FANUC常见伺服报警及解决方法

合集下载

FANUC常见伺服报警以及解决方法

FANUC常见伺服报警以及解决方法

FANUC常见伺服报警以及解决方法SV0401:伺服准备就绪信号断开报警原因:伺服放大器伺服准备就绪信号(VRDY)尚未被置于ON 时,或在运行过程中被置于 OFF 时发生此报警。

解决方案:1)排查诊断号358;例如:诊断358=1441,转换为二进制为10110100001,从第5位开始排查,第6位为0,确认首先应排查急停相关接线等。

2)伺服放大器或者轴卡硬件损坏,更换硬件。

2SV0403 硬件/软件不匹配报警原因:轴卡与伺服软件组合不正确,可能的原因有:1)没有提供正确的轴卡;2)闪存中没有安装正确的伺服软件。

解决方法:软件或硬件异常,请直接联系北京发那科维修部门。

3SV404 伺服准备就绪信号接通报警原因:伺服放大器的伺服准备就绪信号(VRDY)一直为 ON 时发生此报警。

解决方法:1)某些特殊情况可以使用参数P1800#1=1进行屏蔽;2)因放大器或者轴卡损坏引起,更换放大器与轴卡。

4SV0409 检查的扭矩异常报警原因:系统开启异常扭矩负载功能之后,检测到异常负载导致。

解决方法:1)如果不适用异常负载检测,请设定参数P2016#0=0;2)如果使用异常负载检测功能,请确认是否存在异常负载现象,例如机械异常卡住,或者异常加工状态;3)如果使用异常负载检测功能,同时加工状态正常,请重新调整该功能的相关参数。

5SV0410 停止时误差过大报警原因:伺服轴停止时误差过大引起报警。

解决方法:1)排查动力线、反馈线是否接错;2)排查伺服电机初始化参数是否有误;3)正确设定不同状态下伺服轴停止时误差报警水平参数P1829、P5312等;4)如果伺服电机使用过程中出现抖动等现象,请先排查抖动问题,SV0410为附加报警;5)Cs轴控制时出现此问题,请检查主轴编码器相关参数。

6SV0411 运动时误差过大报警原因:伺服轴运动时误差过大引起报警解决方法:1)排查动力线、反馈线是否接错;2)排查伺服电机初始化参数是否有误;3)正确设定不同状态下伺服轴停止时误差报警水平参数P1828、P5310等;4)如果伺服电机使用过程中出现抖动等现象,请先排查抖动问题,SV0410为附加报警;5)Cs轴控制时出现此问题,请检查主轴编码器相关参数。

FANUC伺服报警与故障处理

FANUC伺服报警与故障处理
383
Pulse error (separate)
分离型编码器脉冲错误
3.3.7(2)
384
Soft phase alarm (separate)
相位错误
3.3.7(2)
385
Serial data error (separate)
分离型编码器串行数据错误
3.3.7(3)
386
Data transfer error (separate)
200 V
230 V
如果三相交流输入电压是200V~230V,该电压可直接接入伺服电源模块。
注)如果该电压低于或高于电压允许范围,电源模块将不能输出逆变直流高压
254 V or more
380 to 550 V
如果输入电压是380V(大于254V),则必须通过绝缘变压器变压后,输出200V电压
不同规格的电源模块指标(功耗)
驱动器 控制电压欠电压
3.2
435
5
Inverter: DC link undervoltage
驱动器直流环欠电压
3.2
436
Soft thermal (OVC)
软过热(过电流)
3.3.3
437
01
Converter: input circuit overcurrent
逆变器输入回路过电流
3.1
438
53
64
79
控制用电源功率
0.5
0.7
检测点
对于 PSM 模块或 PSM-HV模块
电源模块测量点
CIR/CIS 为电流反馈测量点,通过测量出电压,根据不同型号的模块查对下表,换算出电流值
Check terminal

FANUC常见报警说明与解决方法

FANUC常见报警说明与解决方法

FANUC常见报警说明与解决⽅法提⽰以0i-F系统为例01APC闪烁报警机床长时间停机,开机后系统屏幕上可能会出现APC闪烁,当出现这个报警的时候,表⽰伺服放⼤器的电池电压低,正常电压⼀般为6V,该电池⽤于记住机床的伺服绝对位置。

建议检查各个伺服放⼤器的电池电压,更换后即可正常。

【解决⽅法】更换放⼤器电池【解决⽅法】放⼤器电池更换⽅法,请参考下⽅视频:02BAT闪烁报警机床长时间停机,开机后系统屏幕上可能会出现BAT闪烁,当出现这个报警的时候,表⽰CNC的系统电池电压低,正常电压⼀般为3.3V,该电池⽤于保存CNC中的SRAM数据(包含CNC参数,PMC参数,加⼯程序等)。

建议⽴即更换CNC系统上的电池,以免造成数据丢失。

【解决⽅法】更换CNC系统电池【解决⽅法】CNC系统电池更换⽅法,请参考下⽅视频:03SYS_ALM500报警机床长时间停机,开机后系统屏幕上可能会出现SYS_ALM500报警(0i-C系统为935报警)SYS_ALM500 SRAM DATA ERROR(SRAM MOUDLE)当出现这个报警的时候,表⽰由于CNC的系统电池电压低,导致CNC的SRAM数据(包含CNC参数,PMC参数,加⼯程序等)已经丢失。

【解决⽅法】【解决⽅法】更换CNC系统电池,并恢复出⼚参数。

04FAN报警机床长时间停机,开机后系统屏幕上可能会出现FAN报警,当出现这个报警的时候,表⽰CNC系统风扇转速低或者停转。

建议⽴即更换CNC系统风扇,以免因CNC过热导致更⼤故障。

【解决⽅法】更换CNC系统风扇【解决⽅法】请认准F+商城,点击直达系统风扇页⾯【购买链接】请认准CNC系统风扇更换⽅法,请参考下⽅视频:05放⼤器风扇报警由于FANUC产品中配备风扇的部件较多,每个部件的风扇报警号也各有不同,为了⽅便快速发现故障点,请参考放⼤器风扇报警号以及对应的位置关系表(以0i-F系统为例),确认故障风扇。

【解决⽅法】⾸先清洁风扇接⼝,重新插拔风扇后再测试。

FANUC-机器人常用故障代码和故障排除方法

FANUC-机器人常用故障代码和故障排除方法

常用故障代码和故障排除方法伺服 - 001操作面板紧急停止SRVO- 001 Operator panel E-stop[现象]按下了操作箱/操作面板的紧急停止按扭。

SYST-067面板HSSB断线报警同时发生,或者配电盘上的LED(绿色)熄灭时,主板(JRS11)-配电盘(JRS11)之间的通信有异常,可能是因为电缆不良、配电盘不良、或主板不良。

(注释)[对策1]解除操作箱/操作面板的紧急停止按扭。

[对策2]确认面板开关板(CRM51)和紧急停止按扭之间的电缆是否断线,如果断线,则更换电缆。

[对策3]如果在紧急停止解除状态下触点没有接好,则是紧急停止按扭的故障。

逐一更换开关单元或操作面板。

[对策4]更换配电盘。

[对策5]更换连接配电盘(JRS11)和主板(JRS11)的电缆。

在采取对策6之前,完成控制单元的所有程序和设定内容的备份。

[对策6]更换配电盘。

(注释)SYST-067面板HSSB断线报警同时发生,或RDY LED熄灭时,有时会导致下面的报警等同时发生。

(参阅示教操作盘的报警历史画面)伺服-001操作面板紧急停止伺服-004栅栏打开サーボ-007外部紧急停止伺服-204外部(SVEMG异常)紧急停止伺服-213保险丝熔断(面板PCB)伺服-280SVOFF输入伺服 - 002示教操作盘紧急停止SRVO- 002 Teach pendant E-stop[现象]按下了示教操作盘的紧急停止按扭。

[对策1]解除示教操作盘的紧急停止按扭。

[对策2]更换示教操作盘。

伺服 - 003紧急时自动停机开关SRVO- 003 Deadman switch released[现象]在示教操作盘有效的状态下,尚未按下紧急时自动停机开关。

[对策1]按下紧急时自动停机开关并使机器人操作。

[对策2]更换示教操作盘。

伺服 - 021SRDY断开(组:i轴:j)SRVO- 021 SRDY off (Group:i Axis:j)[现象]当HRDY断开时,虽然没有其他发生报警的原因,SRDY处在断开状态。

发那科系统195报警大全

发那科系统195报警大全

发那科系统195报警大全发那科系统195报警大全发那科系统195是一种常用的工业控制系统,广泛应用于机械加工和自动化生产行业。

然而,由于各种原因,该系统在使用过程中可能会出现不同的故障和报警。

下面是一些常见的发那科系统195报警,以及可能的解决方法。

1. ALARM 100 - 通讯错误: 这个报警表明系统与外部设备之间的通讯出现了问题。

解决方法包括检查通讯线路是否连接正确,检查设备是否设置正确的通讯参数,以及检查设备是否具有正常的供电。

2. ALARM 101 - 位置错误: 这个报警表示系统检测到位置错误。

可能的原因包括轴的位置传感器故障、轴伺服系统故障或者机械零件损坏。

解决方法包括检查传感器连接是否良好,检查轴伺服系统的运行情况,并检查机械零件是否正常。

3. ALARM 200 - 电机过载: 这个报警表示电机负载超过了额定值。

可能的原因包括工作负载过大,电机故障或者电源供应不稳定。

解决方法包括减少工作负载,检查电机是否正常运行,并确保电源供应稳定。

4. ALARM 201 - 伺服驱动错误: 这个报警表示伺服驱动出现故障。

可能的原因包括驱动器过载,驱动器设置错误或者电源故障。

解决方法包括检查驱动器的连接和设置,确保驱动器没有超载,并检查电源是否正常。

5. ALARM 300 - 冷却液温度过高: 这个报警表示系统检测到冷却液温度超过了安全范围。

可能的原因包括冷却系统故障,冷却液循环不良或者温度传感器故障。

解决方法包括检查冷却系统的管道和泵是否正常运行,确保冷却液循环畅通,并检查温度传感器是否正常。

这只是发那科系统195报警中的一小部分,实际上还有很多其他可能的故障和报警。

对于这些问题,建议用户在遇到报警时及时与技术支持人员联系,以获取更详细的解决方案。

此外,及时的维护和保养也是预防故障和减少报警的重要措施。

fanuc伺服报警的故障诊断及实际处理方法

fanuc伺服报警的故障诊断及实际处理方法

JV1B/JV2B
14 15 B
JS1B/JS2B
16 17 B
JF1/JF2

长春汽车工业高等专科学校
FANUC α
(4 )

长春汽车工业高等专科学校
FANUC α
(4 )

长春汽车工业高等专科学校
2.FANUC
CX4
相荡度滚 相荡影滚 溢 相而度滚 相而影滚 滚
相环度 相环影 滚
控荡 立点点

长春汽车工业高等专科学校
SSCK—20

长春汽车工业高等专科学校
2.FANUC βi

长春汽车工业高等专科学校
βi
Oi MateTB
长春汽车工业高等专科学校
VOFS(#7):
0:
1:
2077:0—32767 32000
10 10

长春汽车工业高等专科学校
ALM1
#7 OVL #6 LV #5 OVC #4 HCA #3 HVA #2 DCA #1 FBA #0 OFA

:
FANUC-OiA/OiB/OiC
:

长春汽车工业高等专科学校

长春汽车工业高等专科学校

长春汽车工业高等专科学校
3.

长春汽车工业高等专科学校
FANUC


长春汽车工业高等专科学校
3
3.1 FANUC
度实


长春汽车工业高等专科学校

: 1μm 0.5μm 0.1μm

长春汽车工业高等专科学校
2.FANUC
α
SVU
β
βi
α
SVM

FANUC伺服报警SV~SV

FANUC伺服报警SV~SV

精心整理
FANUC 伺服报警SV0401~SV0411(一)
SV0401伺服准备就绪信号断开报警原因:伺服放大器伺服准备就绪信号(VRDY)尚未被置于ON 时,或在运行过程中被置于OFF 时发生此报警。

相关链接:FANUCSV0401报警诊断方法及案例介绍
数停1)3)正确设定不同状态下伺服轴停止时误差报警水平参数P1829、P5312等;4)如果伺服电机使用过程中出现抖动等现象,请先排查抖动问题,SV0410为附加报警;5)Cs 轴控制时出现此问题,请检查主轴编码器相关参数。

SV0411运动时误差过大报警原因:伺服轴运动时误差过大引起报警解决方法:1)排查动力线、反馈线是否接错;2)排查伺服电机初始化参数是
精心整理
否有误;3)正确设定不同状态下伺服轴停止时误差报警水平参数P1828、P5310等;4)如果伺服电机使用过程中出现抖动等现象,请先排查抖动问题,SV0410为附加报警;5)Cs轴控制时出现此问题,请检查主轴编码器相关参数。

数控笔记。

FANUC系统常见报警中文对照及解决方法

FANUC系统常见报警中文对照及解决方法

FANUC系统常见报警中文对照及解决方法1.AL-01:伺服报警尘埃这个报警表示伺服电机遇到了尘埃问题。

解决方法是清洁伺服电机,并确保其周围环境清洁。

2.AL-02:伺服报警过载这个报警表示伺服电机遇到过载问题。

解决方法是检查伺服电机和相关设备的负载情况,确保其在正常范围内。

3.AL-03:伺服报警过温这个报警表示伺服电机遇到过温问题。

解决方法是检查散热装置是否正常工作,安装风扇或增加散热片等,并减少伺服电机的负载。

4.AL-04:伺服报警驱动断开这个报警表示伺服电机的驱动断开。

解决方法是检查伺服电机的连接线路是否正常,确保电缆连接牢固。

5.AL-05:伺服报警电源断开这个报警表示伺服电机的电源断开。

解决方法是检查伺服电机的电源线路是否正常,确保电源连接牢固。

6.AL-06:伺服报警过流这个报警表示伺服电机遇到过流问题。

解决方法是检查伺服电机和相关设备的电流情况,确保其在正常范围内。

7.AL-07:伺服报警过压这个报警表示伺服电机遇到过压问题。

解决方法是检查伺服电机和相关设备的电压情况,确保其在正常范围内。

8.AL-08:伺服报警欠压这个报警表示伺服电机遇到欠压问题。

解决方法是检查伺服电机和相关设备的电压情况,确保其在正常范围内。

9.AL-09:伺服报警过热这个报警表示伺服电机遇到过热问题。

解决方法是检查散热装置是否正常工作,安装风扇或增加散热片等,并减少伺服电机的负载。

10.AL-10:伺服报警驱动电流异常这个报警表示伺服电机驱动电流异常。

解决方法是检查伺服电机的驱动器和电缆连接是否正常,并确保电缆连接牢固。

FANUC常见报警大全:(SV430~SV449)

FANUC常见报警大全:(SV430~SV449)

FANUC常见报警大全:(SV430~SV449)1SV0430 伺服电机过热报警原因:该报警是编码器中的温度检测元件进行了温度检测,当电机温度过高时会出现报警。

排查思路:1排查参数问题,请重新对伺服电机进行初始化,最好对照参数列表进行仔细确认。

2查看诊断No.308,是否实际温度过高,可以利用手触摸等方式排查,如果实际温度不高请排查硬件。

3如果实际温度基本符合诊断数据,请排查电机温度过高原因。

检查硬件时,可通过替换编码器、电机、反馈线缆和放大器的方式进行排查。

4短时间内可以通过参数P2300#7屏蔽报警。

2SV431 变频器回路正常报警原因:伺服放大器或者共同电源过热导致报警。

排查思路:1请排查放大器接线,特别是模拟伺服适配器使用中,ALM信号需要接0。

2排查电机参数。

3更换放大器。

3SV0432 变频器控制电压低报警原因:伺服放大器或者共同电源电压下降。

排查思路:1排查放大器短接线,是否存在虚接。

2排查放大器进电电压是否符合要求。

3排查开关电源、变压器等电流是否足够。

4更换放大器。

4SV0433 变频器 DC LINK 电压低报警原因:伺服放大器或者共同电源电压下降。

排查思路:1测量强电实际电压情况是否低于强电要求电压范围。

2检测是否存在急停断开然而因空气开关,接触器等异常导致强电未接通。

3可能跟随SV0364等报警出现,解决其他报警,问题解除。

5SV0434 逆变器控制电压低报警原因:放大器控制电源电压低于要求。

排查思路:测量控制电源电压,排查外围控制电路拉低电压原因。

6SV0435 逆变器 DC LINK 低电压报警原因:伺服放大器 DC LINK 电压下降。

排查思路:1首先排查放大器上各接线针脚是否接错,线缆是否良好。

2排查放大器本身问题。

7SV0436 软过热继电器报警(OVC)报警原因:系统内部计算电机使用情况,超过当前负载所能连续使用的时间,系统防止电机损坏的保护性报警。

排查思路:1排查电机固有参数。

FANUC常见报警的解释

FANUC常见报警的解释

第一章罕见报警的解释之邯郸勺丸创作1.1 368报警(串行数据错误)上图中368报警以及相关编码器报警的原因有:(1)电机后面的编码器有问题,如果客户的加工环境很差,有时会有切削液或液压油浸入编码器中导致编码器毛病.(2)编码器的反应电缆有问题,电缆两侧的插头没有插好.由于机床在移动过程中,坦克链会带动反应电缆一起动,这样就会造成反应电缆被挤压或磨损而损坏,从而导致系统报警.尤其是偶然的编码器方面的报警,很大可能是反应电缆磨损所致.(3)伺服缩小器的控制侧电路板损坏.解决计划:(1)把此电机上的编码器跟其他电机上的同型号编码器进行互换,如果互换后毛病转移说明编码器自己已经损坏.(2)把伺服缩小器跟其同型号的缩小器互换,如果互换后毛病转移说明缩小器有毛病.(3)改换编码器的反应电缆,注意有的时候反应电缆损坏后会造成编码器或缩小器烧坏,所以最好先确认反应电缆是否正常.1.2 电源模块PSM控制板内电扇毛病443,610上图报警是电源模块控制板内电扇损坏导致的报警(使用αi电源模块时),报警时电源模块PSM的LED显示“2”,主轴缩小器SPM的LED显示“59”.拆下电源模块控制板后,电扇位置如下图所示:1.3 主轴缩小器SPM内冷电扇毛病此毛病没有画面报警信息,但是有上图的“FAN”在闪烁,此现象标明主轴缩小器SPM的内冷电扇出现了毛病.1.4 伺服缩小器SVM内冷电扇报警 608,444上图中的报警暗示伺服缩小器SVM的内冷电扇出现了毛病(Z轴和A轴同时出现报警是因为Z轴和A轴是同一个缩小器控制的).上图中的报警出现时对应的伺服缩小器上的LED显示“1”.1.5 主轴缩小器和伺服缩小器的内冷电扇位置上图中:(1)主轴缩小器内冷电扇的装置位置(2)伺服缩小器内冷电扇的装置位置(3)主轴缩小器的型号A06B-6111-H XXX#H550(后面带#H***的都是主轴缩小器)(4)伺服缩小器的型号A06-6114-HXXX注:(1)不合型号的主轴缩小器和伺服缩小器对应的电扇的型号也不一样,请参考附录.(2)导致缩小器侧电扇毛病的原因主要是因为客户现场任务环境较差,致使电扇上粘有油污,使电扇转动时的阻力加大甚至粘住电扇叶片从而导致电扇线圈烧坏.所以在日常维护过程中要注意坚持机床电气柜的密封和清洁.1.6 主轴传感器的报警 9073(串行主轴错误)#9073报警时主轴缩小器SPM 的LED显示“73”,是由于主轴电机的传感器信号不正常引起.引起报警的原因可能是主轴缩小器、主轴电机传感器和传感器的反应电缆3个方面的毛病.1.7 主轴和伺服的报警750,5136如果开机出现以上报警.一般是电源模块、主轴缩小器、伺服缩小器的LED都无显示.请检查电源模块PSM的CX1A插头是否有200V 输入,如果200V输入正常,改换电源模块PSM的控制板.1.8 5136的报警(伺服缩小器毛病)如果出现5136报警:(1)检查每个伺服缩小器SVM的控制电源24V是否正常,LED是否有显示,如果LED没有显示而24V电源输入正常,判断伺服缩小器有毛病.(2)如果LED有显示,检查FSSB光缆接口COP10A和COP10B靠下的一个光口是否发光,如果不发光可以判断是缩小器有毛病.(3)检查连接伺服缩小器和系统轴卡的FSSB光缆是否有毛病.(检查的办法是用手电筒照光缆的一头,如果另一头的2个光口都有光收回确认光缆正常,不然不正常).(4)确认参数是否有更改,恢复机床的原始参数.1.9 401的报警如上图,如果所有轴都出现401报警,检查电源模块PSM的插头CX3(MCC控制信号)和CX4(外部急停*ESP)是否正常.请参考上面αi缩小器连接中对CX3和CX4连接的详细定义.正常时CX4的2个接线点应该导通(也就是2个接线点都有24V电压).如果CX3和CX4外部接线正常,检查电源模块PSM自己或主轴缩小器和伺服缩小器是否有毛病.1.10 926的系统报警926报警出现的原因:(1)系统轴卡可能有毛病.(2)如果是机床运行过程中偶然出现,很可能是伺服缩小器的控制电压24V瞬间降低所致.对于βi伺服缩小器,因为伺服缩小器的电源是通过外部24V稳压电源提供的,故需要检查机床正常任务时伺服缩小器的24V电源是否正常,是否有与缩小器共用24V电源的外部I/O 信号短路而导致缩小器的24V降低,可以给缩小器单独接一个24V稳压电源测试.注意如果机床配有带抱闸的电机,电机的抱闸用24V不要跟缩小器的24V共用一个电源.(3)伺服电机的编码器反应电缆对地短路也可能会导致缩小器的控制电压降低而引起此毛病.(4)检查SDU单元(别离型的检测单元,使用光栅尺时用)的电源是否有瞬间降低的现象.举例:0i-Mate-TC经常性加工中出现926#报警,X、Z轴449#报警(8. IPM报警).且无法开机,黑屏.经检测给系统和伺服供电的+24V电源与机床床身在变档开关处虚接,使+24V瞬间呵护,引起毛病.排除短路,开机长时间运行不雅察正常.电源模块: A06B-6130-H002,H0031.11 950,971报警950 报警(PMC 系统报警 SB7)[971NMI OCCURRED IN SLC 使用PMC-SA1]如果检测到PMC 错误,就产生此报警.可能的原因包含I/O Link 通讯错误和PMC 控制电路出毛病.若画面上显示“PC050”,则可能是I/O Link出现了通讯错误:PC050 I/O LINK(CHx) aa:bb-aa:bb or PC050 I/O LINK CHx aabb-aabb:aabbCHx 为通道号.aa 和bb 显示了内部错误代码.若产生此报警,可能的原因如下:(1)使用I/O 单元时,分派了I/O 单元的地址,但是该I/O 单元没有连接.(2)电缆没有连接好.(3) I/O 设备(I/O 单元,Power Mate 等)失效.(4) I/O Link 连接中的I/O板的24V电源没有或瞬间降低,检查I/O板用的24V电源是否正常.(5)如果外部I/O点出现对地短路也会把I/O板的24V电压拉低造成此毛病,检查是否有外部I/O偶然对地短路.(6)系统主板毛病.第二章维修中经常使用技巧2.1 如何用存储卡备份和恢复系统的SRAM2.1.1 SRAM 包含的数据以及备份SRAM的重要性SRAM中保管的数据包含:CNC参数、螺距误差抵偿量、、刀具抵偿数据(抵偿量)、宏变量数据(变量值)、加工程序、对话式编程(CAP)数据(加工条件、刀具数据)、操纵履历数据、伺服波形诊断数据、PMC参数等机床断电后需要用电池坚持的数据.所以备份SRAM数据对于机床的灾难性毛病的恢复很是重要.建议每台机床都要进行SRAM数据的备份.2.1.2 备份SRAM时的注意事项每张存储卡一次只能存储一台机床的SRAM数据,如果备份了一台机床的SRAM后,还想用同样的存储卡备份另一台机床的SRAM,就需要把先备份的SRAM文件拷贝到电脑里,然后把存储卡里的SRAM 文件删除后再备份另一台机床的SRAM.不然,如果直接去备份另一台机床的SRAM,就会把原来的SRAM笼盖掉.注意备份出来的SRAM文件名称不克不及更改.2.1.3 如何采办用于备份SRAM的存储卡如果要从北京发那科采办存储卡,针对0i-C系统的存储卡型号有如下几种:F87L-0001-0153#64M;F87L-0001-0153#128M; F87L-0001-0153#256M.2.1.4 如何进入备份SRAM的BOOT画面如下图所示,系统开机的同时按住LCD下面最右边的2个软键(第6和第7软键),直到系统出现下图所示的画面后松开.2.1.5 SRAM的备份(1)按屏幕底下的软键“DOWN”,把光标移到第5项“SRAM DATA BACKUP”(SRAM 数据备份),如下图所示.(2)光标移动到第5项“SRAM DATA BACKUP”后,按软键“SELECT”,出现下图的SRAM 备份和恢复画面.下图画面的第1项“SRAM BACKUP”是把系统中的SRAM备份到存储卡中.第2项“RESTORE SRAM”是把存储卡中的SRAM 文件恢复到CNC系统中.(3)如果要把系统SRAM存储的数据备份到存储卡中,光标应放在第1项“SRAM BACKUP”(如上图),按软键“SELECT”,系统显示下图的画面.为了避免误操纵,系统会提示“BACKUP SRAM DATA OK? HIT YES ORNO”(是否备份SRAM?按是或不是键).如果确实要备份SRAM,那么就按软键“YES”.如果不要备份SRAM,就按软键“NO”.(4)如果选择“YES”,系统就会把SRAM备份到存储卡内,备份完成后出现如下画面.说明:用BOOT画面备份的SRAM数据是二进制形式,因此不克不及在计算机上读出.2.1.6 如何恢复备份的SRAM(1)如果要把存储卡中的SRAM文件恢复到系统中,就在下图画面中把光标移到第2项“RESTORESRAM”,之后按“SELECT”,为了避免误操纵,系统会提示“RESTORE SRAM DATA OK? HIT YES OR NO”(是否恢复SRAM 数据?按是或不是软键).如果需要恢复SRAM,就按软件“YES”.按了“YES”后,即开始了数据的恢复操纵.(2)SRAM恢复完成后,系统会出现如下画面.2.2用存储卡在“ALL IO”画面里输入/输出程序、参数、刀补、宏变量、螺补、坐标系等(先在“SETING”画面把I/O通道改成4,或20号参数改成4)(1) 按系统MDI面板上的“SYSTEM”键,选择EDIT操纵模式,之后按右扩展键直到出现如下画面.(2) 按上图中的“ALL IO”软键,之后按“(操纵)”软键出现如下画面,如果要备份“程序”,按下图中“程序”对应的软键,之后按“(操纵)”进入“程序”的输入/输出画面(3) 按右扩展键出现下图画面(4) 加工程序的输出和输入按前图中“程序”对应的软键,按“(操纵)”进入下图画面.图中顶部显示“READ/PUNCH (PROGRAM)”如果要输出程序,按“PUNCH”对应的软键,出现下图画面.下图中上面“FILE NAME”中显示存储卡里的文件,下面“[PROGRAM]”中显示NC系统中的文件名.如果要把下图中系统里的文件O1000输出到存储卡里,文件名改成4,那么在MDI面板上输入数字“4”,按软键“F 名称”,然后在MDI面板上输入“1000”,按软键“O设定”,之后按软键“执行”就可以了.如果不定义输出的程序文件名“FILE NAME”,那么输出的程序文件名跟原来的程序文件名一样如果要输入程序,按前面图中的软键“F READ”出现下图画面,如果要把下图中存储卡里的文件 O1000输入到系统中,文件名改成O0111,那么在MDI面板上输入数字“7”(存储卡中程序O1000对应的文件号),按软键“F 设定”,然后在MDI面板上输入数字“111”(输入的程序文件名改成O0111),按软键“O设定”,之后按“执行”就可以了.注:参数、刀补、宏变量、螺补和坐标系的输入/输出跟程序的输入/输出操纵办法雷同.2.3 系统串口RS-232的应用波特率中的设定:9:2400,10:4800,11:9600,12:19200(BPS)比方:参数20=0,那么对应的参数101#0=1(两位停止位),参数102=0(使用电脑),参数103=10(波特率4800)或11(波特率).电脑侧必须要要做同样的设定.2.3.2RS-232 电缆的接线如下(从CNC的25针插头至电脑的9针插头)原因报警:(1)085 COMMUNICATION ERROR 用RS-232C接口进行数据读入时,出现溢出错误,奇偶错误或成帧错误.可能是输入的数据的位数不吻合,或波特率的设定、设备号不合错误.(2)086 DR SIGNAL OFF 用RS-232C接口进行数据的输入、输出时,I/O 设备的动作准备信号(DR)断开.可能是I/O 设备电源没有接通,电缆断线或印刷电路板出毛病.(3)087 BUFFER OVERFLOW 用RS-232C接口读入数据时,虽然指定了读入停止,但超出了10个字符后输入仍未停止.I/O 设备或印刷电路板出毛病.毛病的原因:(1)有关RS-232传输的参数设定不正确.检查设定数据及参数.(2)外部输入、输出设备或主计算机不良,计算机上的传输软件有问题.(3)系统主板毛病.(4)RS-232传输电缆接线不合错误或电缆断线.2.3.4 RS-232口数据传输中的注意事项(1)在机床和电脑开机的状态下,严禁拔插RS-232电缆.因为电脑有静电或是电源有漏电的情况存在,在电脑和系统开机状态下拔插RS-232电缆很容易造成系统主板烧坏.如果要拔插电缆,一定要同时封闭机床和电脑后再操纵.(2)按FANUC提供的接线方法接线,电缆线要采办带屏蔽层的,电缆的屏蔽层要接地.(3)包管插头接线的紧固,电脑外壳接地.2.4 用存储卡进行DNC 加工(1)先在“SETING”画面把I/O通道改成4,或20号参数改成4,参数138#7=1.(2)将加工程序拷贝到存储卡里(可以一次拷贝多个程序).(3)按MDI面板上的“PROG”键,选者“RMT”操纵模式,按右边的扩展键直到出现如下画面.再按下图中的“DNC-CD”软键.出现DNC操纵画面,下图左上角显示“DNC OPERATION(M-CARD)”(DNC 操纵)(4)按上图中的“(操纵)”软键,进如下图画面,图中显示存储卡里的文件,如果要加工下图中的O1000程序,在MDI面板上输入程序数字7“O1000对应的文件号”,然后按下图的软键“DNC-ST”,下图中的“DNC FILE NAME”会自动出现“O1000”,之后按下机床操纵面板上的“CYCLE START”(循环启动)键,系统运行存储卡里的加工程序O1000.2.5 如何装配编码器FANUC电机上编码器的装配和装置是很是便利的,如下图,伺服电机的编码器是装置在电机的后面.编码器的型号也会贴在编码器上,如下图所示的编码器是:A860-2005-T301(目前罕见的编码器有A860-2000-T301 和A860-2020-T301).拆编码器只要把下图所示的4个较大的内六角螺丝松开就可以了.装置的时候注意编码器的标的目的不要弄反.2.6 伺服电机的介绍伺服电机的实物如下图所示,(1)是电机编码器的插头,(2)为电机的动力线的插头,(3)为电机的型号,下图中电机型号为A06B-0273-B401,(4)电机的抱闸线插头(不带抱闸的电机没有此插头)2.7 机床撞刀的一些罕见原因操纵人员在加工操纵前,刀具的半径抵偿和长度抵偿设定值不正确,加工时就会造成零件少切、过切或撞刀.设抵偿值(或刀具半径、长度)的时候要注意尺寸的设定单位(μm还是mm),注意小数点.操纵人员在加工操纵前,工件坐标系(G54-G59)的零点设定不正确或是程序中调用的坐标系不正确,加工时会出现加工零件尺寸不合错误或撞刀.2.7.3 程序编写问题FANUC很多G代码是模态的,机床在前一个(或前一段)加工程序中指定的G代码如果在程序结束时或在下一个程序开始前不取消掉,在下一个程序(或段)中将继续有效,这样可能导致机床误动作或撞刀.为了避免此类毛病出现,编程人员可以在程序的开头或结尾编一段程序取消刀具半径抵偿、长度抵偿、取消固定循环等,让机床回到最初始的状态,这样机床就不会因为一些模态G代码的问题误动作.参数000#2 INI 为0(公制单位)、为1(英制单位)参数3401#0 DPI 可以使用小数点的地址字,小数点的含义.省略了小数点时:为0:视为最小设定单位(公制时为μm,英制时为0.0001吋,角度为0.001度).为1:视为mm,inch,角度为1度.以上这些如果选择弄错,加工编程时数据单位就会弄混,出现加工零件尺寸不合错误或者撞刀.2.7.5 操纵人员操纵不当有的时候操纵人员在机床加工的时候,要检查加工状态什么的,按下“循环暂停”,让机床停下来,如果没有其他动作再继续“循环启动”是没有问题的.但有的时候操纵人员会按下“复位”键之后又按“循环启动”.这样,按下“复位”键的效果是就把CNC系统复位到初始状态,DRAM内保管的预读程序信息即被清除掉了,整个加工即被作废.如果再继续执行自动运行操纵,就可能会造成撞刀.注意:在自动运行方法用程序加工过程中,非紧急状态,绝不允许按“复位(RESET)”按钮.另外,必须特别注意从自动运行方法变成手动(包含MDI)任务方法或由手动(包含MDI)任务方法前往自动运行方法的转换.方法转换后进行操纵前,一定要不雅察LCD上显示的信息,检查各个模态代码(G、M、S、F、T等),确认无误后再操纵.比方,由手动或MDI方法前往原来的自动方法后、按自动循环启动按钮(ST)前,一定要严格检查此时显示的模态代码是否与原来自动方法的一模一样?不然,会造成严重后果.。

fanuc 伺服报警代码

fanuc 伺服报警代码
(STATUS显示运用+5V电
源.)
1.2.1急停没有解除.
1.2.2终端插头没有衔接好或接触不良.
1.2.3 MCC用的接触器不良或破坏.
1.2.4 MCC接触器电源线接触不良或断线.
1.3 电源模块内部故障.
1.1.1检讨插头CX1的R.S端AC200V是否有,衔接是否坚固.
1.1.2按《FANUC SERVO MOTORαSERIES维修解释书》中的办法行各电源测试与故障剖析与维修.
2.2电源接通后,主轴放大器报警,主轴不克不及起动.
2.3 主轴伺报放大器破坏.
2.1.1未供给掌握电源.
2.1.2电源回路出故障.
(STATUS显示运用+5V电
源.)
2.2 主轴放大器内部故障与外部衔接不良引起的故障.
2.3.1外部短路.缺相,相间短路.电机破坏引起.
2.1.1检讨插头CX2的24V.0V是否有,衔接是否坚固.
1.4.5.2换配线板或电阻.
序号
故障症状
原因剖析
清除办法
1.4.6电源模块上显示报警代码“06”(输入电源消失平常).
1.4.7电源模块上显示报警代码“07”(主回路的直流电压平常升高).
1.4.6电源模块输入电源缺相.
1.4.7.1 AC电源阻抗变高.
1.4.7.2再生回路平常.
1.4.7.3 IGBT(或IPM)故障.
2.3.1.1 将主轴模块上电机电源线接线端(U.V.W)上的导线和直流母线(P.N)
序号
故障症状
原因剖析
清除办法
2.3 主轴伺报放大器破坏.
2.3.1外部短路.缺相,相间短路.电机破坏引起.
2.3.2 主轴模块内部故障.

FANUC-常见报警及处理

FANUC-常见报警及处理

FANUC-0ib 常见报警及处理方法( 16 FANUC-0ib 常见报警及处理方法典型的故障进行故障分析和恢复方法的介绍:1.P/S00#报警2.P/S100#报警3.P/S101#报警4.P/S85~87串行接口故障5.90#报警(回零动作异常)6.3n0(n轴需要执行回零)7.3n1~3n6(绝对编码器故障)8.3n7~3n8(绝对脉冲编码器电池电压低)9.SV400#,SV402#(过载报警)10.SV401,SV403(伺服准备完成信号断开报警)11.SV4n0:停止时位置偏差过大12.SV4n1(运动中误差过大)13.SV4n4#(数字伺服报警)14.SV4n6报警:反馈断线报警15.ALM910/911 RAM奇偶校验报警16.手动及自动均不能运行17.不能JOG操作运行18.不能自动运行各种报警的原因及处理:P/S00#报警故障原因:设定了重要参数,如:伺服参数,系统进入保护状态,需要系统重新起动,装载新参数。

恢复办法:在确认修改内容后,切断电源,再重新起动即可P/S100#报警故障原因:修改系统参数时,将写保护设置PWE=1后,系统发出该报警。

恢复方法:①发出该报警后,可照常调用参数页面修改参数。

②修改参数进行确认后,将写保护设置PWE=0③按RESET键将报警复位,如果修改了重要的参数,需重新起动系统P/S101#报警故障原因:存储器内程序存储错误,在程序编辑过程中,对存储器进行存储操作时电源断开,系统无法调用存储内容。

恢复方法:①在MDI方式,将写保护设置为PWE=1②系统断电,按着(DELETE)键,给系统通电。

③将写保护设置为PWE=0, 按RESET键将101#报警消除。

、P/S85~87串行接口故障故障原因:在对机床进行参数、程序的输入,往往用到串行通讯,利用RS232 接口将计算机或其它存储设备与机床联接起来。

当参数设定不正确,电缆或硬故障时会出现报警。

故障查找和恢复: 85#报警指的是:在从外部设备读入数据时,串行通讯数出现了溢出错误,被输入的数据不符或传送速度不匹配,检查与串行通讯相关的参数,如果检查参数没错误还出现该报警时 , 检查I/O设备是否损坏86#报警指的是:进行数据输入时I/O设备的动作准备信号(DR)关断。

FANUC常见伺服报警及解决方法

FANUC常见伺服报警及解决方法

F A N U C常见伺服报警及解决方法-CAL-FENGHAI.-(YICAI)-Company One1FANUC常见伺服报警及解决方法SV0301:APC报警:通信错误1、检查反馈线,是否存在接触不良情况。

更换反馈线;2、检查伺服驱动器控制侧板,更换控制侧板;3、更换脉冲编码器。

SV0306:APC报警:溢出报警1、确认参数、是否正常;2、更换脉冲编码器。

SV0307:APC报警:轴移动超差报警1、检查反馈线是否正常;2、更换反馈线。

SV0360:脉冲编码器代码检查和错误(内装)1、检查脉冲编码器是否正常;2、更换脉冲编码器。

SV0364:软相位报警(内装)1、检查脉冲编码器是否正常;2、更换脉冲编码器。

3、检查是否有干扰,确认反馈线屏蔽是否良好。

SV0366:脉冲丢失(内装)报警1、检查反馈线屏蔽是否良好,是否有干扰;2、更换脉冲编码器。

SV0367:计数丢失(内装)报警1、检查反馈线屏蔽是否良好,是否有干扰;3、更换脉冲编码器。

SV0368:串行数据错误(内装)报警1、检查反馈线屏蔽是否良好;2、更换反馈线;3、更换脉冲编码器。

SV0369:串行数据传送错误(内装)报警1、检查反馈线屏蔽是否良好,是否有干扰源;2、更换反馈线;3、更换脉冲编码器。

SV0380:分离型检查器LED异常(外置)报警1、检查分离型接口单元SDU是否正常上电;2、更换分离型接口单元SDU。

SV0385:串行数据错误(外置)报警1、检查分离型接口单元SDU是否正常;2、检查光栅至SDU之间的反馈线;3、检查光栅尺。

SV0386:数据传送错误 (外置)1、检查分离型接口单元SDU是否正常;2、检查光栅至SDU之间的反馈线;3、检查光栅尺。

SV0401:伺服准备就绪信号断开1、查看诊断,根据的内容转换成二进制数值,进一步确认401报警的故障点。

2、检查MCC回路;3、检查EMG急停回路;4、检查驱动器之间的信号电缆接插是否正常;5、更电源单元。

fanuc伺服报警代码

fanuc伺服报警代码

1. 4报警故蛋处理:1. 4・1电瀑撲块上显示报警代码“01” (电源摸块的主回路1PM #常)。

1. 4. 2电双模块上显示报警代玛勺2”(控制回路的冷却风扇不转)。

1. 4. 3电襪棋決上显示报警代玛"03* (主回路的散热罄温升异常)。

1. 4. 4电双模块上显示报警代玛“04”(主回路的DC电压过低)。

1. 4. 5电惡模块上显示报警代玛"05* (主回路充屯不能在规定时问内进行)1. 4・1・1电憑棋块內大功率棋块IGBT或1PM不良。

1. 4. 1. 2机床便用久AC 电抗黑不良。

1. 4・2冷却凤扇故蛋。

1. 4. 3. 1冷却风扇故障。

(电鴻棋块风机.电柜通风风机)1. 4・3・2机床使用久,电柜内通风不輛。

1・4・3・3过钱。

1. 4・4・1电双摸決输入电鴻出现晞问的停电。

1. 4. 4. 2电憑摸決输入屯瀑屯压过低。

1. 4. 4. 3按作失误。

(解除急停状态下,切断主回路电双时)1・4・5・1DC短路。

1. 4・5. 2机床使用久,电漸模块内限制充电电流的电阻不良。

1. 4. 1. 1 更换IGBT 或1PM摸块。

更換时首先要査明損坏原因氏駆动电路畏否有故障,摊除枚障后,方可更换,否则涣后有可能还会损坏。

1. 4. 1. 2更換AC电抗1. 4. 2修理或更换冷却凤用电机。

1. 4. 3. 1检圭冷却风扇就转情况,修瑾或更換巳损坏的净却风扇电机。

1. 4. 3・2走期检査清沽冷却系统,保证电柜内通风畅通。

1・4・3・3检査动转情况,排除故痒。

1. 4. 4・1检鱼电憑摸块输入屯課,排除故摩。

1. 4. 4・2检査确认。

找出电瀑电压过低的原因,排除故捧。

1. 4. 4. 3检查操作顺序, 正确操作。

1. 4. 5・1测试檢査,找出故痒点,更涣损坏的元器件或导线,排除故障。

1. 4. 5・2換配线枚或电阻。

序号故障症状原因分析排除方法注:枚障分析与拌除时应用数控系统自诊新功能和《梯形图册》判别枚障,按《电气图册》、救控系统.伺服系统《维修手册》进行枚障楡查与捧陰。

fanuc β 伺服报警的故障诊断及实际处理方法

fanuc β 伺服报警的故障诊断及实际处理方法

长春汽车工业高等专科学校
(2)全闭环控制形式 全闭环控制形式
如果数控机床采用分离型位置检测装置作为位置反馈信号,则进给 如果数控机床采用分离型位置检测装置作为位置反馈信号, 伺服控制形式为全闭环控制形式。在全闭环控制形式中, 伺服控制形式为全闭环控制形式。在全闭环控制形式中,进给伺服 系统的速度反馈信号来自伺服电动机的内装编码器信号, 系统的速度反馈信号来自伺服电动机的内装编码器信号,而位置反 馈信号是来自分离型位置检测装置的信号。 馈信号是来自分离型位置检测装置的信号。 全闭环控制特点:位置控制精度相对高, 全闭环控制特点 位置控制精度相对高,此时精度由位置检测装置 位置控制精度相对高 精度决定(目前光栅尺的精度有1µm、0.5µm、0.1µm)。 精度决定(目前光栅尺的精度有 、 、 )。 全闭控制相对稳定性不高,易出现系统振荡现象,伺服调整比较困 全闭控制相对稳定性不高,易出现系统振荡现象, 克服上面的不足。 但伺服软件技术的发展,新的数控系统克服上面的不足 难。但伺服软件技术的发展,新的数控系统克服上面的不足。
长春汽车工业高等专科学校
FANUC 系统 系列伺服模块实际连接图 轴) 系统α系列伺服模块实际连接图 系列伺服模块实际连接图(4轴
长春汽车工业高等专科学校
FANUC 系统 系列伺服模块连接原理图 轴) 系统α系列伺服模块连接原理图 系列伺服模块连接原理图(4轴
长春汽车工业高等专科学校
2.FANUC 系统 系列伺服模块端子接口功能 系统αi系列伺服模块端子接口功能
长春汽车工业高等专科学校
3.1 FANUC系统进给伺服基本知识 系统进给伺服基本知识
1.进给伺服系统的位置控制形式 1.进给伺服系统的位置控制形式 (1)半闭环控制
学习情境3 进给伺服单元拆装、 学习情境 进给伺服单元拆装、调整及维修

fanuc伺服报警

fanuc伺服报警

TRAINING-LZW
5
PSM上显示4. PSM DC LINK低电压 主轴9051 SVM上显示5 (435). 433报警:PSM DC link电压降低,或者α,β系列SVU的DC link电压降低 433报警,主轴9051报警,电网电压不稳,电网电压低。 433报警,将CX19B的A1,B1,A2,B2都接上+24V,0V就 不报警了。
β系列SVU内部排风扇失效。 610报警:警告状态下伺服放大器的报警号。 伺服放大器警告状态及与他们相关的警告信号: F93#7=1(SVMRN4), F93#6=1(SVMRN3),从警告状态信 号产生到报警发生的时间为1分钟.
2020/5/16
TRAINING-LZW
2
2020/5/16
TRAINING-LZW
参数4024=75是标准设定
2020/5/16
TRAINING-LZW
10
0I-TC 439(X)不间断报警
更换SVM, A06B-6130-H002-J
结果:观察
CNC单元: A02B-0311-B530 伺服单元: A06B-6130-H002/H003 主轴: 模拟
2020/5/16
TRAINING-LZW
11
0I-MATETC系统 X轴,Z轴401#,439#,440#
用户处380V进线电压为400V,变出220V为240V,偏 高.更换伺服放大器A06B-6130-H002*2后报警消 失.
建议用户加稳压器,使380V稳定.
2020/5/16
TRAINING-LZW
12
MDI或MEM方式下转动主轴或移动各伺服轴时出现“准备不足”报警,几秒钟 后又自动恢复,无法正常运行,但在回零方式、JOG方式和手轮方式都正常.有 时偶尔出现414、424、434、409报警,PSM和SPM分别显示07和11. 1.准备不足”的瞬间G121.4和X21.4瞬间确有断开,更换I/O板,MEM板故障依 旧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FANUC常见伺服报警及解决方法
SV0301:APC报警:通信错误
1、检查反馈线,是否存在接触不良情况。

更换反馈线;
2、检查伺服驱动器控制侧板,更换控制侧板;
3、更换脉冲编码器。

SV0306:APC报警:溢出报警
1、确认参数No.2084、No.2085是否正常;
2、更换脉冲编码器。

SV0307:APC报警:轴移动超差报警
1、检查反馈线是否正常;
2、更换反馈线。

SV0360:脉冲编码器代码检查和错误(内装)
1、检查脉冲编码器是否正常;
2、更换脉冲编码器。

SV0364:软相位报警(内装)
1、检查脉冲编码器是否正常;
2、更换脉冲编码器。

3、检查是否有干扰,确认反馈线屏蔽是否良好。

SV0366:脉冲丢失(内装)报警
1、检查反馈线屏蔽是否良好,是否有干扰;
2、更换脉冲编码器。

SV0367:计数丢失(内装)报警
1、检查反馈线屏蔽是否良好,是否有干扰;
3、更换脉冲编码器。

SV0368:串行数据错误(内装)报警
1、检查反馈线屏蔽是否良好;
2、更换反馈线;
3、更换脉冲编码器。

SV0369:串行数据传送错误(内装)报警
1、检查反馈线屏蔽是否良好,是否有干扰源;
2、更换反馈线;
3、更换脉冲编码器。

SV0380:分离型检查器LED异常(外置)报警
1、检查分离型接口单元SDU是否正常上电;
2、更换分离型接口单元SDU。

SV0385:串行数据错误(外置)报警
1、检查分离型接口单元SDU是否正常;
2、检查光栅至SDU之间的反馈线;
3、检查光栅尺。

SV0386:数据传送错误(外置)
1、检查分离型接口单元SDU是否正常;
2、检查光栅至SDU之间的反馈线;
3、检查光栅尺。

SV0401:伺服准备就绪信号断开
1、查看诊断No.358,根据No.358的内容转换成二进制数值,进一步确认401报警的故障点。

2、检查MCC回路;
3、检查EMG急停回路;
4、检查驱动器之间的信号电缆接插是否正常;
5、更电源单元。

同步控制中SV0407:误差过大报警
1、检查同步控制位置偏差值;
2、检查同步控制是否正常。

移动轴时SV0409报警
1、检查移动时该轴的负载情况;
2、确认机械是否卡死;
3、确认伺服参数设定是否正常;
4、更换伺服电机;
5、更换伺服驱动器。

SV0410:停止时误差过大报警
1、检查机械是否卡死;
2、对于重力轴,抱闸的24VDC供电是否正常,检查抱闸是否正常松开;
3、脱开丝杆等相关机械部分的连接,单独驱动电机,若正常,找MTB检查机械部分;若故障依旧,更换电机或伺服驱动器。

SV0411:移动时误差过大报警
1、查看负载情况,若负载过大。

2、检查机械是否卡死;
3、对于重力轴,抱闸的24VDC供电是否正常,检查抱闸是否正常松开;
4、脱开丝杆等相关机械部分的连接,单独驱动电机,若正常,找MTB检查机械部分;若故障依旧,伺服驱动器。

SV0417:伺服非法DGTL参数报警
1、检查数字伺服参数设定是否正确;
2、查看诊断No.0203#4的值,当No.0203#4=1时,通过No.0352的值进一步判断故障点;当No.0203#4=0时,通过No.0280的值进一步判断具体故障。

SV0421:超差(半闭环)
1、查看半闭环和全闭环的位置反馈误差,对比参数No.2118设定值是否正常;
2、分别检查半闭环和全闭环位置反馈误差是否正常。

3、检查或屏蔽光栅尺;
SV0430:伺服电机过热报警
1、故障时检查诊断No.308伺服电机温度值,并对比电机实际温度。

若显示值过热,而电机实际温度正常。

更换电机;
2、检查电机负载是否过大,查看电机与丝杆连接部件是否过紧,或卡死。

若机械方面正常,更换电机。

SV0432:变频器控制电压低报警
1、检查外部输入控制电压电压是否正常,包括变压器,电磁接触器等;
2、更换电源单元。

偶尔SV0433:变频器DC链路电压低报警
1、检查外围线路是否正常;
2、确认机床振动是否过大,保证伺服驱动器在使用过程中不受振动影响。

3、更换电源单元。

偶尔SV0434:逆变器控制电压低报警
1、检查输入电源电源是否正常,电压是否稳定,功率是否足够;
偶尔SV0435:逆变器DC链路电压低报警
1、确认DC LINK母线接线端子螺丝是否锁紧;
2、如果发生全轴或多轴报警时,请参考PSM:04报警方法排查故障;
3、若报警发生在单轴时,请更换该轴驱动器控制侧板或驱动器。

SV0436:软过热报警
1、查看电机负载是否过大;
2、若是重力轴,请确认抱闸24VDC是否正常,抱闸是否正常打开。

3、脱械部分,盘动电机轴是否卡死,若卡死或试机故障依旧,请更换电机;若不卡死,试机正常,请联系机床厂家检查机械部分。

SV0438:逆变器电流异常报警
1、检查动力线是否有破损、对地短路,更换动力线;
2、测量电机三相对地是否绝缘,否,则更换电机;
3、更换伺服驱动器。

SV0439:DC链路电压过高报警
1、检查外部输入电压是否稳定;
2、更换电源单元;
3、更换对应的伺服驱动器。

SV0441:异常电流偏移报警
1、检查电机动力线是正常;
2、更换伺服驱动器
SV0442:DC链路充电异常报警
1、检查PSM进线与CX48端子相序是否一致;
2、检查三相电压是否平衡;
3、检查MCC回路是否正常;
4、更换电源单元。

SV0443:变频器冷却风扇停止报警
1、检测电源单元侧板的风扇是否正常;
2、更换电源单元侧板或电源单元。

SV0444:逆变器内部冷却风扇停止报警
1、检测伺服驱动器上方的散热风扇是否正常,更换散热风扇;
2、若更换风扇无效,请更换伺服驱动器。

SV0445:软件断线报警(全闭环)
1、检查光栅尺反馈线是否正常;
2、屏蔽光栅尺改全闭环为半闭环试机,若无故障,请联系MTB检查光栅尺;
3、检查工作台丝杆与电机连接是否存在间隙。

SV0449:逆变器IPM报警
1、检查动力线是否正常;
2、从驱动器端脱开电机动力线,上电若还出现该报警,请更换驱动器。

(对于重力轴,请确保重力轴安全的情况下操作。


SV0453:脉冲编码器软件断线报警
1、检查反馈线是否正常;
2、在NC电源OFF状态下,拔插反馈线后试机,若再该报警,请更换脉冲编码器。

SV0465:读ID信息失败报警
1、检查驱动器侧板是否插紧,接线是否牢固。

SV0466:电机/放大器组合不对报警
1、检查轴与放大器连接是否正常;
2、检查参数NO.2165设置值是否正确;
3、更换伺服驱动器;
4、若新更换了伺服驱动器出现该报警,请把No.2165值修改为0。

SV0601:散热冷却风扇故障报警
1、检查伺服驱动器散热片上的风扇是否停止旋转,若停止或者转速异常,请更换风扇;
2、若更换风扇无效,请更换伺服驱动器。

SV0602:伺服放大器过热报警
1、检查伺服驱动器所带轴负载是否正常;
2、更换控制侧板或伺服驱动器。

SV0603:逆变器IPM检测到过热报警
1、检查伺服驱动器所带轴负载是否过大;
3、更换伺服驱动器。

SV0604:放大器通讯错误报警
1、检查伺服驱动器之间的信号电缆连接是否正常;
2、更换驱动器控制侧板。

SV0606:外部冷却散热片冷却风扇报警
1、检测电源单元散热片上的风扇是否停止旋转或转速异常,更换风扇;
2、检查控制侧板是否插牢;
3、更换电源单元。

SV0607:主电源缺相报警
1、检查输入电源是否正常,是否缺相;
2、更换PSM单元。

(源于:FANUC发那科数控系统技术)。

相关文档
最新文档