方程。 (2)根据相似比得方程。 (3)找折叠中的特殊位置来解决特殊值问题
课后练习
已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所
在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边
BC上的一个动点(不与B,C重合),过F点的反比y例函k 数(k 0)
的图象与AC边交于点E.
动手折一折
如图矩形ABCD,在边BC上找一点E ,边 AD上找一点F , 将矩形沿着直线EF折叠,使 点A对应点A′落在BC边上.

人教版中考数学考点系统复习 第五章 四边形 微专题(四) 矩形的折叠问题

人教版中考数学考点系统复习 第五章 四边形 微专题(四) 矩形的折叠问题

EA′=EA
拓展折法:如图⑤,当点B′恰 好落在CD边上时,设A′B′交AD
于点P.
图⑤:过点E作 EG⊥BC,则
△EFG∽△BB′C △A′EP∽△DB′P △CFB′∽△DB′P △BB′F为等腰三角形
4.★如图,将边长为9的正方形纸片ABCD沿MN折叠,使点A落在BC边上 的点A′处,点D的对应点为点D′.若A′B=3,则DM=2 2 .
4 B.3
3 C.2 D.53
类型三:折痕过两边
基本折法
结论
如图④,在矩形ABCD中,点E,F分别在边AD, 图④:△ABE≌△A′B
BC上,沿EF将四边形ABFE折叠得到四边形A′B
′E
′FE,点B′恰好落在AD边上.
四边形BFB′E是菱形
△B′EF为等腰三角形
∠B′FE=∠BFE
FB′=FB,
基本折法
结论 图②:△DBC∽△PDE △BDA∽△PDE △BPE≌△BPA
基本折法
结论
图③:△GCB∽△GEF △GEF∽△PDF △BPE≌△BPA
3.★(2021·遂宁)如图,在矩形ABCD中ห้องสมุดไป่ตู้AB=5,AD=3,点E为BC上一
点,把△CDE沿DE翻折,点C恰好落在AB边上的点F处,则CE的长( D ) A.1
微专题(四) 矩形的折叠 问题
类型一:折痕过对角线 基本折法
如图,点P是矩形ABCD边AD上一点, 当点P与点D重合时,将△ABP沿BP折
叠得到△EBP,BE交CD于点H.
结论
△BPE≌△BPA; △BCH≌△DEH; △DEH是直角三角形; △BHD是等腰三角形
1.如图,在矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落 在点E处,AE交DC于点O,若AO=5 cm,则AC的长为4 5 cm,S△COE= 66 cm2.

八年级折叠问题解题技巧

八年级折叠问题解题技巧

八年级折叠问题解题技巧一、折叠问题的基本性质1. 对应边相等在折叠过程中,折叠前后重合的边长度相等。

例如,将一个三角形沿着某条直线折叠,那么折叠后重合的两条边是相等的。

例如,在矩形ABCD中,将矩形沿着对角线AC折叠,那么AB = AF(假设F是B折叠后的对应点)。

2. 对应角相等折叠前后重合的角是相等的。

比如将一个四边形进行折叠,原来的角和折叠后对应的角大小相同。

如在上述矩形折叠的例子中,∠B = ∠F,∠BAC = ∠FAC。

3. 对称轴垂直平分对应点连线如果沿着直线l折叠,A点折叠后得到A'点,那么直线l垂直平分AA'。

这一性质在解决折叠问题中常常用于构建直角三角形等。

二、解题技巧与题目解析1. 利用勾股定理求解折叠后的线段长度题目:如图,在矩形ABCD中,AB = 3,BC = 5,将矩形ABCD沿BE折叠,使点A落在边CD上的点F处。

求CF的长。

解析:因为矩形ABCD沿BE折叠,所以AB = BF = 3,AE = EF。

在Rt△BCF中,BC = 5,BF = 3,根据勾股定理公式。

即公式。

2. 利用相似三角形解决折叠问题题目:在Rt△ABC中,∠C = 90°,AC = 6,BC = 8,将△ABC沿AD折叠,使点C落在AB边上的点E处。

求DE的长。

解析:根据勾股定理可得公式。

因为△ABC沿AD折叠,所以△ACD≌△AED,所以AC = AE = 6,CD = DE,那么BE = AB AE=10 6 = 4。

设DE = CD=x,则BD = 8 x。

因为∠DEB = ∠C = 90°,∠B是公共角,所以△BDE∽△BAC。

根据相似三角形的性质公式,即公式,解得公式,所以DE的长为3。

3. 利用折叠性质建立方程求解角度题目:将一张矩形纸片ABCD沿EF折叠,使点D落在点D'处,若∠EFC = 125°,求∠D'EF的度数。

矩形中的折叠问题

矩形中的折叠问题

矩形中的折叠问题山东省枣庄市峄城区第二十八中学 潘歌 邮编:277300折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。

对于折叠问题(翻折变换)实质上就是轴对称变换.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。

一、求角度例1 如图 把一张矩形纸片ABCD 沿EF 折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.【解析】在矩形折叠问题中,折叠前后的对应角相等来解决。

解:根据矩形的性质AD ∥BC ,有∠EFG =∠FEC =58°,再由折叠可知,∠FEC =∠C ′EF =58°,由此得∠BEG =64°例2 将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD = 度.【解析】折叠前后的对应角相等.解:BC 、BD 是折痕,所以有∠ABC = ∠GBC ,∠EBD = ∠HBD 则∠CBD = 90°.例4 如图 四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24 (D )8【解析】在矩形折叠问题中,求折痕等线段长度时,往往利用轴对称性转化相等的线段,再借助勾股定理构造方程来解决.解:由折叠可知,AE =AB =DC =6,在Rt △ADE 中AD =6,DE =3由勾股定理,得AD =33,设EF =x ,则FC =x -33,在Rt △EFC 中由勾股定理求得x =32,则EF =32,在Rt △AEF 中,由勾股定理得AF =A .A B CDEFA B E C D F G C 'D 'C三、求图形面积例5如图3-1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图3-2所示的图形并在其一面着色,则着色部分的面积为( )A .234cmB .236cmC .238cmD .240cm解析:折叠后重合部分为直角三角形. 解:重合部分其面积为22122=⨯⨯,因此着色部分的面积=长方形纸条面积 - 两个重合部分三角形的面积,即20×2-2×2=36(2cm ).故选B .∴62 + (8 - x )2 = x2解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754 cm2四、数量及位置关系例7 如图 将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E处,BE 交AD 于点F ,连结AE .证明:(1)BF DF =. (2)AE BD ∥ 【解析】(1)欲证明BF =DF ,只需证∠FBD =∠FDB ; (2)欲证明AE BD ∥,则需证AEB DBE ∠=∠。

矩形中的折叠问题小结

矩形中的折叠问题小结
D G P E H C
A
B
类型四:求线段与面积间的变化关系
A E D G N B C
例4 如图,把一张边长为a的正方形 的纸进行折叠,使B点落在AD上, M 问B点落在AD的什么位置时,折起 的面积最小,并求出这最小值。
A B 39;
类型二:求折叠出的线段的长度
例2、折叠矩形ABCD,让点B落在AC上的点 F处,若AD=4,AB=3,求线段CE的长度。
A F B C D
E
类型三:考察折叠后线段的等量关系
例3、将矩形纸片ABCD沿AC折叠,使点B落 到点F的位置.(1)求证:AE=CE (2)若AB=8,DE=3,P为线段AC上的任意 一点,PG⊥AE,PH⊥EC,求PG+PH的值, 并说明理由. F
矩形中的折叠问题
一、在“大小”方面的应用
折叠型问题在“大小”方面的应用,通常有求线段 的长,角的度数,图形的周长与面积的变化关系等 问题。
二、在“位置”方面的应 用 由于图形折叠后,点、线、面等相应的位
置发生变化,带来图形间的位置关系重新 组合。
类型一:求角度
例1、将长方形ABCD的纸片,沿EF折成如 图所示,已知EFG=55º ,则FGE= 70º 。

中考专题复习矩形折叠问题

中考专题复习矩形折叠问题

中考专题复习矩形折叠问题矩形折叠问题是中考数学中的一个经典题型,要求考生在给定条件下进行折纸后,求出折纸后的面积或者边长等相关问题。

本文将对中考专题复习矩形折叠问题进行详细介绍和分析。

1. 矩形折叠问题简介矩形折叠问题是指将一个完整的矩形纸张按照规定方式进行折叠后,求折叠后的形状和相关属性的问题。

常见的矩形折叠问题包括求折叠后的面积、边长、对角线长度等。

这些问题需要考生设计折纸方式,并利用数学知识进行求解。

矩形折叠问题考察了考生的空间想象能力、几何思维和数学推理能力。

2. 矩形折叠问题的解题步骤矩形折叠问题的解题步骤一般包括以下几步:(1)明确问题:理解题目描述,明确所求的目标。

(2)分析折叠方式:根据题目要求,分析如何将矩形纸张折叠,确定折叠方式,可以画图帮助理解。

(3)建立模型:将折纸过程进行数学建模,标记各个关键点、线段等,建立相应的几何关系。

(4)求解问题:根据已建立的模型,应用数学知识或者几何关系,求解问题,得到所需的结果。

(5)检查答案:将得到的结果与题目要求进行对照,检查是否满足条件。

3. 矩形折叠问题的例题及解析例题1:将一块长20cm、宽10cm的矩形纸张沿中线对折,然后再折叠形成一个三角形后,求该三角形的面积。

解析:首先,将矩形纸张沿中线对折,得到两个相等的长方形,其长为10cm,宽为20cm/2=10cm。

然后将其中一个长方形按对角线进行折叠,即可形成一个三角形。

由于对折前的长方形和对折后的三角形是全等的,所以该三角形的底边长为10cm,高为10cm,因此三角形的面积为(10cm×10cm)/2=50cm²。

例题2:将一块矩形纸张按照下图所示方式进行折叠,求折叠后形成的矩形的面积。

解析:根据题目给出的折叠图形,我们可以看到折叠后的矩形纸张的高等于原矩形纸张的宽,宽等于原矩形纸张的长减去原矩形纸张的宽。

因此,折叠后形成的矩形的面积为(20cm-10cm)×10cm=100cm²。

专题一 矩形中的折叠问题

专题一 矩形中的折叠问题




) - = ,∴FG=2FO= .




平面直角坐标系中的折叠问题
9.如图所示,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x
轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC
边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1Biblioteka 求E,D两点的坐标.第一章
特殊平行四边形
专题一
矩形中的折叠问题

求角度
1.如图所示,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,恰好使点D
落在边BC上的点F处,若∠BAF=60°,则∠DAE的大小为( B )
A.10°
B.15°
第1题图
C.20°
D.25°
2.如图所示,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H
∴Rt△CEP1≌Rt△BME(HL),
∴CP1=BE=3,∴OP1=1,∴P1(0,1).
同理可得CP2=BE=3,∴OP2=7,∴P2(0,7).
当PE=PM时,此时点P在EM的垂直平分线上.设P点坐标为(0,-a)(a>
0).
∵E(2,4),M(5,2),∴EP3= +( + ) ,MP3=
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,∴DF=BF,
∴△BDF是等腰三角形.
(2)如图②所示,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
解:(2)①四边形BFDG是菱形.理由:
∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG.又∵DG∥BE,

中考数学解题技巧专题矩形中的折叠问题

中考数学解题技巧专题矩形中的折叠问题

解题技巧专题:矩形中的折叠问题——找准方法,快准解题◆类型一折叠中求角度1.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.若∠EFC′=125°,那么∠ABE的度数为( )A.15° B.20° C.25° D.30°第1题图第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察探究可以得到∠ABM的度数是( )A .25°B .30°C .36°D .45°◆类型二 折叠中求线段长【方法9】3.如图,矩形ABCD 中,对角线AC =23,E 为BC 边上一点,BC =3BE ,将矩形ABCD 沿AE 所在的直线折叠,使B 点恰好落在对角线AC 上的B ′处,则AB =________.第3题图 第4题图4.(郴州桂阳县期末)如图,一块矩形纸片的宽CD 为2cm ,点E 在AB 上,如果沿图中的EC 对折,B 点刚好落在AD 上的B ′处,此时∠BCE =15°,则BC 的长为________.5.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使A 点恰好落在对角线BD 上的点A ′处,折痕为DG ,则AG 的长为( )A .1 B.43 C.32D .2第5题图 第6题图◆类型三 折叠中求面积6.如图,在矩形ABCD 中,BC =8,CD =6,将△BCD 沿对角线BD 翻折,使点C 落在点C ′处,BC ′交AD 于点E ,则△BDE 的面积为( ) A.754 B.214C .21D .24 7.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△ADE 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )A.12B.98C .2D .4 8.★(福州中考)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上的一点,将△ADM 沿直线AM 对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 2.B 3. 3 4.4cm 5.C 6.A 7.C8.解:(1)由折叠性质得△ANM≌△ADM,∴∠MAN=∠DAM.∵AN平分∠MAB,∴∠MAN=∠NAB,∴∠DAM =∠MAN=∠NAB.∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴AM=2DM.在Rt△ADM中,∵AD =3,∴由勾股定理得AM2-DM2=AD2,即(2DM)2-DM2=32,解得DM= 3.(2)延长MN交AB的延长线于点Q,如图所示.∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ.由(1)知△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ =5,∴S △NAB =45S △NAQ =45×12×AN ·NQ =45×12×3×4=245.解题技巧专题:圆中辅助线的作法——形成精准思维模式,快速解题◆类型一 遇弦过圆心作弦的垂线或连半径1.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan∠OAB =12,则AB 的长是( )A .4B .23C .8D .43第1题图 第2题图2.如图,已知⊙O的半径OD与弦AB互相垂直,垂足为点C,若AB=16cm,CD=6cm,⊙O的半径为________.◆类型二遇直径添加直径所对的圆周角3.如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠ACE+∠BDE等于( )A.60°B.75°C.90°D.120°第3题图第4题图4.如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是________.5.如图,△ABC的顶点均在⊙O上,AD为⊙O的直径,AE⊥BC于E.求证:∠BAD=∠EAC.类型三遇切线连接圆心和切点6.已知⊙O的半径为1,圆心O到直线l的距离为2,过l上任一点A作⊙O的切线,切点为B,则线段AB 长度的最小值为( )A .1B . 2C . 3D .27.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC.若∠A =26°,则∠ACB 的度数为________.8.★如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于N.(1)求证:∠ADC =∠ABD ;(2)求证:AD 2=AM ·AB ;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.。

九年级数学上册思想方法专题矩形中的折叠问题(新版)北师大版

九年级数学上册思想方法专题矩形中的折叠问题(新版)北师大版

思想方法专题:矩形中的折叠问题——体会矩形折叠中的方程思想及数形结合思想◆类型一矩形折叠问题中直接求长度或角度1.将矩形ABCD沿AE折叠,得到如图所示的图形.已知∠CEB′=50°,则∠AEB′=_______°.第1题图第2题图2.如图,在矩形ABCD中,AB=6cm,点E,F分别是边BC,AD上一点.将矩形ABCD沿EF折叠,使点C,D分别落在点C′,D′处.若C′E⊥AD,则EF的长为______cm.◆类型二矩形折叠问题中利用勾股定理结合方程思想求长度3.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.2 3 B.323 C. 3 D.6第3题图第4题图4.(2016·东营中考改编)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处.已知折痕AE=55cm,且EC∶FC=BF∶AB=3∶4,那么矩形ABCD的周长为__________cm.◆类型三矩形折叠问题中结合其他性质解决问题5.如图,在矩形OABC中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC对折得到△AB′C,AB′交y轴于D点,则D点的坐标为_________.第5题图第6题图6.★(2016·威海中考)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为______.7.★如图①,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图②.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.思想方法专题:矩形中的折叠问题答案1.65 2.6 23.A 解析:由题意可得∠OCE=∠BCE,∠COE=∠B=90°.又∵OA=OC,∴OE垂直平分AC,∴EA=EC,∴∠CAE=∠OCE.∵AB∥CD,∴∠ACD=∠CAE.∴∠BCE=∠OCE=∠ACD=30°,∴BE=1 2CE.在Rt△BCE中,CE2-BE2=BC2,即CE2-⎝⎛⎭⎪⎫12CE2=32,∴CE=2 3.故选A.4.36 解析:设EC=3x cm,FC=4x cm,则DE=EF=5x cm,∴AB=DC=8x cm.又∵BF∶AB=3∶4,∴BF=6x cm,∴AD=BC=10x cm.在Rt△ADE中,AD2+DE2=AE2,即(10x)2+(5x)2=(55)2,解得x=1(取正值).∴AB=8cm,AD=10cm,∴矩形ABCD的周长为2×(10+8)=36(cm).5.(0,2.1) 解析:∵矩形OABC中,OA=2,AB=5,∴BC=2,OC=5.∵把△ABC沿着AC对折得到△AB′C,∴B′C=BC,∠B′=∠B=90°,∴AO=CB′,∠AOD=∠B′.又∵∠ADO=∠CDB′,∴△AOD≌△CB′D,∴AD=CD.设OD=x,则AD=CD=5-x.在Rt△AOD中,AD2=OA2+OD2,∴(5-x)2=22+x2,∴x=2.1.∴D点的坐标为(0,2.1).6.185解析:如图,连接BF交AE于H,由折叠的性质可知BE=FE,AB=AF,∠BAE=∠FAE,AH⊥BF,BH=FH.∵BC=6,点E为BC的中点,∴BE=12BC=3.又∵AB=4,∴在Rt△ABE中,由勾股定理得AE=AB2+BE2=5.∵S△ABE=12AB·BE=12AE·BH,∴BH=125,则BF=2BH=245.∵E是BC的中点,∴FE=BE=EC,∴∠EBF=∠BFE,∠ECF=∠EFC.又∵∠EBF+∠BFE+∠EFC+∠ECF=180°,∴∠BFE+∠EFC=90°,即∠BFC=90°.在Rt△BFC中,由勾股定理得CF=BC2-BF2=62-⎝⎛⎭⎪⎫2452=185.7.(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=90°,AD=BC.由折叠的性质可得∠ADE=∠A′DE=12∠ADC=45°,AE=EG,BC=CH,∴∠AED=90°-∠ADE=45°=∠ADE,∴AE=AD=BC,∴EG=CH;(2)解:由折叠的性质可得∠FGE=∠A=90°,GF=AF= 2.由(1)可知∠ADE=45°,∴∠DFG=90°-∠ADE=45°=∠ADE,∴DG=GF=2,∴DF=DG2+FG2=2,∴AD=AF+DF=2+2.由折叠的性质可知∠AEF=∠GEF,∠BEC=∠HEC,∴∠AEF+∠BEC=90°.又∵∠AEF+∠AFE=90°,∴∠BEC=∠AFE.由(1)可知AE=AD=BC.在△AEF与△BCE中,⎩⎪⎨⎪⎧∠AFE=∠BEC,∠A=∠B=90°,AE=BC,∴△AEF≌△BCE(AAS),∴AF=BE,∴AB=AE+BE=AD+AF=2+2+2=22+2.。

(完整版)初中数学中的折叠问题

(完整版)初中数学中的折叠问题

初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'C A B D6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);延CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH (如图 ⑥).(1)求图 ②中∠BCB ′的大小;(2)图⑥中的△GCC ′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么? (2)设BM =y ,AB ’=x ,求y 与x 的函数关系式; (3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想.54132G D‘F C‘DB CA E二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB 是以折痕AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿BC ,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEB Ba 2130°B EF AC D本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14.(1)当中线CD 等于a 时,重叠部分的面积等于 ;GEFD AEF DBC A B C 60cm(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'C DA B 231E B'CDB A 21图(1)C'ACBDE12C'ABCDE21GC'A BC DE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

矩形中的折叠问题

矩形中的折叠问题
全等,相似(A型,X型)
(3)若∠4=30°,你能求出哪些角度?
所有角度
(4)若AB=4,BC=8,你能求出哪些边长?
P
所有边长
O
=4,AD=8,将矩形纸片ABCD沿对角线AC折叠,边
AD的对应边AD′与BC交于点E,则重叠部分△ACE的面积是_____1_0__.
(3)若∠4=30°,你能求出哪些角度?
所有角度
(4)若AB=4,BC=8,你能求出哪些边长?
所有边长
如图,把一张长方形纸片ABCD沿对角线BD折叠,点C的对应点
为C',BC'与AD相交于点E,连接C'C交BD于O点,交AD于P点
(1)图中增加了哪些特殊的三角形?
直角三角形,等腰三角形
(2)三角形之间有什么特殊的关系?
❖ 解题策略 角→对应角相等,外角,圆心角 边→对应边相等,勾股定理,相似,锐角三角函数
两方面的应用:
一、在“大小”方面的应用: 求角度、线段长度、周长和面积等
二、在“位置”方面的应用
如图,把一张长方形纸片ABCD沿对角线BD折叠,点C的对应点 为C',BC'与AD相交于点E (1)图中有哪些特殊的三角形?
直角三角形,等腰三角形(角平分线+平行)
(2)三角形之间有什么特殊的关系?
全等(筝形,蝶形)
5
2
针对训练 矩形OABC在平面直角坐标系内的位置如图所示,将长方形沿BO折叠,使点C落在 点D处,DO与AB交于点E,BC=4 cm,BA=8 cm,则点E的坐标为__(_-__3_,__4_).
❖ 折叠的基本性质
1. 折叠问题的本质是轴对称,折叠前的部分与折叠后的部分是全等图形; ①线段相等:C′D=___C_D____,BC′=___B_C____; ②角度相等:∠1=__∠__2____,∠3=___∠__4___; ③全等关系:△BC′D≌_△__B__C_D__. 2. 折痕可看做对应点连线的垂直平分线即:BD⊥___C__C_′__. 3. 折痕可看做角平分线.

初中数学解题技巧专题---矩形中的折叠问题

初中数学解题技巧专题---矩形中的折叠问题
第2页共4页
参考答案与解析 .1 B 解析:由折叠可知∠EFC=∠EFC′=125°.∵在矩形 ABCD 中,AD∥BC,∴∠DEF
=矩形180,°-∠1A2=5°9=0°5,5°∴.根∠据A折BE叠=可11知0°∠-B9E0F°==2∠0°D.故EF选=B5.5°,∴∠BED=110°.∵四边形 ABCD 为 .2 B 3.C 4.C
点 A 恰好落在对角线 BD 上的 F 处,则 DE 的长是( )
. . 24
89
A 3 B. 5 C 5 D.16
5.★(2016·威海中考)如图,在矩形 ABCD 中,AB=4,BC=6,点 E 为 BC 的中点,将
△ABE 沿 AE 折叠,使点 B 落在矩形内的点 F 处,连接 CF,则 CF 的长为 . ________
2.如图,某数第学1兴题趣图小组开展以下折纸活动:(1)对折矩形纸片第AB2C题D图,使 AD 和 BC
重合,得到折痕 点 B,得到折痕
BEMF,,把同纸时片得展到平线;段(B2)N再.观一察次探折究叠可纸以片得,到使∠点AABM落的在度E数F 上是,( 并使) 折痕经过
A◆.类2型5°二
. . B 30° C 36° 折叠中求线段长
与△CDE 中,∠∠FA=EF∠=D∠,CED,∴△AFE≌△CDE. = , AF CD
(2)解:∵AB=4,BC=8,∴CF=AD=8,AF=CD=AB=4.∵△AFE≌△CDE,∴EF =DE.在 △Rt CED 中,由勾股定理得 + = ,即 DE2 CD2 CE2 + = - ,∴ = , DE2 42 (8 DE)2 DE 3
.D 45°
3.(2017·安顺中考)如图,在矩形纸片 ABCD 中,AD=4cm,把纸片沿直线 AC 折叠,

矩形的性质与判定的综合应用(三)——矩形中的折叠问题

矩形的性质与判定的综合应用(三)——矩形中的折叠问题

矩形的性质与判定的综合应用(三)矩形中的折叠问题【学习目标】1.明白折叠过程的实质是轴对称变换,能找出对应边和对应角的相等关系.2.尝试利用勾股定理、相似等知识解决矩形折叠中的常见问题.3.尝试在复杂的折叠过程中,理清基本的对应关系.【学习重点】1.能够在折叠变换中找出具有相等关系的对应边和对应角.2.运用勾股定理、相似性质等求出折叠问题中特定线段的长度.【学习难点】灵活运用方程、相似、对称等数学知识解决折叠有关的综合问题。

【候课朗读】本课学习准备的旧知回顾【学习过程】一、学习准备1.旧知回顾图形的折叠是指把某个图形或图形的一部分沿某条直线折叠,这条直线就成了对称轴。

几何图形的折叠问题,其实质是轴对称问题。

轴对称的基本性质:对应线段相等,对应角相等;对应点所连的线段被对称轴垂直平分。

工具准备:用矩形纸片按照例1所示折叠,指出折叠过程中的对应边和对应角。

2.本课思维导航二、典例分析3.利用对称性质求解例1.如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,折痕交AD于E,交BC于F,连结EC。

求证:四边形AFCE为菱形。

思路启迪:由折叠,能得到哪些边和角相等?反思:你用了折叠的什么性质?得到了什么结论?即时练习1:如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,.cm2B cm2C cm2cm24.对称+勾股定理例2.按照下面的方式折叠矩形ABCD:(1)在图1中,若沿BD折叠,C落在C′处,AB=4,BC=8,求AF.(求△BFD的面积)(2)在图2中,若对折使C落在AD上,AB=6,BC=10,求AE,DF的长.思路启迪:请把条件尽量在图形上标示出来,你能想到什么?反思:你用到了什么重要定理和思想方法?即时练习2:如图,将矩形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在D′处,若AB=3,AD=4,求ED 的长。

5.对称+相似例3.如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,若长方形的长BC为16,宽AB为8,则折叠后折痕EF的长是多少?思路启迪:连结AC,AC与EF有什么关系?反思:你还有其他解法吗?6.对称+动点例4.在矩形纸片ABCD中,AB=5,AD=13.如图③所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P,Q分别在AB,AD边上移动,求点A′在BC边上可移动的最大距离.思路启迪:请用纸片按题意折叠,看一看A′和P、Q的移动位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档