万有引力与航天 (4)

合集下载

高考物理知识点专题之万有引力与航天 专题04 神州飞船(解析版)

高考物理知识点专题之万有引力与航天 专题04 神州飞船(解析版)

04 神州飞船—万有引力与航天神舟飞船是中国自行研制,具有完全自主知识产权,达到或优于国际第三代载入飞船技术的飞船。

神舟号飞船是采用三舱一段,即由返回舱、轨道舱、推进舱和附加段构成,由13个分系统组成。

神舟号飞船与国外第三代飞船相比,具有起点高、具备留轨利用能力等特点。

神舟系列载人飞船由专门为其研制的长征二号F火箭发射升空,发射基地是酒泉卫星发射中心,回收地点在内蒙古中部的四子王旗航天着陆场。

截至2019年4月24日,神舟飞船、天舟飞船正在进行正(试)样产品组批生产。

各型号概览1. 一质量为8.00×104 kg 的太空飞船从其飞行轨道返回地面。

飞船在离地面高度1.60×105 m 处以7.5×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面。

取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s 2。

(结果保留2位有效数字) (1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。

【解析】(1)飞船着地前瞬间的机械能为20021mv E k =① 式中,m 和v 0分别是飞船的质量和着地前瞬间的速率。

由①式和题给数据得8kp 4.010J E =⨯②设地面附近的重力加速度大小为g ,飞船进入大气层时的机械能为212h h E m mgh =+③ 式中,v h 是飞船在高度1.6×105m 处的速度大小。

由③式和题给数据得122.410J h E =⨯④(2)飞船在高度h' =600 m 处的机械能为21 2.0()2100h h E m v mgh ''=+⑤由功能原理得k0h W E E '=-⑥式中,W 是飞船从高度600m 处至着地瞬间的过程中克服阻力所做的功。

高考物理新力学知识点之万有引力与航天技巧及练习题附答案(4)

高考物理新力学知识点之万有引力与航天技巧及练习题附答案(4)

高考物理新力学知识点之万有引力与航天技巧及练习题附答案(4)一、选择题1.一颗卫星绕地球沿椭圆轨道运动,A、B是卫星运动的远地点和近地点.下列说法中正确的是()A.卫星在A点的角速度大于B点的角速度B.卫星在A点的加速度小于B点的加速度C.卫星由A运动到B过程中动能减小,势能增加D.卫星由A运动到B过程中引力做正功,机械能增大2.若人造卫星绕地球做匀速圆周运动,则离地面越近的卫星()A.线速度越大B.角速度越小C.加速度越小D.周期越大3.关于地球同步通讯卫星,下列说法中正确的是()A.它的轨道可以是椭圆B.各国发射的这种卫星轨道半径都一样C.它不一定在赤道上空运行D.它运行的线速度一定大于第一宇宙速度4.如图所示,“天舟一号”处于低轨道,“天宫二号”处于高轨道,则()A.“天舟一号”的向心加速度小于“天宫二号”的向心加速度B.“天舟一号”的角速度等于“天宫二号”的角速度C.“天舟一号”的周期大于“天宫二号”的周期D.“天舟一号”和“天宫二号”的向心力都由万有引力提供5.2019年春节期间上映的国产科幻电影《流浪地球》,获得了口碑和票房双丰收。

影片中人类为了防止地球被膨胀后的太阳吞噬,利用巨型发动机使地球公转轨道的半径越来越大,逐渐飞离太阳系,在飞离太阳系的之前,下列说法正确的是()A.地球角速度越来越大B.地球线速度越来越大C.地球向心加速度越来越大D.地球公转周期越来越大6.中国志愿者王跃参与人类历史上第一次全过程模拟从地球往返火星的试验“火星-500.假设将来人类一艘飞船从火星返回地球时,经历如图所示的变轨过程,则下列说法不正确的是()A.飞船在轨道Ⅱ上运动时,在P点的速度大于在Q点的速度B.飞船在轨道Ⅰ上运动时,在P点的速度大于在轨道Ⅱ上运动时在P点的速度C.飞船在轨道Ⅰ上运动到P点时的加速度等于飞船在轨道Ⅱ上运动到P点时的加速度D.若轨道Ⅰ贴近火星表面,测出飞船在轨道Ⅰ上运动的周期,就可以推知火星的密度7.2019年1月3日上午10点26分,“嫦娥四号”探测器成功着陆在月球背面。

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X ­ 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。

高中物理第四章《第四节万有引力与航天》教学课件

高中物理第四章《第四节万有引力与航天》教学课件

8
2.星体表面上的重力加速度 (1)设在地球表面附近的重力加速度为 g(不考虑地球自转),由 mg=GmRM2 ,得 g=GRM2 . (2)设在地球上空距离地心 r=R+h 处的重力加速度为 g′,由 mg′=(RG+Mhm)2,得 g′=
GM (R+h)2 所以gg′=(R+R2h)2.
上一页
返回导航
们的向心加速度大小分别为 a 金、a 地、a 火,它们沿轨道运行的速率分别为 v 金、v 地、v 已 火.
知它们的轨道半径 R 金<R 地<R 火,由此可以判定
()
A.a 金>a 地>a 火
B.a 火>a 地>a 金
C.v 地>v 火>v 金
D.v 火>v 地>v 金
上一页
返回导航
下一页
第四章 曲线运动 万有引力与航天
A.5×109 kg/m3
B.5×1012 kg/m3
C.5×1015 kg/m3
D.5×1018 kg/m3
解析:选 C.毫秒脉冲星稳定自转时由万有引力提供其表面物体做圆周运动的向心力,根
据 GMRm2 =m4πT22R,M=ρ·43πR3,得 ρ=G3Tπ2,代入数据解得 ρ≈5×1015 kg/m3,C 正确.
地球引力,能够描述 F 随 h 变化关系的图象是
()上一页返回Fra bibliotek航下一页
第四章 曲线运动 万有引力与航天
12
[解析] 在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律,可知随着 h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述 F 随 h 变化 关系的图象是 D. [答案] D
Mm G R2

高考物理新力学知识点之万有引力与航天基础测试题含答案解析(4)

高考物理新力学知识点之万有引力与航天基础测试题含答案解析(4)

高考物理新力学知识点之万有引力与航天基础测试题含答案解析(4)一、选择题1.2016年8月16日凌晨,被命名为“墨子号”的中国首颗量子科学实验卫星开启星际之旅,这是我国在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系.如图所示,“墨子号”卫星的工作高度约为500km ,在轨道上绕地球做匀速圆周运动,经过时间t(t 小于其运动周期),运动的弧长为s ,与地球中心连线扫过的角度为θ弧度,引力常量为G ,则下列关于“墨子号”的说法正确的是( )A .线速度大于第一宇宙速度B .质量为32s Gt θC .环绕周期为2tπθD .向心加速度小于地球同步卫星的向心加速度2.设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R .宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F 1=F 0;第二次在赤道处,弹簧测力计的读数为F 2=02F .假设第三次在赤道平面内深度为2R的隧道底部,示数为F 3;第四次在距行星表面高度为R 处绕行星做匀速圆周运动的人造卫星中,示数为F 4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是( ) A .F 3=04F ,F 4=04F B .F 3=04F ,F 4=0 C .F 3=154F ,F 4=0 D .F 3=04F ,F 4=4F 3.在地球同步轨道上等间距布置三颗地球同步通讯卫星,就可以让地球赤道上任意两位置间实现无线电通讯,现在地球同步卫星的轨道半径为地球半径的6.6倍。

假设将来地球的自转周期变小,但仍要仅用三颗地球同步卫星实现上述目的,则地球自转的最小周期约为 A .5小时B .4小时C .6小时D .3小时4.关于地球同步通讯卫星,下列说法中正确的是( ) A .它的轨道可以是椭圆B.各国发射的这种卫星轨道半径都一样C.它不一定在赤道上空运行D.它运行的线速度一定大于第一宇宙速度5.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是:()A.不论在轨道1还是轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量(动量P=mv,v为瞬时速度)6.关于做匀速圆周运动的人造地球卫星,下列说法中正确的是()A.半径越大,周期越大B.半径越大,周期越小C.所有卫星的周期都相同,与半径无关D.所有卫星的周期都不同,与半径无关7.一探月卫星的轨道是圆形的,且贴近月球表面,已知月球的质量约为地球质量的1 81,月球半径约为地球半径的14,地球上的第一宇宙速度约为7.9km/s,则该探月卫星绕月运行的速率约为()A.0.4km/s B.1.8km/sC.11km/s D.36km/s8.电影《流浪地球》深受观众喜爱,地球最后找到了新家园,是一颗质量比太阳大一倍的恒星,假设地球绕该恒星作匀速圆周运动,地球到这颗恒星中心的距离是地球到太阳中心的距离的2倍。

物理万有引力与航天重点知识归纳

物理万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

第4讲 万有引力定律与航天

第4讲  万有引力定律与航天

6.4×106
m/s
=7.9×103 m/s。 方法二:由 mg=mvR21得
v1= gR= 9.8×6.4×106 m/s=7.9× 103 m/s。 第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速
度,此时它的运行周期最短,Tmin=2π Rg=5 075 s≈85 min。
2.宇宙速度与运动轨迹的关系 (1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动。 (2)7.9 km/s<v 发<11.2 km/s,卫星绕地球运动的轨迹为椭圆。 (3)11.2 km/s≤ v 发<16.7 km/s,卫星绕太阳做椭圆运动。 (4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。
二、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线
上,引力的大小与物体的质量 m1 和 m2 的 乘积成正比、与它们之间 距离 r 的 二次方 成反比。
2.表达式:F=Gmr1m2 2,G 为引力常量,其值为 G=6.67×10-11N·m2/kg2。
3.适用条件:(1)公式适用于 质点 间的相互作用。当两个物体
解析:近地轨道卫星的轨道半径稍大于地球半径,由万有引力提供向心力,可
得 GMr2m=mvr2,解得线速度 v=
GrM,由于地球静止轨道卫星的轨道半径大
于近地轨道卫星的轨道半径,所以地球静止轨道卫星的线速度较小,选项 B 错
误;由万有引力提供向心力,可得 GMr2m=mr2Tπ2,解得周期 T=2π GrM3 ,所
答案:D
对点清
1. 四个分析 “四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半
径的关系。
GMr2m=mmmωvar→22→r→av=ω=G=rM2

第4讲 特殊的曲线运动——万有引力定律与航天

第4讲 特殊的曲线运动——万有引力定律与航天
3
解得:h
GMT 2 -R 2 4
②在地球表面,有:G
Mm mg 地 2 R
对于卫星,有:G
Mm mg 向 2 R h
例3、(单选)如图所示,地球赤道上的山丘e、近地资源卫星p 和同步通信卫星 q 均在赤道平面上绕地心做匀速圆周运动。 设 e 、 p 、 q 的圆周运动速率分别为 v1 、 v2 、 v3 ,向心加速度 分别为a1、a2、a3,则(D ) A.v1>v2>v3 B.v1<v2<v3 C.a1>a2>a3 D.a1<a3<a2
则a、v、越小 r越大 则T越大
例 1 、 ( 单选 )“ 嫦娥二号”卫星在距月球表面约 100km 高度的 轨道上绕月运行,较“嫦娥一号”距月球表面200km的轨道
要低,若把这两颗卫星的运行都看成是绕月球做匀速圆周运
动,下列说法正确是( B ) A.嫦娥二号的线速度较小 B.嫦娥二号的周期较小 C.嫦娥二号的角速度较小 D.嫦娥二号的向心加速度较小 解析:设“嫦娥一号”与“嫦娥二号”的轨道半径、向心加 速度、线速度、角速度、周期分别为r1与r2,a1与a2,v1与v2, ω1与ω2,T1与T2,已知r1>r2,则: a1>a2,v1>v2,ω1>ω2 T1<T2,因此选项B正确
1、卫星为什么能绕地球转动?
2、卫星之间会不会发生碰撞? 3、卫星的作用是什么? 4、同一个卫星能在不同轨道上运行吗?
第四章 曲线运动 万有引力定律及其应用
第4讲 特殊的曲线运动——万有引力定律与航天
一、开普勒三大定律 椭圆中心 椭圆焦点
O
1、椭圆定律:所有行绕太阳运动的轨道都是椭圆,太阳处在 椭圆的一个焦点上 2、面积定律:对任意一个行星来说,它与太阳的连线在相等 的时间内扫过相等的面积 3、周期定律:所有行星的半长轴(半径)的三次方跟它的公 a3 r3 转周期的二次方的比值相等,即 T 2 k或 T 2 k

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。

(4)万有引力与航天__2021年高考物理真题模拟试题专项汇编

(4)万有引力与航天__2021年高考物理真题模拟试题专项汇编

(4)万有引力与航天——2021年高考物理真题模拟试题专项汇编1. 【2021年全国乙卷,18】科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。

科学家认为S2的运动轨迹是半长轴约为1000 AU (太阳到地球的距离为1 AU )的椭圆,银河系中心可能存在超大质量黑洞。

这项研究工作获得了2020年诺贝尔物理学奖。

若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A.4410M ⨯B.6410M ⨯C.8410M ⨯D.10410M ⨯2. 【2021年全国甲卷,18】2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为51.810s ⨯的椭圆形停泊轨道,轨道与火星表面的最近距离约为52.810m ⨯。

已知火星半径约为63.410m ⨯,火星表面处自由落体的加速度大小约为23.7m /s ,则“天问一号”的停泊轨道与火星表面的最远距离约为( )A.5610m ⨯B.6610m ⨯C.7610m ⨯D.8610m ⨯3. 【2021年山东卷,5】从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受陆平台的作用力大小之比为( )A.9:1B.9:2C.36:1D.72:14. 【2021年山东卷,8】迷你系绳卫星在地球赤道正上方的电离层中,沿圆形轨道绕地飞行.系绳卫星由两子卫星组成,它们之间的导体绳沿地球半径方向,如图所示.在电池和感应电动势的共同作用下,导体绳中形成指向地心的电流,等效总电阻为r .导体绳所受的安培力克服大小为f 的环境阻力,可使卫星保持在原轨道上.已知卫生离地平均高度为H ,导体绳长为()L LH ,地球半径为R ,质量为M ,轨道处磁感应强度大小为B ,方向垂直于赤道平面.忽略地球自转的影响.据此可得,电池电动势为( )A.GM frBLR H BL+ B.GM frBLR H BL+ C.GM BLR H frBL+ D.GM R H frBL+ 5. 【2021年广东卷,2】2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行。

4第4课时 万有引力与航天

4第4课时  万有引力与航天
地面的高度分别是R和2R(R为地球半 径).下列说法中正确的是( )
A.a、b的线速度大小之比是 2∶1 B.a、b的周期之比是1∶2 2
C.a、b的角速度大小之比是3 6 ∶4 D.a、b的向心加速度大小之比是9∶4
图1
思路点拨 (1)谁提供a、b两颗卫星的向心力? (2)向心力公式有哪些选择?
变大,速度(动能)减小,但机械能增大,即需要加速.
解析
由 v GM 得 v泊 M 地 r工 a , A正确; r v工 r泊 M 月 b
3
T泊 r泊 r月工 r3 b2 由T 2 π ,得 , B错; 3 GM T工 a r工 M 地 第一宇宙速度是卫星轨道半径等于地球半径时的环绕
速度,由于r泊>R,由v GM 知,在停泊轨道的卫 r 星速度小于地球的第一宇宙速度,C错;卫星在停泊
力束缚的 最小 发射速度.第三宇宙速度(逃逸速
度)v3= 16.7 km/s,是使物体挣脱太阳束缚的 最小 发射速度.
特别提醒
1.应用时可根据具体情况选用适当的公式进行分析
或计算. 2.三种宇宙速度均指的是发射速度,不能理解为 环绕速度. 3.第一宇宙速度既是最小发射速度,又是卫星绕 地球做匀速圆周运动的最大速度.
第4课时
一.万有引力定律
万有引力与航天 考点自清
1.宇宙间的一切物体都是相互吸引的,两个物
体间的引力大小,跟它们的 质量的乘积 成正比, 跟它们的距离的平方成反比. 2.公式: F G m1m2 ,其中G=6.67×10-11 N·m2/kg2, r2 它是在牛顿发现万有引力定律一百年后英国物理学 家卡文迪许利用扭秤装置测出的.
2.卫星的变轨问题
卫星绕地球稳定运行时,万有引力提供了卫星做 Mm v2 M 圆周运动的向心力,由 G m 得v G , 2 r r r 由此可知,轨道半径r越大,卫星的线速度v越小.

第六章 万有引力与航天4 万有引力理论的成就 教学设计

第六章 万有引力与航天4 万有引力理论的成就 教学设计

第六章万有引力与航天4万有引力理论的成就学习目标1.通过学习未知天体的发现,了解万有引力定律在天文学上的应用.2.通过计算地球和太阳的质量掌握利用万有引力定律计算天体的质量和密度的方法.3.掌握综合运用万有引力定律和圆周运动学知识分析具体问题的方法.自主探究1.卡文迪许是如何测量地球质量的?2.人造地球卫星、月球绕地球的运动,行星绕太阳的运动的向心力是分别由谁提供的?3.如何求太阳的质量?4.海王星是如何发现的?合作探究一、称量地球的质量【创设情景1】设地面附近的重力加速度g取9.8m/s2,地球半径R=6.4×106m,引力常量G=6.67×10-11N·m2/kg2,试估算地球的质量.【拓展】1.利用以上数据能否求出地球的密度?如果能请列出公式.2.若已知月球表面的重力加速度g0和月球半径R0,求月球的质量和密度.【结论1】求天体质量的方法一:.二、计算中心天体的质量【自主探究】1.应用万有引力定律求解天体质量的基本思路是什么?2.求解天体质量的方程依据是什么?【小组合作1】1.天体实际做何运动?而我们通常可认为做什么运动?2.描述匀速圆周运动的物理量有哪些?3.根据环绕天体的运动情况求解其向心加速度有几种求法?4.应用天体运动的动力学方程——万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?5.应用此方法能否求出环绕天体的质量?【结论2】求天体质量的方法二:.【创设情景2】把地球绕太阳公转看作是匀速圆周运动,平均半径为1.5×1011m,已知引力常量G=6.67×1-N·m2/kg2,则可估算出太阳的质量大约是多少?(结果取一位有效数字)【拓展】1.利用以上数据能否求出太阳的密度?如果能请列出公式.2.能否用类似办法求地球质量?需要选谁为研究对象?需要知道哪些量?请列出表达式.三、发现未知天体【小组合作2】1.应用万有引力定律除可估算天体质量外,还可以在天文学上有何应用?2.应用万有引力定律发现了哪些天体?3.人们是怎样应用万有引力定律来发现未知天体的?发表你的看法.【课堂小结】1.求天体质量的两条思路:①②2.用万有引力定律研究天体运动时,将天体的运动近似地看作运动,其所需向心力都来自于.然后结合向心力公式,据题目中所给的实际情况,选择适当的形式进行研究.3.测出卫星绕天体做圆周运动的轨道半径R和周期T,由万有引力F=G=,可解得天体质量M=.若已知该天体的半径为R0,据M=ρ·,可知天体密度ρ=.这就是估算天体质量和密度的方法.如果卫星在天体表面绕天体运动,则R=R0,故ρ=.由此可知只要知道近天体表面运行的即可估算天体的密度.4.现在我们知道太阳系有八大行星,其中被称为“笔尖下发现的行星”的是.因为它是据算出来的.它的发现也更进一步地证明了万有引力定律的正确性.课堂检测1.利用下列哪组数据,可以计算出地球的质量()A.已知地球的半径R和地面的重力加速度gB.已知卫星绕地球做匀速圆周运动的轨道半径r和周期TC.已知地球半径R和卫星绕地球做匀速圆周运动的线速度vD.已知卫星绕地球做匀速圆周运动的线速度v和周期T2.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,已知其周期为T,引力常量为G,那么该行星的平均密度为()A. B. C. D.3.设地球表面的重力加速度为g0,物体在距离地心4R(R是地球半径)处,由于地球的作用产生的加速度为g,则为()A.1B.C.D.4.若已知某行星的一颗卫星绕其运转的轨道半径为R,周期为T,引力常量为G,可求得()A.该卫星的质量B.行星的质量C.该卫星的平均密度D.行星的平均密度5.地球公转的轨道半径是R1,周期是T1,月球绕地球运转的轨道半径是R2,周期是T2,则太阳质量与地球质量之比是()A. B. C. D.6.下面说法错误的是()A.海王星是人们依据万有引力定律计算出轨道而发现的B.天王星是人们依据万有引力定律计算出轨道而发现的C.天王星的运行轨道偏离,其原因是天王星受到轨道外面其他行星的引力作用D.冥王星是人们依据万有引力定律计算出轨道而发现的=p,火星半径R火和7.假设火星和地球都是球体,火星质量M火和地球质量M地之比为火地地球半径R地之比为火=q,那么火星表面处的重力加速度g火和地球表面处的重力加速度g地地等于()之比火地A. B.pq2 C. D.pq8.已知月球的质量是M,半径是R,求在月球表面的物体自由下落H所用的时间.9.已知月球到地球的球心距离为r=4×108m,月亮绕地球运行的周期为30天,求地球的质量.参考答案自主探究1.根据重力加速度求天体质量,即mg=G2.地球太阳3.利用G=m()2r得M=,其中M是太阳质量,r是某行星到太阳的距离,T是该行星绕太阳公转的周期.4.利用万有引力定律计算出来的.合作探究【创设情景1】kg=6.0×1024kg由mg=G得:M=-【拓展】1.由ρ=和V=得ρ=2.由mg0=G得M0=由ρ0=和V=得ρ0=【结论1】根据重力加速度求天体质量,即mg=G【自主探究】1.根据环绕天体的运动情况,求出其向心加速度,然后根据万有引力充当向心力,进而列方程求解.2.天体之间存在着相互作用的万有引力,行星绕恒星做近似圆周运动,而物体做圆周运动时合力充当向心力,故对于天体所做的圆周运动只能是万有引力充当向心力,这也是求解中心天体质量时列方程的根源所在.【小组合作1】1.天体实际运动是沿椭圆轨道运动的,而我们通常情况下可以把它的运动轨道处理为圆形轨道,即认为天体在做匀速圆周运动.2.在研究匀速圆周运动时,为了描述其运动特征,我们引入了线速度v、角速度ω、周期T 三个物理量.3.根据环绕天体的运动状况,求解向心加速度有三种求法.即:(1)a心=(2)a心=ω2·r(3)a心=4.应用天体运动的动力学方程——万有引力充当向心力,结合圆周运动向心加速度的三种表述方式可得三种形式的方程,即(1)F引=G=F心=ma心=m,即:G=m①得:M=.(2)F引=G=F心=ma心=mω2r,即:G=mω2·r②得:M=.(3)F引=G=F心=ma心=m,即:G=m③得:M=上述三种表达式分别对应已知环绕天体的线速度v,角速度ω,周期T时求解中心天体质量的方法.5.从以上各式的推导过程可知,利用此法只能求出中心天体的质量,而不能求环绕天体的质量,因为环绕天体的质量同时出现在方程的两边,已被约掉.【结论2】根据天体的圆周运动,即其向心力由万有引力提供.【创设情景2】M=2×1030kg【拓展】1.不能,因为不知道太阳的半径2.可以选地球的一颗卫星,需要知道卫星到地球球心的距离r和卫星绕地球运动的周期T,利用G=m()2r得M=【小组合作2】1.应用万有引力定律还可以用来发现未知的天体.2.海王星、冥王星就是应用万有引力定律发现的.3.人们在长期的观察中发现天王星的实际运行轨道与应用万有引力定律计算出的轨道总存在一定的偏差,所以怀疑在天王星周围还可能存在有行星,然后应用万有引力定律,结合对天王星的观测资料,计算出了另一颗行星的轨道,后来在计算的位置观察到新的行星.万有引力定律的发现,为天文学的发展起到了积极的作用,用它可以来计算天体的质量,同时还可以来发现未知天体.【课堂小结】1.求天体质量的两条思路:①地面附近物体与地球间的万有引力约等于物体的重力,即F引=mg.②把环绕天体(或卫星)的运动看成是匀速圆周运动,即F引=F向.2.匀速圆周万有引力3.m()2R M=卫星的周期4.海王星万有引力定律课堂检测1.ABD2.D3.D4.B5.B6.B7.A8.9.5.89×1024kg。

2023年高考物理真题模拟试题专项汇编:(4)万有引力与航天(含答案)

2023年高考物理真题模拟试题专项汇编:(4)万有引力与航天(含答案)

2023年高考物理真题模拟试题专项汇编:(4)万有引力与航天(含答案)(4)万有引力与航天——2023年高考物理真题模拟试题专项汇编1.【2023年新课标卷】2023年5月,世界现役运输能力最大的货运飞船天舟六号,携带约5800 kg的物资进入距离地面约400 km(小于地球同步卫星与地面的距离)的轨道,顺利对接中国空间站后近似做匀速圆周运动。

对接后,这批物资( )A.质量比静止在地面上时小B.所受合力比静止在地面上时小C.所受地球引力比静止在地面上时大D.做圆周运动的角速度大小比地球自转角速度大2.【2023年湖南卷】根据宇宙大爆炸理论,密度较大区域的物质在万有引力作用下,不断聚集可能形成恒星。

恒星最终的归宿与其质量有关,如果质量为太阳质量的1~8倍将坍缩成白矮星,质量为太阳质量的10~20倍将坍缩成中子星,质量更大的恒星将坍缩成黑洞。

设恒星坍缩前后可看成质量均匀分布的球体,质量不变,体积缩小,自转变快。

不考虑恒星与其它物体的相互作用。

已知逃逸速度为第一宇宙速度的倍,中子星密度大于白矮星。

根据万有引力理论,下列说法正确的是( )A.同一恒星表面任意位置的重力加速度相同B.恒星坍缩后表面两极处的重力加速度比坍缩前的大C.恒星坍缩前后的第一宇宙速度不变D.中子星的逃逸速度小于白矮星的逃逸速度3.【2023年辽宁卷】在地球上观察,月球和太阳的角直径(直径对应的张角)近似相等,如图所示。

若月球绕地球运动的周期为,地球绕太阳运动的周期为,地球半径是月球半径的k倍,则地球与太阳的平均密度之比约为( )A. B. C. D.4.【2023年江苏卷】设想将来发射一颗人造卫星,能在月球绕地球运动的轨道上稳定运行,该轨道可视为圆轨道。

该卫星与月球相比,一定相等的是( )A.质量B.向心力大小C.向心加速度大小D.受到地球的万有引力大小5.【2023年海南卷】如图所示,1、2轨道分别是天宫二号飞船在变轨前、后的轨道,下列说法正确的是( )A.飞船从1轨道变到2轨道要点火加速B.飞船在1轨道周期大于2轨道的C.飞船在1轨道速度大于2轨道的D.飞船在1轨道加速度大于2轨道的6.【2023年山东卷】牛顿认为物体落地是中于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足。

4-4万有引力与航天

4-4万有引力与航天
人 教 实 验 版
必考内容
第4章 第4讲
高考物理总复习
4π2 an=r 2 T r1 3 60 由以上三式,解得: = r2 4802 a1 3 = 60×4804 a2 所以 B 正确,ACD 错误. [答案] B
人 教 实 验 版
必考内容
第4章 第4讲
高考物理总复习
[总结评述]
根据万有引力定律和牛顿第二定律列出
必考内容
人 教 实 验 版
GM r ,故 r 越大,v 越小.
第4章 第4讲
高考物理总复习
人造地球卫星的最大运行速度 vm= Mm (3)由 G 2 =mrω2 有 ω= r Mm 2π 2 (4)由 G 2 =mr( T ) 有 T= r 大. 人造地球卫星的最小周期 Tmin=
GM R =7.9km/s.
人 教 实 验 版
必考内容
第4章 第4讲
高考物理总复习
利用万有引力定律估算天体的质量或密度
命题规律 根据题目所给的物理量,利用万有引力定
人 教 实 验 版
律公式,求星体的质量或密度. (2011· 安徽)(1)开普勒行星运动第三定律指出: 行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公
必考内容
必考内容
第4章 第4讲
高考物理总复习
a3 在上述情况下, 2=k 的表达式中 a 就是圆的半径 R, T R3 利用 2=k 的结论解决某些问题很方便. T 注意 在太阳系中,比例系数 k 是一个与行星无关的
常量,但不是恒量,在不同的星系中,k 值不相同,k 值与 中心天体有关. 该定律不仅适用于行星,也适用于其他天体,如对绕 地球飞行的卫星来说,它们的 k 值相同与卫星无关.
高考物理总复习

第4章 第4讲 万有引力与航天

第4章 第4讲 万有引力与航天

第4讲 万有引力与航天知识一 万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式F =G m 1m 2r2,其中G =6.67×10-11 N·m 2/kg 2,叫引力常量.3.适用条件两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离.(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为质点到球心间的距离.(1)只有天体之间才存在万有引力.(×)(2)只要已知两个物体的质量和两个物体之间的距离,就可以由F =G Mm R2计算物体间的万有引力.(×)(3)当两物体间的距离趋近于0时,万有引力趋近于无穷大.(×)知识二 万有引力定律应用及三种宇宙速度1.万有引力定律基本应用(1)基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供.(2)基本公式:G Mmr 2=mg r=ma =⎩⎪⎨⎪⎧m v 2rmr ω2mr2πT 2mv ω其中g r 为距天体中心r 处的重力加速度.(1)两种周期——自转周期和公转周期的不同.(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度. (3)两个半径——天体半径R 和卫星轨道半径r 的不同.当一枚火箭受到的重力只有它在地球表面上受到的重力一半时,它飞到了多大高度? [提示] 地面上:mg 0=GMmR 2地. 飞行处:12mg 0=GMmR 地+h2解得飞行高度h =(2-1)R 地知识三 经典时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观(1)在狭义相对论中,物体的质量是随物体运动速度的增大而增大的,用公式表示为m =m 01-v 2c2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的.3.经典力学有它的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.(1)经典力学的基础是牛顿运动定律.(√)(2)牛顿运动定律可以解决自然界中所有的问题.(×) (3)经典力学可以解决自然界中所有的问题.(×)1.关于万有引力公式F =Gm 1m 2r 2,以下说法中正确的是( ) A .公式只适用于星球之间的引力计算,不适用于质量较小的物体 B .当两物体间的距离趋近于0时,万有引力趋近于无穷大 C .两物体间的万有引力也符合牛顿第三定律 D .公式中引力常量G 的值是牛顿规定的 【解析】 万有引力公式F =Gm 1m 2r,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C.【答案】 C2.(多选)由于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比,例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E =F q,在引力场中可以用一个类似的物理量来反映各点引力场的强弱.设地球质量为M ,半径为R ,地球表面处重力加速度为g ,引力常量为G ,如果一个质量为m 的物体位于距离地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是( )A .GM R2B .Gm R2C .GMm R 2D.g4【解析】 由万有引力定律知F =G Mm R2,引力场的强弱F m =GM R2,A 对;在地球表面附近有G Mm R 2=mg ,所以F m =g4,D 对.【答案】 AD3.(多选)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道.已知太阳质量约为月球质量的 2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是( )A .太阳引力远大于月球引力B .太阳引力与月球引力相差不大C .月球对不同区域海水的吸引力大小相等D .月球对不同区域海水的吸引力大小有差异【解析】 设太阳质量为M ,月球质量为m ,海水质量为m ′,太阳到地球距离为r 1,月球到地球距离为r 2,由题意Mm=2.7×107,r 1r 2=400,由万有引力公式,太阳对海水的引力F 1=GMm ′r 21,月球对海水的引力F 2=Gmm ′r 22,则F 1F 2=Mr 22mr 21=2.7×1072=2 70016,故A 选项正确,B 选项错误;月球到地球上不同区域的海水距离不同,所以引力大小有差异,C 选项错误,D 选项正确.【答案】 AD4.(2013·江苏高考)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积【解析】 根据开普勒行星运动定律,火星和木星沿各自的椭圆轨道绕太阳运行时,太阳位于椭圆的一个焦点上,选项A 错误;行星绕太阳运行的轨道不同,周期不同,运行速度大小也不同,选项B 错误;火星与木星运行的轨道半长轴的立方与周期的平方之比是一个常量,选项C 正确;火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,选项D 错误.【答案】 C5.(2013·福建高考)设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆.已知万有引力常量为G ,则描述该行星运动的上述物理量满足( )A .GM =4π2r 3T 2B .GM =4π2r2T2C .GM =4π2r 2T3D .GM =4πr3T2【解析】 本题根据行星所受的万有引力提供其做圆周运动的向心力列方程求解.对行星有:GMm r 2=m 4π2T 2r ,故GM =4π2r3T2,选项A 正确.【答案】 A考点一 [32] 天体质量和密度的估算一、重力加速度法:利用天体表面的重力加速度g 和天体半径R .1.由G Mm R 2=mg 得天体质量M =gR 2G.2.天体密度ρ=M V =M 43πR3=3g4πGR.二、卫星环绕法测出卫星绕天体做匀速圆周运动的半径r 和周期T .1.由G Mm r 2=m 4π2r T 2得天体的质量M =4π2r3GT2.2.若已知天体的半径R ,则天体的密度ρ=M V =M 43πR3=3πr3GT 2R 3.若卫星绕中心天体表面运行时,轨道半径r =R ,则有ρ=3πGT2.——————[1个示范例]——————(2013·全国大纲卷)“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127分钟.已知引力常量G =6.67×10-11N·m 2/kg 2,月球半径约为1.74×103km.利用以上数据估算月球的质量约为( )A .8.1×1010 kgB .7.4×1013kgC .5.4×1019 kgD .7.4×1022kg 【解析】 天体做圆周运动时都是万有引力提供向心力.“嫦娥一号”绕月球做匀速圆周运动,由牛顿第二定律知:GMm r 2=4π2mr T 2,得M =4π2r3GT 2,其中r =R +h ,代入数据解得M=7.4×1022kg ,选项D 正确.【答案】 D——————[1个预测例]——————一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( )A.mv 2GNB.mv 4GNC.Nv 2GmD.Nv 4Gm【审题指导】(1)明确行星表面附近的绕行卫星的轨道半径与行星半径的大小关系. (2)弹簧测力计的示数、物体的重力与其所受万有引力的大小关系.【解析】 设卫星的质量为m ′由万有引力提供向心力,得G Mm ′R 2=m ′v 2R①m ′v 2R=m ′g ②由已知条件:m 的重力为N 得 N =mg ③由③得g =N m ,代入②得:R =mv 2N代入①得M =mv4GN,故B 项正确.【答案】 B 考点二 [33] 卫星运行参量的比较与运算一、卫星的动力学规律由万有引力提供向心力,G Mm r 2=ma 向=m v 2r =m ω2r =m 4π2r T2.二、卫星的各物理量随轨道半径变化的规律1.G Mm r 2=m v 2r →v =GM r→v ∝1r.2.G Mmr2=m ω2r →ω=GM r 3→ω∝1r 3. 3.G Mm r 2=m 4π2T 2r →T =4π2r 3GM→T ∝r 3. 4.G Mm r 2=ma →a =GM r 2→a ∝1r 2.5.mg =GMm R 2地(近地时)→GM =gR 2地.三、极地卫星和近地卫星1.极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. 2.近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.——————[1个示范例]——————(2013·四川高考)迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“Gl­581c”却很值得我们期待.该行星的温度在0 ℃到40 ℃之间、质量是地球的6倍、直径是地球的1.5倍、公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则( )A .在该行星和地球上发射卫星的第一宇宙速度相同B .如果人到了该行星,其体重是地球上的223倍C .该行星与“Gliese581”的距离是日地距离的 13365倍 D .由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短【解析】 行星、地球绕其中心天体做匀速圆周运动.根据万有引力提供向心力解决问题.由题意知,行星、地球的质量之比m 1m 2=6,半径之比R 1R 2=1.5,公转周期之比T 1T 2=13365,中心天体质量之比M 1M 2=0.31.根据G mm ′R 2=m ′v 2R ,得第一宇宙速度之比v 1v 2=Gm 1R 1·R 2Gm 2=m 1m 2·R 2R 1=2,选项A 错误;根据m ′g =G mm ′R 2,得到人的体重之比m ′g 1m ′g 2=m 1R 21·R 22m 2=m 1m 2·⎝ ⎛⎭⎪⎫R 2R 12=83,选项B 正确;根据G Mm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r ,得与中心天体的距离之比r 1r 2=3M 1M 2·⎝ ⎛⎭⎪⎫T 1T 22=30.31×⎝ ⎛⎭⎪⎫133652,选项C 错误;米尺在该行星上长度不一定会变短,选项D 错误.【答案】 B——————[1个预测例]——————(多选)(2011·天津高考)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度v = GM RB .角速度ω= gRC .运行周期T =2π R gD .向心加速度a =Gm R2【解析】 对航天器:G Mm R 2=m v 2R ,v = GM R ,故A 正确.由mg =m ω2R 得ω= g R,故B 错误.由mg =m ⎝ ⎛⎭⎪⎫2πT 2R 得T =2πR g ,故C 正确.由G Mm R 2=ma 得a =GM R 2,故D 错误.【答案】 AC考点三 [34] 赤道上物体、近地卫星、同步卫星的区别一、区别1.同步卫星与地球赤道上的物体的周期都等于地球自转的周期,而不等于近地卫星的周期.2.近地卫星与地球赤道上的物体的运动半径都等于地球半径,而不等于同步卫星运动半径.3.三者的线速度各不相同. 二、求解此类题的关键1.在求解“同步卫星”与“赤道上的物体”的向心加速度的比例关系时应依据二者角速度相同的特点,运用公式a =ω2r 而不能运用公式a =GM r2.2.在求解“同步卫星”与“赤道上的物体”的线速度比例关系时,仍要依据二者角速度相同的特点,运用公式v =ωr 而不能运用公式v =GM /r .3.在求解“同步卫星”运行速度与第一宇宙速度的比例关系时,因都是由万有引力提供的向心力,故要运用公式v =GM /r ,而不能运用公式v =ωr 或v =gr .——————[1个示范例]——————(2012·四川高考)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×107 m .它与另一颗同质量的同步轨道卫星(轨道半径为4.2×107m)相比( )A .向心力较小B .动能较大C .发射速度都是第一宇宙速度D .角速度较小【解析】 由题意知,中圆轨道卫星的轨道半径r 1小于同步卫星轨道半径r 2,卫星运行时的向心力由万有引力提供,根据F 向=G Mm r2知,两卫星的向心力F 1>F 2,选项A 错误;根据G Mm r 2=mv 2r=m ω2r ,得环绕速度v 1>v 2,角速度ω1>ω2,两卫星质量相等,则动能E k1>E k2,故选项B 正确,选项D 错误;根据能量守恒,卫星发射得越高,发射速度越大,第一宇宙速度是发射卫星的最小速度,因此两卫星的发射速度都大于第一宇宙速度,且v 01<v 02,选项C 错误.【答案】 B同步卫星的六个“一定”——————[1个预测例]——————有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4-4-1,则有( )图4-4-1A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角是π/6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h【解析】 对于卫星a ,根据万有引力定律、牛顿第二定律可得,GMm r 2-N =ma 向,而GMm r 2=mg ,故a 的向心加速度小于重力加速度g ,A 项错;由c 是同步卫星可知卫星c 在4 h 内转过的圆心角是π3,B 项错;由GMm r 2=m v 2r 得,v =GMr,故轨道半径越大,线速度越小,故卫星b 的线速度大于卫星c 的线速度,卫星c 的线速度大于卫星d 的线速度,而卫星a 与同步卫星c 的周期相同,故卫星c 的线速度大于卫星a 的线速度,C 项对;由G Mm r 2=m (2πT)2r ,得,T =2πr 3GM,轨道半径r 越大,周期越长,故卫星d 的周期大于同步卫星c 的周期,D 项错.【答案】 C考点四 [35] 卫星的发射与变轨一、宇宙速度1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMm R 2=m v 21R ,所以v 1=GM R.(2)mg =mv 21R,所以v 1=gR .(3)第二、第三宇宙速度也都是指发射速度. 二、卫星的变轨分析卫星的变轨问题可分为两类:大气层外的发动机变轨(跃迁式)和稀薄空气作用下的摩擦(连续)变轨.1.大气层外的发动机变轨又存在从较低轨道变轨到较高轨道和从较高轨道变轨到较低轨道两种情况,这两种情况互为逆过程.较低圆轨道近地点向后喷气近地点向前喷气椭圆轨道远地点向后喷气远地点向前喷气较高圆轨道2.空气阻力使速度减少,G Mm r 2>m v 2r→向心运动→引力做正功→卫星动能增大→低轨道运行v ′=GMr ′.——————[1个示范例]——————(多选)(2013·新课标全国卷Ⅰ)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用【解析】 本题虽为天体运动问题,但题中特别指出存在稀薄大气,所以应从变轨角度入手.第一宇宙速度和第二宇宙速度为发射速度,天体运动的速度为环绕速度,均小于第一宇宙速度,选项A 错误;天体运动过程中由于大气阻力,速度减小,导致需要的向心力F n =mv 2r减小,做向心运动,向心运动过程中,轨道高度降低,且万有引力做正功,势能减小,动能增加,选项B 、C 正确;航天员在太空中受地球引力,地球引力全部提供航天员做圆周运动的向心力,选项D 错误.【答案】 BC——————[1个预测例]——————图4-4-2(多选)“神舟十号”飞船于北京时间2013年6月11日17时38分在甘肃省酒泉卫星发射中心发射升空,并于北京时间6月13日13时18分,实施了与“天宫一号”的自动交会对接.这是“天宫一号”自2011年9月发射入轨以来,第5次与神舟飞船成功实现交会对接.交会对接前“神舟十号”飞船先在较低的圆轨道1上运动,在适当位置经变轨与在圆轨道2上运动的“天宫一号”对接.如图4-4-2所示,M 、Q 两点在轨道1上,P 点在轨道2上,三点连线过地球球心,把飞船的加速过程简化为只做一次短时加速.下列关于“神舟十号”变轨过程的描述,正确的是( )A .“神舟十号”必须在Q 点加速,才能在P 点与“天宫一号”相遇B .“神舟十号”在M 点经一次加速,即可变轨到轨道2C .“神舟十号”变轨后在M 点的速度大于变轨前的速度D .“神舟十号”变轨后的运行周期总大于变轨前的运行周期 【解析】 飞船经一次加速后由圆轨道1变轨到与加速点相切的椭圆轨道,加速点为近地点,椭圆轨道的远地点与轨道2相切,近地点与远地点分别在地球两侧,因此飞船必须在M 点加速,才能在P 点与“天宫一号”相遇,A 错;飞船在M 点经一次加速后由圆轨道1变轨到椭圆轨道,在椭圆轨道的远地点再经一次加速变轨到轨道2,B 错;飞船在M 点加速后由圆轨道1变轨到椭圆轨道,则变轨后在M 点的速度大于变轨前的速度,C 对;由T =2πr 3GM可知轨道半径增大,周期增大,D 项正确.【答案】 CD“双星”模型一、双星系统 在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星.二、双星系统的条件1.两颗星彼此相距较近.2.两颗星靠相互之间的万有引力做匀速圆周运动. 3.两颗星绕同一圆心做圆周运动.三、双星系统的特点1.两星的角速度、周期相等. 2.两星的向心力大小相等.3.两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .轨道半径与行星的质量成反比.——————[1个示范例]——————图4-4-32012年7月,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图4-4-3所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )A .它们做圆周运动的万有引力保持不变B .它们做圆周运动的角速度不断变大C .体积较大星体圆周运动轨迹半径变大,线速度也变大D .体积较大星体圆周运动轨迹半径变大,线速度变小【解析】 对双星M 1、M 2,设距离为L ,圆周运动半径分别为r 1、r 2,它们做圆周运动的万有引力为F =GM 1M 2L 2,距离L 不变,M 1与M 2之和不变,其乘积大小变化,则它们的万有引力发生变化,A 错;依题意双星系统绕两者连线上某点O 做匀速圆周运动,周期和角速度相同,由万有引力定律及牛顿第二定律:G M 1M 2L 2=M 1ω2r 1,G M 1M 2L2=M 2ω2r 2,r 1+r 2=L ,可解得:M 1+M 2=ω2L3G,M 1r 1=M 2r 2,由此可知ω不变,质量比等于圆周运动半径的反比,故体积较大的星体因质量减小,其轨道半径将增大,线速度也增大,B 、D 错,C 对.【答案】 C , (2013·山东高考)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2T B.n 3k T C.n 2kT D.n kT 【解析】 双星间的万有引力提供向心力.设原来双星间的距离为L ,质量分别为M 、m ,圆周运动的圆心距质量为m 的恒星距离为r .对质量为m 的恒星:G Mm L 2=m (2πT )2·r 对质量为M 的恒星:G Mm L 2=M (2πT)2(L -r )得G M +m L 2=4π2T 2·L ,即T 2=4π2L 3G M+m则当总质量为k (M +m ),间距为L ′=nL 时,T ′=n 3kT ,选项B 正确.【答案】 B⊙卫星运行比较1.(2013·广东高考)如图4-4-4,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )图4-4-4A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大 【解析】 卫星绕行星做匀速圆周运动的向心力由行星对卫星的引力提供,根据万有引力定律和牛顿第二定律解决问题.根据GMm r 2=ma 得a =GMr2,故甲卫星的向心加速度小,选项A 正确;根据G Mm r 2=m (2πT )2r ,得T =2πr 3GM ,故甲的运行周期大,选项B 错误;根据G Mmr2=m ω2r ,得ω=GM r 3,故甲运行的角速度小,选项C 错误;根据G Mm r 2=mv 2r ,得v =GM r,故甲运行的线速度小,选项D 错误.【答案】 A⊙天体质量的估算2.2013年12月2日,我国成功发射了“嫦娥三号”,实施落月探测计划,进一步获取月球的相关数据.如果该卫星在月球上空绕月做匀速圆周运动,经过时间t ,卫星行程为s ,卫星与月球中心连线扫过的角度是1弧度,万有引力常量为G ,根据以上数据估算月球的质量是( )A.t 2Gs 3 B.s 3Gt 2 C.Gt 2s3 D.Gs 3t2 【解析】 由几何知识得圆心角θ=s r,其中s 为卫星转动的弧长,即卫星的行程,r 为轨迹半径,代入数据得轨迹半径r =s ,卫星转动的角速度ω=θt =1t,由万有引力提供向心力GMm r 2=m ω2r ,得月球的质量M =ω2r 3G =s 3Gt2,选项B 正确.【答案】 B⊙考查万有引力与重力加速度3.(2012·新课标全国卷)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC.⎝⎛⎭⎪⎫R -d R 2D.⎝⎛⎭⎪⎫R R -d 2【解析】 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =43πR 3ρ,因质量分布均匀的球壳对球壳内物体的引力为零,所以矿井下以(R -d )为半径的地球的质量为M ′=43π(R -d )3ρ,解得M ′=⎝ ⎛⎭⎪⎫R -d R 3M ,则矿井底部处的重力加速度g ′=GM ′R -d 2, 则矿井底部处的重力加速度和地球表面的重力加速度之比为g ′g =1-dR,选项A 正确;选项B 、C 、D 错误.【答案】 A ⊙变轨问题4.(2013·安徽高考)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr,其中G 为引力常量,M 为地球质量.该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm (1R 2-1R 1)B .GMm (1R 1-1R 2)C.GMm 2(1R 2-1R 1) D.GMm 2(1R 1-1R 2) 【解析】 人造卫星绕地球做圆周运动的向心力由万有引力提供.根据万有引力提供向心力得G Mm r =m v 2r①而动能E k =12mv 2②由①②式得E k =GMm 2r③ 由题意知,引力势能E p =-GMm r④ 由③④式得卫星的机械能E =E k +E p =-GMm 2r由功能关系知,因摩擦而产生的热量Q =ΔE 减=E 1-E 2=GMm 2(1R 2-1R 1),故选项C 正确. 【答案】 C ⊙同步卫星问题5.(多选)(2013·浙江高考)图4-4-5如图4-4-5所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R .下列说法正确的是( )A .地球对一颗卫星的引力大小为GMm r -R2B .一颗卫星对地球的引力大小为GMm r 2 C .两颗卫星之间的引力大小为G m 23r2D .三颗卫星对地球引力的合力大小为3GMmr2【解析】 应用万有引力公式及力的合成规律分析.地球与卫星之间的距离应为地心与卫星之间的距离,选项A 错误,B 正确;两颗相邻卫星与地球球心的连线互成120°角,间距为3r ,代入数据得,两颗卫星之间引力大小为Gm 23r2,选项C 正确;三颗卫星对地球引力的合力为零,选项D 错误.【答案】 BC。

微专题(四) 万有引力与航天

微专题(四) 万有引力与航天

1.(2021·全国乙卷)科学家对银河系中心附近的恒星S2进
行了多年的持续观测,给出1994年到2002年间S2的位
置如图所示。科学家认为S2的运动轨迹是半长轴约为
1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中
心可能存在超大质量黑洞。这项研究工作获得了2020年诺贝尔物理学奖。若
认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M,可以
kg/m3≈5.2×1015 kg/m3,故 C 正确。
答案:C
3.(2020·全国卷Ⅱ)若一均匀球形星体的密度为 ρ,引力常量为 G,则在该星
体表面附近沿圆轨道绕其运动的卫星的周期是
()
3π A. Gρ
4π B. Gρ
1 C. 3πGρ
1 D. 4πGρ
解析:根据万有引力定律有 GMRm2 =mR4Tπ22,又 M=ρ·4π3R3,解得 T=
3 A. 4
35 C. 2
31 B. 4
32 D. 5
[无图画图]
[析图构图·出思路]
作出圆周运动示意图,注意中心天体质量不同。
[精解详析] 1.选 B 在悬停状态下,“祝融”和“玉兔”所受平台的作用力大小可认为
等于其所受到的万有引力,则 F 祝=GMR火m火2 祝,F 玉=GMR月m月2 玉,其中,MM火 月= 91,RR火 月=21,mm祝 玉=21,代入数据解得:F 祝∶F 玉=9∶2, 故 B 正确,A、C、 D 错误。
推测出该黑洞质量约为
()
A.4×104M
B.4×106M
C.4×108M
D.4×1010M
解析:由万有引力提供向心力有GMR中2 m=m4Tπ22R,整理得RT23=G4Mπ2中,可知RT23只与中 RS23

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天教案-人教版高三全册物理教

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天教案-人教版高三全册物理教

第4讲 万有引力与航天一、开普勒行星运动定律二、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成⑥ 正比 ,与它们之间距离r 的二次方成⑦ 反比 。

2.公式:F=⑧ Gm 1m 2m 2,其中G=6.67×10-11 N·m 2/kg 2。

3.适用条件:严格地说,公式只适用于⑨ 质点 间的相互作用,当两个物体间的距离⑩ 远大于 物体本身的大小时,物体可视为质点。

均匀的球体可视为质点,其中r 是 两球心 间的距离。

一个均匀球体与球外一个质点间的万有引力也适用,其中r 为 球心 到质点间的距离。

三、宇宙速度1.第一宇宙速度(环绕速度)(1)v 1= 7.9 km/s,是人造卫星的最小 发射 速度,也是人造卫星最大的 环绕 速度。

(2)第一宇宙速度的计算方法 ①由Gmm m 2=m m 2m得v= √mm R。

②由mg=m m 2m得v= √mm 。

2.第二宇宙速度(逃逸速度):v 2= 11.2 km/s,使物体挣脱 地球 引力束缚的最小发射速度。

3.第三宇宙速度:v 3= 16.7 km/s,使物体挣脱 太阳 引力束缚的最小发射速度。

四、经典力学时空观和相对论时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的。

(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。

(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m=0√1-2m2(2)在狭义相对论中,同一物理过程的位移和时间的测量与参考系有关 ,在不同的参考系中不同。

3.经典力学的适用X围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界。

1.判断以下说法对错。

(1)所有行星绕太阳运行的轨道都是椭圆。

(√)(2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力与航天(4)
班级____________姓名________________
一、不定项选择题(共14小题,每小题4分,共56分。


1、下列说法中正确的是 ( )
A .地球是宇宙的中心,太阳、月亮和行星都绕地球运动
B .太阳是静止不动的,地球和其他行星都绕太阳运动
C .无论是地心说还是日心说,现在看来都是错误的
D .月亮跟随地球绕太阳运动,但月亮不是太阳系的行星,它是地球的一颗卫星
2、关于公式k T
R 23
,下列说法中正确的是 ( )
A .公式只适用于围绕地球运行的卫星
B .公式只适用太阳系中的行星
C .k 值是一个与星球(中心天体)有关的常量
D .对于所有星球(中心天体)的行星或卫星,k 值都相等
3、宇宙飞船围绕太阳在近似圆周的轨道运动,若其轨道半径是地球轨道半径的9 倍,则它们飞
船绕太阳运行的周期是 ( ) A .3年 B .9年 C .27年 D .81年
4、下列关于万有引力定律的说法中正确的是 ( )
A .万有引力定律是牛顿在总结前人研究的基础上发现的
B .公式F =G 221r
m
m 中的G 是一个比例常数,是没有单位的
C .公式F =G
2
2
1r
m m 中的r 是指两个质点间的距离或两个均匀球体的球心间的距离 D .由F =G
2
2
1r
m m 可知,当距离r 趋向于0时,F 趋向于无穷大 5、苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是 ( )
A .由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的
B .由于地球对苹果有引力,而苹果对地球没有引力造成的
C .苹果与地球间的相互作用力是等大的,但由于地球质量极大,不可能产生明显加速度
D .以上说法都不对
6、已知地面附近的重力加速度为g ,则离地高度等于地球半径处的重力加速度为 ( )
A .g
B .2
1
g C .
4
1g D .4 g
7、已知引力常量G 和下列各组数据,能计算出地球质量的是 ( )
A .地球绕太阳运行的周期及地球离太阳的距离
B .人造地球卫星在地面附近运行的周期和轨道半径
C .月球绕地球运行的周期及月球的半径
D .若不考虑地球自转,已知地球的半径及地球表面的重力加速度
8、绕地球做匀速圆周运动的宇宙飞船中有一质量为10kg 的物体挂在弹簧秤上,这时弹簧秤的
示数 ( ) A .等于98N B .小于98N C .大于98N D .等于0
9、设人造地球卫星绕地球作匀速圆周运动,卫星离地面越高,则卫星的 ( )
A .速度越大
B .角速度越大
C .向心加速度越大
D .周期越长
10、我国发射的“亚洲一号”地球同步通讯卫星的质量为1.2t ,在某一确定的轨道上运行,下列
说法中正确的是 ( ) A .它可以定位在北京正上方太空,所以我国可以利用它进行电视转播 B .它的轨道平面一定与赤道平面重合
C .若要发射一颗质量为2.4t 的地球同步通讯卫星,则该卫星的轨道半径将比“亚洲一号”卫星的轨道半径大
D .若要发射一颗质量为2.4t 的地球同步通讯卫星,则该卫星的轨道半径将比“亚洲一号”卫星的轨道半径小
11、课外小组的同学对人造地球卫星所需的向心力和卫星的运行速率发生争论,若人造地球卫 星的质量不变,当轨道半径增大为原来的2倍时,下列争论中正确的有 ( )
A .有同学说,根据向心力公式F =m r
v 2可知,,向心力变为原来的21
B .有同学说,根据万有引力F = G
2r
Mm 提供向心力可知,向心力变为原来的41
C .有同学说,根据公式v = rω可知,卫星运行的速率变为原来的2倍
D .有同学说,根据公式v =
r GM
可知,卫星运行的速率变为原来的2
2倍 12、在绕地球运行的空间实验站里,下列仪器中将失去测量功能的是 ( )
A .弹簧测力计
B .秒表
C .水银温度计
D .杆秤
13、下列说法中正确的是 ( )
A .第一宇宙速度是人造地球卫星运行的最大速度,也是发射卫星具有的最小发射速度
B .可以发射一颗运行周期为80min 的人造地球卫星
C .第一宇宙速度等于7.9Km/s ,它是卫星在地球表面附近绕地球做匀速圆周运动的线速度
D .地球同步卫星的运行速度大于第一宇宙速度
14、如图,a、b、c是在地球大气层外圆轨道上运动的3颗卫星,下列说法正确的是()
A.b、c的线速度大小相等,且大于a的线速度
B.b、c的向心加速度大小相等,且大于a的向心加速度
C.c加速可追上同一轨道上的b,b减速可等候同一轨道上的c
D.a卫星由于某原因,轨道半径缓慢减小,其线速度将增大
二、填空题(共5小题,每空2分,共12分)
15、发现万有引力定律的科学家是____________,测出引力常量的科学家是_______________。

16、地球半径为6400km,质量为1t的人造地球卫星在离地高度为6400km的轨道上运行时,地
球对它的引力大小为_____________________。

(取地球表面的重力加速度为10m/s2)
17、所谓的地球第一宇宙速度的大小为_____________km/s,它是人造地球卫星的最小发射速度,
也是卫星绕地球运动的最大环绕速度。

18、由A、B两个星球组成的“双星”系统中,已知A、B间的距离为d,A、B的质量之比为
4∶3,则A星球的轨道半径为________________。

19、已知地球和火星的质量之比8∶1,半径之比2∶1,表面动摩擦因数均为0.5,用一根绳在
地球表面上水平拖一个箱子,箱子能获得10m/s2的最大加速度。

将此箱子和绳子送上火星表面,仍用该绳子水平拖木箱,则木箱产生的最大加速度为____________________。

(地球表面的重力加速度为10m/s2)
三、计算题(共3小题,21题9分,22题10分,23题13分,共32分)
20、有两颗人造地球卫星,都绕地球做匀速圆周运动,已知它们的轨道半径之比为1∶2,求这
两颗卫星的:
(1)线速度之比;(2)角速度之比;(3)运动周期之比。

21、宇航员站在某一星球表面上,手中持一小球,开始时小球离星球表面的高度为h,将小球沿
水平方向以初速度v抛出,测得小球运动的水平距离为L;该星球的半径为R,引力常量为G,求该星球的平均密度。

22、已知万有引力常量G,地球半径R,地球的自转周期T,地球表面的重力加速度g,同步卫
星距地面的高度h,月球和地球之间的距离r,月球绕地球的运转周期T0。

某同学根据以上条件,提出一种估算地球质量M的方法:
同步卫星绕地球作圆周运动,由
2
2
2





=
T
mh
h
Mm
G
π得
2
3
2
4
GT
h
M
π
=
(1)请判断上面的结果是否正确,并说明理由。

如不正确,请给出正确的解法和结果。

(5分)(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。

(8分)
万有引力与航天(4)
参考答案
15、牛顿,卡文迪许 16、2500N 17、7.9km/s 18、0.4L 19、12.5m/s 2
20、(1)2∶1 (2)22∶1 (3)1∶22
21、2
223GRL hv πρ=
22、(1)不正确,同步卫星的轨道半径不是,而应是,
所以2
3
2)(4GT h R M +=π
(2)2
2
324GT r M π= G
gR M 2
=。

相关文档
最新文档