13.4(2)平行线的判定
平行线的判定定理和公理
平行线的判定定理和公理平行线的判定定理和公理平行线在几何学中非常重要,因为它对于正常的几何学、计算机图形学和其他相关领域都有重要的应用。
平行线的判定定理和公理是我们在几何学中学习平行线性质的基础知识。
本文将对平行线的判定定理和公理进行详细介绍,使读者对平行线的理解更加深入。
1.平行线的定义和性质在平面上给定一直线l和一点A,如果不过A的任意一条直线与l相交时,交点 angles 都等于90度,那么我们称直线l与A平行,并表示为l || A。
这是平行线的定义。
平行线的性质包括:(1) 平面上任意两条直线,要么相交成交角不为90度的两条直线,要么平行;(2) 如果一条直线与一组平行线相交,那么相交角相等;(3) 平面上有一条直线与平行于它的一组直线相交,那么两条直线被这组平行线所分成的对应角相等。
平行线的定义和性质是评估平行线的判定定理和公理的关键。
2. 平行线的判定定理平行线的判定定理有三种形式:点斜式判定、截距式判定和两线夹角判定。
点斜式判定:如果直线l与曲线y=mx+n平行,那么m 是l的斜率。
在平面上的一个点(x1, y1),如果有一直线斜率为m,那么直线的点斜式的方程是:y-y1=m(x-x1)如果直线l与曲线y=mx+n平行,那么它们垂直的方向相同,即斜率m相同。
这意味着直线的点斜式方程中的m 值必须等于y = mx+n的方程中m的值。
因此,点斜式判定定理可以表示为:若直线l与曲线y=mx+n平行,则l的斜率m=n。
截距式判定:如果直线l与直线y=mx+b平行,那么b 是l的截距。
对于一个斜率为m的直线和一个截距为b的直线,它们可以表示为:y=mx+b当这两个直线平行时,它们将有相同的斜率,因此它们的截距也必须相等。
换句话说,如果直线l与直线y=mx+b平行,则l的截距b=mx0+ b,其中(x0, y0)是直线l 的一个点。
两线夹角判定:如果两条直线l1,l2与第三条直线l3垂直,那么l1,l2互相平行。
平行线的判定和性质讲义
在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。
.(2) 内错角相等,两直线平行。
(3) 同旁内角互补,两直线平行。
(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。
平行线的性质:(1)两直线平行,同位角相等。
(2) 两直线平行,内错角相等。
(3) 两直线平行, 同旁内角互补。
【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。
平行线的判定方法
平行线的判定方法平行线是指在同一个平面上,永远不会相交的两条直线。
在几何学中,判定两条直线是否平行是一个很基础但又很重要的问题。
下面我们将介绍几种判定平行线的方法。
1. 直线与直线的判定。
当两条直线的斜率相等时,这两条直线是平行的。
斜率是指直线上任意两点的纵坐标之差与横坐标之差的比值。
假设有两条直线分别为y1 = kx1 + b1和y2 = kx2 + b2,如果k1 = k2,则这两条直线平行。
举个例子,如果直线y = 2x + 3和直线y = 2x + 5,它们的斜率都为2,因此这两条直线是平行的。
2. 直线与平行线的判定。
如果一条直线与一组平行线相交时,相交线与其中任意一条平行线的交角相等,则这条直线与这组平行线平行。
举个例子,如果一条直线与一组平行线相交,交角分别为60度,而这组平行线之间的夹角也为60度,那么这条直线与这组平行线平行。
3. 平行线的性质。
两条平行线被一条横穿它们的直线所切割,相交角相等。
两条平行线被一条横穿它们的直线所切割,对应角相等。
两条平行线被一条横穿它们的直线所切割,内错角之和为180度。
4. 实际应用。
平行线的概念在现实生活中有着广泛的应用。
例如在建筑工程中,为了保证建筑物的结构稳定,往往需要保证某些构件是平行的,这就需要工程师们灵活运用平行线的判定方法来进行设计和施工。
总结。
通过上述介绍,我们可以清晰地了解到平行线的判定方法,包括直线与直线的判定、直线与平行线的判定,以及平行线的性质。
这些方法和性质在数学和现实生活中都有着重要的应用价值,希望本文能够对读者有所帮助。
初中数学 平行线的判定定理有哪些
初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
八年级数学重点知识点:平行线的判定
八年级数学重点知识点:平行线的判定
八年级数学重点知识点:平行线的判定
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等பைடு நூலகம்两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质和判定方法
平行线的性质和判定方法在几何学中,平行线是指在同一平面中不相交且永不相交的两条直线。
平行线的研究是几何学的基础之一,它具有一系列独特的性质和判定方法。
本文将重点介绍平行线的性质和判定方法,帮助读者更好地理解和应用平行线的概念。
一、平行线的性质1. 等倾性:如果一条直线与一对平行线相交,那么它把这对平行线分成两个等倾的交错三角形。
2. 备注角性质:当两条平行线被一条截线相交时,对于截线与平行线所夹角的任一对应角,它们的对应角相等,即对应角相等是平行线的必要且充分条件。
3. 内错角性质:当两条平行线被一条截线相交时,对于截线与平行线所夹角的内错角,它们的内错角之和为180°。
4. 外错角性质:当两条平行线被一条截线相交时,对于截线与平行线所夹角的外错角,它们的外错角之和也为180°。
5. 直角性质:如果一条直线与两条平行线相交,那么它与这两条平行线所形成的内错角相等,也与这两条平行线所形成的外错角相等。
以上是平行线的一些典型性质,它们对于解决几何学中的相关问题具有重要的作用,需要熟练掌握。
二、平行线的判定方法1. 通过角度判定:如果两条直线的夹角等于180°,则它们是平行线。
这是最简单且直观的判断方法,适用于已知夹角度数的情况。
2. 通过斜率判定:两条直线平行的概念也可以通过斜率来判定。
如果两条直线的斜率相等且截距不同,那么它们是平行线。
3. 通过向量判定:设直线L1的一个向量为a,直线L2的一个向量为b,如果向量a与向量b共线,则直线L1与直线L2是平行线。
4. 通过等距判定:如果两条直线上的任意两点之间的距离相等,则这两条直线是平行线。
这种判定方法适用于已知直线上的坐标点的情况。
需要注意的是,以上的判定方法有时并不是充分条件,例如斜率相等只能说明两条直线可能平行,还需要结合其它条件来综合判断是否为平行线。
综上所述,平行线具有一系列独特的性质和判定方法,适用于解决不同类型的几何问题。
平行线的判定
F
图中还有哪些角是内错角?∠4和∠6
探索交流2 变式图形:下面各图中的∠1与∠2都是内错角吗?
小组活动3
3 、如图:直线AB、CD被直线EF所截,观察图
形中∠4与∠5的位置关系。
A
E
21 3
同旁内角:①在截线EF的同旁
4B
②在被截直线AB、CD的
之间(内部)
65
C
78 D
F
图中还有哪些角是同旁内角? ∠3和∠6
所截产生的内__错___角;∠2与∠3是直线_A__D__和直线
A 1
2
D
__B__C_被直线_____所截产生的内___错__角.
4
3
2.如图:
AC B
C
(1)直线AB、CD被直线CE所截, 与∠1成内错角的是?与∠1 成同旁内角的是?
E A 3 45
B
(2)直线AB、CD被直线DE所截 与∠2成内错角的是?与∠2
1 C
2D
成同旁内角的是?
(1)∠3;∠BEC. (2)∠5;∠AED.
今天我们学到 了什么?你能 说出来吗?
知识就象一艘船 让它载着你 驶向你理想的彼岸
作业:p125面练习3及习题 10.2 第 1题
图中的还有哪些角是同位角?∠2和∠6;∠3和∠7;∠4和∠8
探索交流1
变式图形:下面各图中的∠1与∠2都是同位角吗?
小组活动2
2、如图:直线AB、CD被直线EF所截,观察图形中
∠ห้องสมุดไป่ตู้与∠5的位置关系。
E 内错角:①在截线EF的两侧(位置错开)
21
②在被截直线AB、CD之间(内部)
B
A
34
65
《平行线的判定》课件
03
教学重点与难点
重点
1 和定理2。
平行线的判定步骤
熟悉平行线的判定步骤,包括画图、标注、说 明等。
平行线的应用
3
了解平行线的应用,如平行四边形、梯形等。
难点
平行线的定理的证明
01
理解平行线的定理的证明过程,掌握其中的逻辑推理和证明方
THANKS
06
作业与练习
课堂练习
基础练习
学生可以迅速掌握平行线判定的基本方法,为后续学习打下基础。
进阶挑战
通过设置不同难度的题目,让学生逐渐掌握平行线的复杂判定技巧。
课后作业
知识巩固
设置与课堂内容相关的题目,让学生对知识点进行巩固和复 习。
拓展提高
布置一些具有挑战性的题目,让学生在实践中提高自己的解 题能力和思维水平。
《平行线的判定》课件
xx年xx月xx日
目 录
• 教学目标与要求 • 教学内容与过程 • 教学重点与难点 • 教学方法与手段 • 教学步骤与时间安排 • 作业与练习
01
教学目标与要求
掌握平行线的定义
平行线的定义:是指同一平面内,两条直线不相交,且没有公共点。 掌握平行线的定义是后续学习平行线判定的基础。
03
问题式教学
通过提出问题、引导学生解决问题的方式,帮助学生掌握平行线的判
定方法,培养学生的问题解决能力。
05
教学步骤与时间安排
教学步骤
• Step 1: 导入 • 通过日常生活中的实例来引导学生思考平行线的概念,调动学生学习兴趣。 • Step 2: 定义 • 介绍平行线的定义,包括符号表示和读法,并让学生练习读法和写法。 • Step 3: 判定方法 • 重点介绍三种平行线的判定方法:同位角相等、内错角相等、同旁内角互补。 • Step 4: 练习 • 通过基础练习、提高练习和挑战练习三个层次,让学生逐步掌握平行线的判定方法。 • Step 5: 课堂小结 • 回顾本节课所学内容,引导学生总结平行线的判定方法。
平行线的判定和性质
平行线的判定和性质平行线是几何中一个非常基本的概念,它在数学的研究和应用中具有重要的地位。
通过判定两条直线是否平行,我们可以深入了解平行线的性质和特点。
本文将介绍平行线的判定方法和相关性质。
一、平行线的判定1. 直线与直线的判定给定两条直线L₁和L₂,要判定它们是否平行,有以下几种方法:a) 角度判定法:如果两条直线的锐角、直角或钝角相等,那么它们是平行线。
b) 垂直判定法:如果一条直线与第二条直线的所有垂线都相等或成比例,那么它们是平行线。
c) 斜率判定法:如果两条直线的斜率相等且不为无穷大,则它们是平行线。
2. 直线与平面的判定给定一条直线L和一个平面P,要判定直线和平面是否平行,有以下几种方法:a) 垂直判定法:如果直线L和平面P的所有垂线都相等或成比例,那么它们是平行的。
b) 法线判定法:如果一条直线与平面的法线平行,那么它们是平行的。
二、平行线的性质平行线具有以下重要性质:1. 平行线的定义平行线是在同一个平面上不相交且不同于的两条直线。
2. 平行线与平移平行线之间可以进行平移变换,即将一条平行线沿着与之平行的方向平移,得到的仍然是一条平行线。
3. 平行线的夹角平行线之间的夹角为0度,即平行线之间没有交点。
4. 平行线的性质a) 平行线具有传递性:如果直线L₁与直线L₂平行,直线L₂与直线L₃平行,则直线L₁与直线L₃也平行。
b) 平行线与截线:如果一条直线与两条平行线相交,那么这两条直线所截线段的比例相等。
c) 平行线与转角:如果两条直线与平行线相交,它们所成转角相等。
d) 平行线与干涉线:如果两组平行线相互交错,即一组平行线与另一组平行线交叉相交,所交干涉线与平行线相交产生的内、外交角相等。
5. 平行线与平行四边形平行线所围成的四边形称为平行四边形。
平行四边形具有以下性质:a) 对边平行:平行四边形的对边都是平行线。
b) 对角线平分:平行四边形的对角线互相平分。
c) 同底角对顶角相等:平行四边形的同底角对顶角相等。
平行线的判定ppt课件
c
②符号语言:
a
1
如图,∵∠1+∠2=180°(已知),
b2
∴a∥b(同旁内角互补,两直线平行).
做一做
如图,利用两个全等的直角三角形板作出平行 线,请说说其中的道理.
一、放 二、靠
内错角相等 两直线平行
三、推
四、画
随堂练习
1.根据条件完成填空
C
F
1 3
① ∵ ∠1 =_∠_2___(已知)
∴ AB∥CE( 内错角相等,两) 直线平行
解:对边平行.因为α+β=180°, 所以对边平行.
αβ βα
课堂小结
平行线的判定方法
文字简述
符号语言
同位角相等, ∵_∠_1__=_∠_2__(已
两直线平行
知),∴a∥b
内错角相等, ∵_∠_3_=_∠__2__(已
两直线平行
知),∴a∥b
同旁内角互补, ∵__∠_2_+_∠__4_=_1_8_0_°__ 两直线平行 (已知),∴a∥b
a 1
b2
求证:a∥b.
已知:∠1和∠2是直线a、b被直线c截出的同旁内角,
且∠1+∠2=180°.
求证:a∥b.
c
方法一
a 1
证明:∵ ∠1+∠2=180°(已知),
b2
∠2+∠3=180°(补角的定义), 3
∴ ∠1=∠3(同角的补角相等).
∴ a∥b(同位角相等,两直线平行).
已知:∠1和∠2是直线a、b被直线c截出的同旁内角,
在同一平面内,不相交的两条直线叫做
平行线.
平行线的定义
平行于同一直线的两条直线平行.
平行线的判定
平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定(提高)知识讲解【学习目标】1.熟练掌握平行线的画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.证明:平行于同一直线的两条直线平行.【答案与解析】已知:如图,a//c,b//c.求证:a//b.证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.Q,a//c,b//c则过直线c外一点A有两条直线a、b与直线c平行,这与平行公理矛盾,所以假设不成立..a//b【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立.类型二、平行线的判定3.(2015春•荣昌县校级期中)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.【思路点拨】根据BD平分∠ABC,CE平分∠ACB,得出∠DBF=∠ABC,∠ECB=∠ACB,∠DBF=∠ECB,再根据∠DBF=∠F,得出∠ECB=∠F,即可证出EC∥DF.【答案与解析】解:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB,∴∠DBF=∠ECB,∵∠DBF=∠F,∴∠ECB=∠F,∴EC∥DF.【总结升华】此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【高清课堂:平行线及判定403102经典例题2】【变式】(2015秋•巨野县期末)如图,已知∠BED=∠B+∠D,求证:AB∥CD.【答案】证明:延长BE交CD于F.∵∠BED+∠DEF=180°,(平角的定义)∴∠DEF+∠D+∠EFD=180°(三角形的内角和等于180°),∴∠BED=∠D+∠EFD,(等量代换)又∠BED=∠B+∠D,∴∠B=∠EFD(等量代换),∴AB∥CD(内错角相等,两直线平行).平行线的判定(提高)巩固练习【巩固练习】一、选择题1.下列说法中正确的有() .①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角() .A.相等B.互补C.互余D.相等或互补3.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是().A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是() .A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.(绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图,(1)—(4)):从图中可知,小敏画平行线的依据有().①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7.(2015春•高密市月考)如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180°;④∠BAD+∠ABC=180°.其中能使直线AB∥CD成立的是.(填序号)8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C三点,其依据是12.如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.(2015春•兴平市期末)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?15.如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变?【答案与解析】一、选择题1. 【答案】A;【解析】只有④正确,其它均错.2. 【答案】D;3. 【答案】C;【解析】A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.4. 【答案】B;5. 【答案】B;【解析】∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 【答案】C;【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】②③;【解析】①∠DAC=∠ACB利用内错角相等两直线平行得到AD∥BC,错误;②∠BAC=∠ACD 利用内错角相等两直线平行得到AB∥CD,正确;③∠BAD+∠ADC=180°利用同旁内角互补得到AB∥CD,正确;④∠BAD+∠ABC=180°利用同旁内角互补得到AD∥BC,错误;故答案为:②③8. 【答案】BC,DE;【解析】∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9. 【答案】a1∥a100;【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.【答案】40°或140°;11.【答案】共线,平行公理;【解析】此题考查是平行公理,它是论证推理的基础,应熟练应用.12.【答案】AB∥CD,GP∥HQ;【解析】理由:∵AB⊥EF,CD⊥EF.∴∠AGE=∠CHG=90°.∴AB∥CD.∵AB⊥EF.∴∠EGB=∠2=90°.∴GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°,∴∠PGH=∠GHQ.∴GP∥HQ.三、解答题13. 【解析】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).14.【解析】解:如图所示,用量角器在两个边缘之间画一条线段MN,用量角器测得∠1=50°,∠2=50°,因为∠1=∠2,所以由内错角相等,两直线平行,可知画板的上下边缘是平行的.15. 【解析】解:要使AB′∥BD,只要∠B′AD=∠ADB=20°,∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.16.【解析】解:可推出AD∥BC.∵BD平分∠ABC(已知).∴∠1=∠DBC(角平分线定义).又∵∠1=∠2(已知),∴∠2=∠DBC(等量代换).∴AD∥BC(内错角相等,两直线平行).把∠1=∠2改成∠DBC=∠BDC.。
平行线的判定
平行线的判定平行线的判定是几何学中非常重要的内容之一,它涉及到平行线的性质和特点。
本文将详细介绍平行线的判定方法,并通过示例来加深对该概念的理解。
一、平行线的定义平行线是指在同一个平面内永远不相交的直线。
平行线之间的距离始终保持相等。
平行线的标志是使用双竖杠 || 进行符号表示。
二、平行线的判定方法1. 直线与直线的判定a. 同位角相等判定法:如果两条直线被一条横截线所截,而对应的同位角互相等于或补角互相等于,则这两条直线是平行的。
b. 平行线的性质判定法:若两条直线分别与一条第三条直线相交,而对应的同位角相等或补角相等,则这两条直线是平行的。
2. 直线与平面的判定a. 直线与平面平行判定法:如果一条直线与一个平面内的另一直线平行,则该直线与该平面平行。
b. 平面切割法:若一个平面通过一条直线并与一平行于该直线的另一平面相交,则截下的直线与初始直线平行。
3. 平面与平面的判定a. 平面切割法:如果一个平面被一条与另一平面相交的直线切割,且所切割处所得的直线分别平行,则两个平面平行。
三、示例分析1. 例题一已知直线AB // 直线CD,直线AD与直线BC相交于点O。
证明:∠AOC = ∠BOD。
解析:根据已知条件可知直线AD与直线BC平行,根据平行线的性质判定法,可得∠AOC = ∠BOD。
2. 例题二已知平面α内一条直线与平面β内的另一直线平行。
证明:平面α与平面β平行。
解析:根据已知条件可得到一条直线与平面β内的另一直线平行,根据直线与平面平行判定法,可知平面α与平面β平行。
通过以上示例可以看出,平行线的判定方法是根据已知条件和平行线的性质来进行推导和证明的,具体应用要根据题目中给出的条件进行分析。
在几何学中,平行线的判定在解决实际问题和证明定理时发挥着重要的作用。
正确掌握平行线的判定方法,对于理解空间关系和几何形状的特性有着重要意义。
总结起来,平行线的判定方法包括直线与直线的判定、直线与平面的判定以及平面与平面的判定。
初一上册数学平行线的判定
初一上册数学平行线的判定
一、平行线的定义
在同一平面内,不相交的两条直线称为平行线。
二、平行线的性质
1. 两条平行线被一条直线所截,同位角相等。
2. 两条平行线被一条直线所截,内错角相等。
3. 两条平行线被一条直线所截,同旁内角互补。
三、平行线的判定方法一:同位角相等
如果两直线的同位角相等,则这两条直线平行。
四、平行线的判定方法二:内错角相等
如果两直线的内错角相等,则这两条直线平行。
五、平行线的判定方法三:同旁内角互补
如果两直线的同旁内角互补,则这两条直线平行。
六、平行线的判定方法四:直线被一条横截线所截,同位角相等或内错角相等或同旁内角互补
如果一条直线被另一条横截线所截,同位角相等或内错角相等或同旁内角互补,则这两条直线平行。
七、平行线的判定方法五:直线被两条平行线所截,对应角相等
如果一条直线被两条平行线所截,对应的同位角或内错角相等,则这两条直线平行。
八、平行线的判定方法六:过直线外一点有且只有一条直线与已知直线平行
过直线外一点,只能画出一条与给定直线平行的直线。
九、平行线的判定方法七:在同一平面内,垂直于同一条直线的两条直线互相平行
在同一平面内,如果两条直线都垂直于第三条直线,则这两条直线互相平行。
十、平行线的判定方法八:若两直线同时与第三条直线平行,则这两条直线也互相平行。
平行线的判定
abc1 2【考纲说明】平行线的判定定理的灵活掌握,这块中考一般占5分左右【知识梳理】平行线的判定公理:同位角相等,两直线平行.∵ ∠1=∠2, ∴ a ∥b.判定定理1:内错角相等,两直线平行.∵ ∠1=∠2, ∴ a ∥ b.判定定理2:同旁内角互补,两直线平行.∵∠1+∠2=1800 , ∴ a ∥b.公理:两直线平行,同位角相等.∵ a ∥b, ∴∠1=∠2.性质定理1:两直线平行,内错角相等.∵ a ∥b, ∴∠1=∠2.性质定理2:两直线平行,同旁内角互补.∵ a ∥b, ∴ ∠1+∠2=1800三角形内角和定理的推论:推论1: 三角形的一个外角等于和它不相邻的两个内角的和.推论2: 三角形的一个外角大于任何一个和它不相邻的内角.推论3: 直角三角形的两锐角互余△ABC 中: ∠1=∠2+∠3;∠1>∠2,∠1>∠3.abc21a bc1 2A BCD1 234【经典例题】1.如图1,已知:AB∥ CD,∠ B=120°,CA平分∠ BCD求证:∠ 1=30°.证明:∵ AB∥ CD(),∴∠ B+∠ BCD=____________().∵∠ B____________(),∴∠ BCD=____________,又∵ CA平分∠ BCD(),∴∠ 2=____________()∵ AD∥ BC(),∴∠ 2=∠ 3().∴ AB∥ CD(),∴∠ 1=____________=30°()2.已知:如图2,AB∥ CD,AD∥ BC求证:∠ BCD=∠ BAD.证明:∵ AB∥ CD(),∴∠ 1=∠ 4()∵ AD∥ BC(),∴∠ 2=∠ 3=()∴∠ 1+∠ 3=∠ 2+∠ 4(),即∠ BAD=∠ BCD.3.如图3,已知AB∥ DE,∠ 1=∠ 2,E是BC上一点,求证:AE∥ CD.4.如图4,已知AB∥ CD,∠ 1=60°,∠ 2=30°.求证:EF⊥ CD.5.如图5,已知直线AB∥ A′B′,∠ B=∠ B′.求证:BC∥ B′C′.【课堂练习】1.如图1,已知∠ C=∠ CBE.求证:∠ ADC与∠ A互补.2.如图2,已知∠ 1=∠ C.求证:∠2=∠ B.3.如图3,AB∥ CD,AD∥ BC,∠ 1=∠ 2.求证:∠3=∠4.4.如图4,已知AB∥ CD,∠ B=∠ DCE.求证:CD平分∠ BCE.5.如图5,已知:∠ ABC=∠ CDA,DE平分∠ CDA,BF平分∠ ABC,且∠ AED=∠ CDE.求证:DE∥ FB.6.如图6,已知AB⊥ AD,CD⊥ AD,∠ 1+∠ 2=180°.求证:EF∥ AB.7.如图7,已知E是AB、CD外一点,∠ D=∠ B+∠ E.求证:AB∥ CD.8.如图8,已知:∠ ABC=∠ ACB,BD平分∠ ABC,CE平分∠ ACB,∠ DBC=∠ F.求证:EC∥ DF.9.如图9,已知:AE⊥ BC,且∠ 1=∠ 2.求证:DC⊥ BC.10.如图10,已知AB⊥BC,∠ 1+∠ 2=90°,∠ 2=∠ 3.求证:BE∥ DF.11.如图11,已知AB∥CD,∠ AMP=150°,∠ PND=60°.求证:MP⊥ PN.12.已知:如图12,AD⊥ BC于D,EF⊥ BC于F,交AB于G,交CA延长线于E,∠ 1=∠ 2.求证:AD平分∠ BAC,填写分析和证明中的空白.分析:要证明AD平分∠ BAC,只要证明__________=_______________,而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出________∥_________,这时再观察这两对角的关系已不难得到结论.证明:∵ AD⊥ BC,EF⊥ BC(已知)∴_______=________(两直线平行,内错角相等),_________=______________(两直线平行,同位角相等)∵______________(已知)∴______________即AD平分∠ BAC(角平分线定义)13.已知:如图13,AB∥ CD,∠ 1:∠ 2:∠ 3=1:2:3求证:BA平分∠ EBF.下面给出证法一.证法一:设∠ 1、∠ 2、∠ 3的度数分别为x°、2x°、3x°∵ AB∥ CD,∴ 2x+3x=180°,∴ x=36°,即∠ 1=36°,∠ 2=72°.∵∠ EBD=180°,∴∠ EBA=72°,∴ BA平分∠ EBF.请阅读证法一后,找出与证法一不同的证法二,写出证明过程.【课后练习】一、选择题1、下列命题中,不正确的是()A、如果两条直线都和第三条直线平行,那么这两条直线也互相平行、B、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行C、两条直线被第三条直线所截,那么这两条直线平行、D、两条直线被第三条直线所截,如果同旁内角互补那么这两条直线平行2、下列命题中,正确的是()A、同位角相等B、同旁内角相等的两直线平行C、同旁内角互补D、平行于同一条直线的两直线平行3、如图,给出了过直线外一点画已知直线的平行线的方法,其依据()A、同位角相等,两直线平行B、内错角相等,两直线平行C、同旁内角互补,两直线平行D、两直线平行,同位角相等4、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130°C、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐120°二、填空题1.如图③因为∠1=∠2,所以______∥_______()。
《平行线的判定》课件
在解决一些较复杂的问题时,还需要更加深入地 思考和分析,提高自己的解题能力。
05
作业布置
基础题
总结词
巩固基础,强化知识点
VS
详细描述
布置与平行线判定的基本概念和定理相关 的题目,如平行线的定义、性质等,要求 学生对基础知识进行巩固和强化。
提高题
总结词
应用知识点,提升解题能力
实际问题的数学化思考
建立数学模型
学习将实际问题转化为数学模型,通过建立方程、不等式等来解 决实际问题。
实际问题与数学问题的转换
思考如何将实际问题中的数量关系、空间关系等转化为数学问题, 并利用所学知识进行解决。
培养数学思维
通过解决实际问题,培养自己的数学思维和逻辑推理能力。
判定方法的实际应用举例
方法二
内错角相等,两条直线平行。
判定依据
如果两条直线被第三条直线所截,截得的内错角相等, 那么这两条直线互相平行。这也是平行线判定的常用方 法之一。
方法三
同旁内角互补,两条直线平行。
判定依据
如果两条直线被第三条直线所截,截得的同旁内角互补 ,那么这两条直线互相平行。这是平行线判定的另一种 常用方法。
03
知识应用
平行线判定的简单应用
平行线判定的基本概念
01
了解平行线的定义和判定方法,能够判断两条直线是否平行。
平行线在几何证明中的应用
02
掌握平行线的判定定理,能够利用判定定理证明两条直线平行
。
平行线在求角、边长等几何问题中的应用
03
能够利用平行线的性质解决一些简单的几何问题。
平行线判定的综合应用
01
02
03
平行线的判定和性质
∵ ∠APE +∠CPE=∠APC
∴ ∠PAB +∠APC+∠PCD=360° (等量代换)
素养提升
如图所示,AB∥CD,P 为任意一点,在以下四种情况中,就每种情况 分别探究∠APC与∠PAB 和∠PCD 的关系,写出关系式并证明
解: ∠APC=∠PAB +∠PCD
A
B
证明: 作PE∥AB
E
P
∵PE∥AB
∴∠BAE+∠ABF+∠CBF+∠BCD=360°
F
B
∵ ∠ABF+∠CBF=∠ABC
∴∠BAE+∠ABC+∠BCD=360°
A
E
∵AB⊥AE
∴∠BAE=90° (垂直定义)
∴ ∠ABC+∠BCD=270°
例3、如图,AD∥CE,∠ABC=100°,求∠2-∠1的度数
解: 作BF∥AD
A
D
1
∵BF∥AD
方法2 从∠2顶点向右做直线c∥a
∵ c∥a ∴ ∠1+∠4=180° (两直线平行,同旁内角互补) ∵ c∥a,a∥b ∴ c∥b(平行公理的推论) ∴ ∠3+∠5=180° (两直线平行,同旁内角互补)
4251 3
a c
b
∴ ∠1+∠4+∠5+∠3=360° ∵ ∠4+∠5=∠2 ∴∠1+∠2+∠3=360° ∴∠3=360° - ∠1 - ∠2 =140°
C
D
学 如逆水行舟不进则退 心 似平原走马易放难收
------《增广贤文》
E2
F
3
D
C
素养提升
平行线的判定方法
平行线的判定方法
平行线的判定方法如下:
1、在同一平面内,两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
也可以简单的说成:同位角相等两直线平行。
2、在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
也可以简单的说成:内错角相等两直线平行。
3、在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
也可以简单的说成:同旁内角互补两直线平行。
4、在同一平面内,两直线都与第三条直线平行,那么这两条直线也互相平行(平行线的传递性)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4(2)平行线的判定
上大附中实验学校徐树茂
一.复习旧知
练习(1):说出下图中的同位角,内错角,同旁内
角.
练习(2):下图中∠1和∠2是什么位置关系?∠1
和∠3呢?∠2和∠4?∠3和∠4?
二.新课探究
我们知道“三线八角”图中如果同位角相等则可以
判定两条直线平行,我们是否也可以通过内错角或
者同旁内角去判定呢?如果可以它们应该满足什
么条件?这节课我们就来探究一下
探究一、如图:若∠1=∠2,求证a∥b
解:记∠1的对顶角为∠3
∵∠1=∠3(对顶角相等),
∠1=∠2(已知),
∴∠2=∠3(等量代换).
∴a∥b(同位角相等,两直线平行).
由此我们可知在∠1=∠2的条件下,也能得出a∥b.
两条直线平行的判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单地说,内错角相等,两直线平行.
几何语言:(如上图)
∵∠1=∠2,
∴a∥b(内错角相等,两直线平行).
探究二:如图:若∠1+∠2=180°,求证a∥b
解:记∠1的邻补角为∠3
∵∠1+∠3=180°(邻补角的意义),
由∠1+∠2=180°(已知),
∴∠2=∠3(等量代换).
∴a∥b(同位角相等,两直线平行).
由此我们可知在∠1+∠2=180°的条件下,也能得出a∥b.
两条直线平行的判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单地说,同旁内角互补,两直线平行
几何语言:(如上图)
∵∠1+∠2=180°,
∴a∥b(同旁内角互补,两直线平行).
你还有没有其他方法?
解:记∠1的邻补角为∠4(如图)
∵∠1+∠4=180°(邻补角的意义),
由∠1+∠2=180°(已知),
∴∠2=∠4(等量代换).
∴a∥b(内错角相等,两直线平行).三.归纳总结
平行线的判定方法:
方法1:同位角相等,两直线平行.
方法2:内错角相等,两直线平行.
方法3:同旁内角互补,两直线平行.
四.新知应用
例1.如图,已知∠1=40°,∠B=40°.DE与BC平行吗?为什么?
解:由∠1=40°,∠B=40°(已知),
得∠1=∠B(等量代换)
∴DE∥BC(内错角相等,两直线平行)
例2.如图,直线a、b被直线c所截,已知∠=60°,∠=120°,直线a与b平行吗?为什么?
解:记∠1的邻补角为∠3,则
∠1=∠3=60°(对顶角相等).
∵∠2=120°(已知)
得∠2+∠3=120°+60°=180°,
所以a∥b(同旁内角互补,两直线平行)五.课堂小结
1.平行线的判定方法:
方法1:同位角相等,两直线平行.
方法2:内错角相等,两直线平行.
方法3:同旁内角互补,两直线平行.。