midas_civil简支梁模型计算
竞赛培训之06:软件解读-Midas-Civil2006培训实例1:桥梁模型入门
竞赛培训之06:软件解读-Midas Civil2006培训实例1:桥梁模型入门讲授人:黄文雄打开软件;另存到一个指定的文件夹(自己创立的新文件夹,目的是使用方便);开始操作:在主菜单中选择工具>单位体系在长度栏中选择mm在力栏中选择N点击确认按钮选中菜单系统在主菜单中选择工具>用户指定>工具条。
在工具条目录中将节点、单元、特征打钩对单元工具条上的蓝色部分用鼠标指定后若放到自己所需的位置。
使用相同的方法可以排列使用相同的方法可以排列节点工具条和特性工具条点击工具条对话框结束按钮以改进后的桥梁教学模型作为例子一、定义材料此次分析的桥梁模型材料的力学参数为:顺纹弹性模量E=1.0 103MPa、顺纹抗拉强度σ=30MPa。
主菜单中选择模型>材料和截面特征>材料点击添加那妞,调出材料数据对话框输入材料名称桐木类型选择:用户自定义规范:无输入弹性模量1e+3泊松比这里取0.25单位换算9.8*0.3/1000000 牛/立方毫米在容重处直接输入9.8*0.3/1000000其他不考虑,若找到准确数据可填点击确认按钮材料定义完毕材料定义完了可以通过编辑对材料的属性进行修改二、定义截面主菜单中选择模型>材料和截面特征>截面点击添加,一次添加以下截面添加时输入截面名称,选择截面类型,点击用户,输入杆件参数截面类型有:➢杆号,名称,类型,截面形状➢横梁,用户,T型➢纵梁,用户,箱型➢拉条,用户,实腹长方形截面➢主梁竖杆,用户,箱型➢横断面竖杆,用户,H型➢下横联杆件,用户,矩形具体软件对话框如下:截面定义完毕:三、建立模型建立节点单元节点号(开);自动对齐(开);选择正视图点击模型、节点、建立节点(节点起始号这一栏始终不管)输入:坐标0,0,0 复制次数6 距离在DX上填100 点击适用,如下图所示点击复制移动节点按钮用选择节点号为2-6的节点输入项目如下图输入框所示,点击适用便可生成8-12节点建立单元:建立纵梁:点击菜单、模型、单元、建立单元在建立单元的对话框里面选择单元类型为一般梁/变截面梁材料选择桐木截面选择纵梁截面选择纵梁一次点击1,2;2,3;3,4;4,5;5,6;6,7;节点建立起纵梁单元建立主梁竖杆:打开建立单元的对话框,方法同上,只需把截面改成主梁竖杆,依次分别点击节点2,8;……6;12;建立竖杆按照上述方法建立起拉条复制主梁:在单元建立的对话框里面形式:复制等间距:DY:170 复制次数选择1用选择已经建立了的全部单元和节点点击适用,主梁即复制好,点击视图即可显示出上图。
迈达斯Midas_civil_梁格法建模实例
混凝土收缩变形率: 程序计算
荷载
静力荷载
>自重
由程序内部自动计算
>二期恒载
桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等
具体考虑:
桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每片T梁宽2.5m,所以铺装层的单位长度质量为:
> 混凝土
采用JTG04(RC)规范的C50混凝土
>普通钢筋
普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)
>预应力钢束
采用JTG04(S)规范,在数据库中选Strand1860
钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)
钢束类型为:后张拉
图7. 跨中等截面
模型/材料和截面特性/ 截面
数据库/用户> 截面号(3); 名称(端部变截面右)
截面类型>变截面>PSC-工形
尺寸
对称:(开)
拐点: JL1(开)
尺寸I
S1-自动(开),S2-自动(开),S3-自动(开),T-自动(开)
HL1:0.20;HL2:0.06 ;HL2-1: 0;HL3:1.28;HL4:0.17;HL5:0.29
(0.08×25+0.06×23)×2.5=8.45kN/m2.
护墙、栏杆和灯杆荷载:以3.55kN/m2计。
二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=8.45+3.55=12kN/m2。
>预应力荷载
分成正弯矩钢束和负弯矩钢束
典型几束钢束的具体数据:
迈达斯midascivil 梁格法建模实例
北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。
定义材料和截面....................................................................................................... 错误!未定义书签。
建立结构模型........................................................................................................... 错误!未定义书签。
PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。
输入荷载 .................................................................................................................. 错误!未定义书签。
定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。
输入支座沉降........................................................................................................... 错误!未定义书签。
midas-civil简支梁模型计算
Midas-Civil简支梁模型计算Midas-Civil是一个基于计算机的桥梁设计软件,具有多种桥梁设计和分析工具。
在本文中,我们将讨论如何使用Midas-Civil计算简支梁模型。
简支梁模型简支梁是一种常见的梁型结构,它在两端被限制为旋转的模型。
可以用于建筑物、桥梁等结构中。
在设计过程中,需要确定梁的材料、截面形状、荷载等参数。
Midas-Civil简介Midas-Civil是一种现代化的、通用的结构分析和设计软件,可用于桥梁、高速公路、地铁、隧道和其他结构的设计和分析。
它提供了强大的计算功能和交互式的图形用户界面,可以轻松地进行设计,建模,分析和结果展示。
建立简支梁模型首先,我们需要打开Midas-Civil软件并建立一个新模型。
在导航栏中选择“File”>“New”>“Bridge”,并选择“Simple Span”模型。
然后在“Geometry”选项卡中选择简支梁,并输入梁的长度、高度、宽度和荷载等参数。
在输入完参数之后,点击“Run Analysis”进行模拟计算。
此时,软件会计算出简支梁的荷载、应变和变形等结果。
这些结果可以通过图表和报告进行呈现和分析。
结果分析Midas-Civil提供了多种图表和报告,可以用于对结果进行分析。
荷载分析荷载分析图可以显示各个截面在荷载作用下的应力分布。
它可以帮助工程师确定是否需要更改梁的材料或截面形状。
变形分析变形分析图可以显示梁各个部位的变形情况。
它可以帮助工程师确定梁的强度和稳定性,并优化设计。
应力云图应力云图可以显示荷载和内力在梁结构中的传递和分布情况。
它可以帮助工程师确定梁的强度和稳定性,并指导材料选择和截面设计。
本文简要介绍了如何使用Midas-Civil进行简支梁模型的计算。
Midas-Civil是一个功能强大的结构分析和设计软件,可以轻松地进行设计,建模,分析和结果展示。
通过对计算结果的分析,工程师可以确定梁的强度和稳定性,并进行优化设计。
迈达斯midas梁桥专题—梁格.pdf
Integrated Solution System for Bridge and Civil Strucutres目录一、剪力-柔性梁格理论1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5)三、采用梁格建模助手生成梁格模型二、单梁、梁格模型多支座反力与实体模型结果比较1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24)四、结合规范进行PSC 设计1.纵梁抗弯刚度【强制移轴(上部结构中性轴)法】一、剪力-柔性梁格理论a.各纵梁中性轴与上部结构中性轴基本重合b.强制移轴,使各纵梁中性轴与上部结构中性轴基本重合,等效纵梁抗弯刚度2.横向梁格抗弯刚度3.纵梁、横梁抗扭刚度4.虚拟边构件及横向构件刚度此处d’为顶板厚度。
Midas_Civil建模过程大全
§预应力混凝土梁的分析步骤..........................................................19
§使用的材料及其容许应力............................................................20
§利用图形查看应力和构件内力........................................................44
§定义荷载组合......................................................................48
§1-3定义材料...........................................................................3
§1-4定义截面...........................................................................4
§利用荷载组合查看应力..............................................................49
§查看钢束的分析结果................................................................52
工具条的定制。
图2.工具条定制窗口
主成分工具条
次成分工具条
对象选择工具条
MidasCivil 桥梁结构电算原理与软件应用
三、简支梁T梁桥建模与分析
➢建立结构模型
三、简支梁T梁桥建模与分析
➢定义结构组、边界条件组、荷载组和钢束组 组>结构组>新建…
组>荷载组>新建…
组>钢束组>新建… 组>边界组 模型 /边 界条件 / 一般支承
三、简支梁T梁桥建模与分析
➢定义结构组、边界条件组、荷载组和钢束组
三、简支梁T梁桥建模与分析
一、Midas/Civil 软件介绍
➢查看结果
一、Midas/Civil 软件介绍
➢查看结果
一、Midas/Civil 软件介绍
➢查看结果
一、Midas/Civil 软件介绍
➢后处理显示
一、Midas/Civil 软件介绍
➢后处理显示
一、Midas/Civil 软件介绍
➢一般分析步骤 设置操作环境:2D或3D结构、单位体系等。
一、Midas/Civil 软件介绍
➢适用范围:桥梁、地下结构、建筑、大坝、港口等结构。
一、Midas/Civil 软件介绍
➢一般分析步骤 输入边界条件:定义结构的外边界条件以及结构内部的连
接。
输入荷载:包括施工荷载、永久荷载、活荷载、温度荷载、 车辆荷载、支座沉降、预应力荷载等。
输入钢束特性值:定义预应力钢束的特性的种类(15-7, 15-9等)
➢模型画面及视图
一、Midas/Civil 软件介绍
➢模型的激活与钝化
一、Midas/Civil 软件介绍
一、Midas/Civil 软件介绍
➢材料与截面特性
输入各向同性和正交各向异性材料的材料特性 由用户定义混凝土材料随时间的变化特性(徐变和收缩)函数 定义混凝土材料随时间的变化特性(徐变和收缩)。 定义混凝土材料的抗压强度或弹性模量随时间变化的曲线 修改各单元的理论厚度值或者体积与面积比。 为材料非线性分析定义塑性材料模型
Midas Civil计算书(钢箱梁)
(4)《钢结构设计规范》
(GB50017-2003)
(5)《公路桥涵钢结构及木结构设计规范》
(JT40+60+40)计算书
(6)《公路桥涵施工技术规范》 (7)《钢结构工程施工质量验收规范》 (8)《铁路桥涵钢结构设计规范》
(JTG/T F50-2011) (GB 50205-2001) (TB 10002.2-2005)
处L为的计算跨径:边跨L/600 = 40000/600 = 66.7mm,中跨L/600=60000/600=100mm
2.5 复核计算标准、规范及其它依据
(1)《公路工程技术标准》
(JTG B01-2003)
(2)《公路桥涵设计通用规范》
(JTG D60-2004)
(3)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)
图 4.1 活载正挠度
图 4.1 活载负挠度 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第1.1.5条规定:如果车辆荷 载在一个桥跨范围内移动产生正负两个方向的挠度时,计算挠度应为其正负挠度的最大 绝对值之和,边跨和中跨最大挠度均位于跨中分别为:22.6mm、40.8mm结构刚度满足规范 要求。
midas简支梁步骤.
简支梁T梁桥建模与分析桥梁的基本数据:桥梁形式:单跨简支梁桥桥梁等级:I级桥梁全长:30m桥梁宽度:13.5m设计车道:3车道分析与设计步骤:1.定义材料和截面特性材料截面定义时间依存性材料(收缩和徐变)时间依存性材料连接2.建立结构模型建立结构模型修改单元依存材料3.输入荷载恒荷载(自重和二期恒载)预应力荷载钢束特性值钢束布置形状钢束预应力荷载4.定义施工阶段5.输入移动荷载数据选择规范定义车道定义车辆移动荷载工况6.运行结构分析7.查看分析结果查看设计结果使用材料以及容许应力> 混凝土采用JTG04(RC)规范的C50混凝土>普通钢筋普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)>预应力钢束采用JTG04(S)规范,在数据库中选Strand1860钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)钢束类型为:后张拉钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.3管道每米局部偏差对摩擦的影响系数:0.0066(1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%>徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2长期荷载作用时混凝土的材龄:=t5天o混凝土与大气接触时的材龄:=t3天s相对湿度: %RH=70大气或养护温度: C=T20°构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算荷载静力荷载>自重由程序内部自动计算>二期恒载桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等具体考虑:桥面铺装层:厚度100mm的钢筋混凝土和80mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。
MIDAS操作
MIDAS/Civil计算梁桥操作步骤1、启动Civil 进入MIDAS/Civil界面;设置量纲,界面最下行;保存文件(文件→新项目,文件→另存为),即生成模型文件(.mcd)。
2、定义结构类型:左边“树形菜单”→菜单→结构分析→环境设置→结构类型选择,则可计算扭矩及平面外的力,一般对弯桥、横向大悬臂桥梁、悬臂施工桥梁选择。
选择,则按平面杆系计算,本例选择。
3、模型建立模型方法:A. 结构建模助手B. 按常规先输结点再输单元(表格)C. 导入CAD绘制的图(.dxf文件),适用于已绘制桥型布置图和主梁一般构造图。
划分单元,对于简支梁和连续梁桥,不考虑桥墩单元,只利用桥型布置图和主梁一般构造图划分单元;对于连续刚构桥、悬索桥和斜拉桥,要考虑墩、台对主梁的影响,需要建立主梁单元和桥墩、桥台单元,需用到桥型布置图、主梁一般构造图、桥墩一般构造图和桥台一般构造图。
划分单元的原则:梁端、截面改变处、支座中心线处、中跨跨中处(正弯矩最大)须设节点,各单元长度相差尽量小。
本例参见“箱梁单元划分图.dwg”文件。
1、47节点为梁端,2、46、13、35节点为支点截面,24节点为中跨跨中截面,4、5、9、10、14、18、30、34、36、39、43、44节点为截面改变处。
1)节点和单元的建立方法1:双击菜单进入界面逐点输入节点坐标,点击即建立了节点。
方法2:先在excel中输入所有节点的x、y、z坐标,在excel中方便计算竖坐标(根据路线纵坡和竖曲线,用路线的公式计算z坐标),例如:图1 建立节点界面点击图1中右边的,右边的模型窗口会出现节点表格图2 节点坐标表在excel表中,选取三个坐标下面的三列数值,复制,在图2中,鼠标放在X(m)下面的空格上点击右键,粘贴,在模型窗口即可显示所建立的坐标点。
用上述两种方法建立了节点后,再按下述步骤建立单元。
双击菜单进入图3所示界面。
单元类型,本例取。
对于没有平弯也不考虑纵坡的桥梁计算模型,可选;对于有平弯或者有纵坡(竖曲线)的桥梁,不可选直交。
(完整版)Midas计算实例
中南大学2010年1月1。
概要 (1)2. 设置操作环境 (2)3. 定义材料和截面 (3)4. 建立结构模型 (7)5。
非预应力钢筋输入 (10)6。
输入荷载 (30)7. 定义施工阶段 (42)8。
输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)1. 概要本桥为80+2*112+2*81+41六跨混凝土预应力连续梁桥。
图1。
分析模型桥梁概况及一般截面桥梁形式:六跨混凝土悬臂梁桥梁长度:L = 80+112+112+80+80+41m施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑1000天收缩徐变.预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1。
5e—006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数:程序计算混凝土收缩变形率: 程序计算2。
MIDAS检算现浇梁支架计算书3-1.1-整体模型
目录1 计算依据 (1)2 工程概况 (1)3 施工方案综述 (2)4 现浇支架计算 (2)4.1 支架设计 (2)4.2 设计参数及材料强度 (3)4.2.1 设计参数 (3)4.2.2 材料设计强度 (4)4.3 荷载分析 (4)4.3.1 荷载类型 (4)4.3.2 荷载组合 (4)4.3.3 箱梁混凝土自重 (5)4.3.4 模板自重 (6)4.3.5 分配梁12.6工字钢自重 (6)4.3.6 单片贝雷梁荷载统计 (6)4.4 建立模型计算分析 (6)4.4.1 模型单元 (6)4.4.2 边界条件 (7)4.4.3 模型荷载 (7)4.4.4 支架体系计算模型 (7)4.4.5 计算结果 (7)5 结论 (11)32.6m简支箱梁现浇支架计算书1 计算依据(1)连续梁相关施工图(2)《钢结构设计规范》GB50017-2003(3)《建筑结构荷载规范》(GB50009-2012)(4)《桥梁临时结构设计》中国铁道出版社(5)《路桥施工计算手册》人民交通出版社(6)《装配式公路钢桥多用途使用手册》(7)Midas设计手册2 工程概况32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。
箱梁正视图、断面图分别如图2.1.1所示。
图2.1.1 简支箱梁正视图图2.1.2 简支箱梁断面图3 施工方案综述简支梁现浇施工工序为施工准备→支架搭设→支架预压→调整模板→绑扎钢筋→安装内模→浇筑混凝土→养护→支架拆除,具体施工流程简图3.1.1所示。
施工准备测量放样支架搭设安装底模及外模支座安装支架预压沉降观测调整模板安装、绑扎钢筋安装内模测量中线及标高检查合格浇筑混凝土及预应力养护支架拆除图3.1.1 简支梁现浇流程图4 现浇支架计算4.1 支架设计现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。
midas_civil简支梁模型计算
第一讲简支梁模型的计算1.1 工程概况20 米跨径的简支梁,横截面如图1-1 所示。
图1-1 横截面1.2 迈达斯建模计算的一般步骤第一步:建立结点前第二步:建立单元处第三步:定义材料和截面理第四步:定义边界条件第五步:定义荷载工况第六步:输入荷载第七步:分析计算后处理第八步:查看结果1.3 具体建模步骤第 01 步:新建一个文件夹,命名为Model01,用于存储工程文件。
这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and桌面迈达斯模型 01。
第 02 步:启动 Midas Civil.exe ,程序界面如图 1-2 所示。
图1-2 程序界面第03 步:选择菜单“文件 (F)->新项目 (N) ”新建一个工程,如图 1-3 所示。
图1-3 新建工程第04 步:选择菜单“文件 (F)->保存 (S) ”,选择目录 C:\Documents and桌面迈达斯模型 01,输入工程名“简支梁 .mcb”。
如图 1-4 所示。
图1-4 保存工程第 05 步:打开工程目录C:\Documents and桌面迈达斯模型01,新建一个 excel 文件,命名为“结点坐标”。
在excel 里面输入结点的x, y, z 坐标值。
如图 1-5 所示。
图1-5 结点数据第06 步:选择树形菜单表格按钮“表格 ->结构表格 ->节点”,将 excel 里面的数据拷贝到节点表格,并“ ctrl+s”保存。
如图 1-6 所示。
图 1-6 建立节点第 07 步:打开工程目录桌面迈达斯模型01,再新建一个 excel 文件,命名为“单元”。
在 excel 里面输入单元结点号。
如图1-6 所示。
图1-6 单元节点第08 步:选择树形菜单表格按钮“表格 ->结构表格 ->单元”,将 excel 里面的数据拷贝到单元表格的“节点1、节点 2”列,并“ ctrl+s”保存。
迈达斯简支梁桥计算模型以及支座模拟
简支梁桥计算模型以及支座模拟简支梁计算示意图在现实状况中简支梁桥两端一般会采用支座或者直接放在墩柱台上,两端支承约束作用是一样的。
最理想做法是采用弹性连接模拟支座各个方向的约束刚度作用,但是计算模型边界条件为什么可以简化成铰支座约束自由度?首先回到结构力学中关于简支梁的定义,两端支座仅提供竖向约束,而不提供转角约束的支承结构。
简支梁为梁桥结构力学简化模型,属于静定结构,两端受铰支座约束,主要承受正弯矩作用,体系温变、混凝土收缩徐变、张拉预应力、支座沉降都不会在梁中产生附加内力。
有人说为了保证两端约束一致,考虑到支座主要是竖向支承作用,两端都采用可动铰结,只关注竖向挠度问题,那这样结构就没有水平约束,成为几何可变体系,不再是稳定结构。
另一方面如果两端都为固定铰支座,那么水平方向的约束就多了一个,变成超静定结构,结构在环境影响(体系温变、混凝土收缩徐变,预应力张拉)或变形影响(如支座沉降、组成材料尺寸偏差)下,结构内部会产生应力。
对于两端都是橡胶支座的梁桥在计算时可简化为一端固定铰结,另一端可动铰结的简支梁模型,三个约束刚好是无多余约束的稳定结构,按照简支梁简化模型进行结构受力计算,这样方便力学分析,虽然两端约束有所差异,但分析的结果与实际相符。
简支梁桥模型边界条件模拟一、采用自由度模拟边界条件一端固定铰接(约束Dx、Dy、Dz、Rx、Rz,释放Ry),一端可动铰接(约束Dy、Dz、Rx、Rz,释放Dx、Ry)。
二、采用弹性连接模拟边界条件首先“在支座底端建立节点,并将所有的支座底节点按固结约束”,这是一种模拟实际情况的建模方法。
在墩顶处结构是全约束的(D-ALL,R-all),即墩顶支座底在各个方向没有位移和转角。
然后“复制支座底节点到支座高度位置生成支座顶部节点,并将支座底节点与复制生成的顶部节点用“弹性连接”中的“一般类型”进行连接,并按实际支座刚度定义一般弹性连接的刚度”建立支座效应,三个方向的刚度值则是由实际工程中支座的类型和尺寸来确定。
Midas/Civil软件在现浇梁支架模拟计算中的应用
在 桥梁 的设计 、 施工 和科 研工 作 中 , 采用 计算 机
进 行结 构分 析 已成 为 当今 的 主流 , d sC vl 件 Mia/ ii软 也 已成 为施 工方案 计 算 、 工 方 案 优 化 的常 用 且 有 施 效 的计 算 工 具 。例 如 , 软 件 在 阳逻 大 桥 、 通 大 该 苏 桥 、 天 门大桥 、 州 湾大桥 等世界 知 名桥梁 工程 施 朝 杭
条形 基 础 。
采用 墩梁式 支架 , 0 06 0mmX 1 mr 钢 管和 2 r l
收 稿 日期 : O 20 ~ 7 2 l—51
作 者 简 介 : 友 海 ( 96 ) 男 , 程 师 ,0 0年 毕 业 于 西 南 交 陶 17 一 , 工 20 通 大学 土木 工 程 专 业 , 要从 事 桥 梁 工 程 技 术 工 作 主
・
成果 与应 用 ・
Mia/ ii软 件在 现浇 梁支 架模 拟 计算 中 的应 用 陶友 海 d sC vl
:
一
) ) I ( l (
● ●
) ) I ( l (
●
) : l (K
边
6
管
架 与 墩
p 1 - l . T 厂 1 行 车 道 厂1 行 车 道 厂1 r
为 5座 跨 路 门式 墩 , 工 中搭 设 跨 路 门式 墩 盖梁 支架 和跨 路 现 浇 连 续 弯 梁 支 架 。详 细 介 绍 了 使 用 Mia/ i 施 d sCv — i软 件建 立 空 问模 型 、 确 模 拟 受 力 进 行 现 浇 支 架 计 算 的 过 程 , 括 边 界 条 件 的 设 定 、 载 的 处 理 和 结 构 分 组 l 准 包 荷 办 法 等 。计 算 结 果 表 明 : 支架 门 式 墩 盖 梁 梁 体 长 度 方 向 稳 定 性 较 差 , 要 加 固处 理 ; 体 支 架 横 向 贝雷 梁 下 弦 需 梁 杆 剪 力 偏 大 , 为 加 强 型 。文 中 的 考 虑 解 决 问 题 的 方 法 思 路 和 过 程 可 以为 类 似 的工 程 提 供 借 鉴 。 改 关键 词 : 浇 梁 ; 架 ; 拟计 算 ; 界 条 件 ; 载 处 理 现 支 模 边 荷 中 图分 类号 : 4 文 献标 识 码 : U4 5 A 文章 编 号 :6 23 5 (0 2 0 —0 10 1 7—9 3 2 1 ) 40 6 -5
30米预应力简支箱形梁桥结构设计(迈达斯计算)
本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。
预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。
简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。
本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。
设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。
梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。
设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。
利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。
关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。
《桥梁工程midasCivil常见问题解答》
《桥梁工程midas Civil常见问题解答》第一章“文件”中的常见问题 21.1 如何方便地实现对施工阶段模型的数据文件的检查, 2 1.2 如何导入CAD 图形文件, 21.3 如何将几个模型文件合并成一个模型文件, 3 1.4 如何将模型窗口显示的内容保存为图形文件, 4第二章“编辑”中的常见问题 22.1 如何实现一次撤销多步操作, 2第三章“视图”中的常见问题第四章“模型”中的常见问题 34.1 如何进行二维平面分析, 34.2 如何修改重力加速度值, 34.3 使用“悬索桥建模助手”时,如何建立中跨跨中没有吊杆的情况,* 3 4.4 使用“悬臂法桥梁建模助手”时,如何定义不等高桥墩, 4 4.5 程序中的标准截面,为什么消隐后不能显示形状,* 4 4.6 如何复制单元时同时复制荷载, 54.7 复制单元时,单元的结构组信息能否同时被复制, 5 4.8 薄板单元与厚板单元的区别, 64.9 如何定义索单元的几何初始刚度, 64.10 索单元输入的初拉力是i端或j端的切向拉力吗, 7 4.11 如何考虑组合截面中混凝土的收缩徐变, 8 4.12 定义收缩徐变函数时的材龄与定义施工阶段时激活材龄的区别,* 8 4.13 如何自定义混凝土强度发展函数, 94.14 如何定义变截面梁,* 94.15 使用“变截面组”时,如何查看各个单元截面特性值,* 10 4.16 如何定义鱼腹形截面, 114.17 如何定义设计用矩形截面,* 114.18 如何输入不同间距的箍筋,* 124.19 定义联合截面时,“梁数量”的含义, 134.20 如何定义哑铃形钢管混凝土截面, 134.21 导入mct格式截面数据时,如何避免覆盖已有截面, 14 4.22 如何定义“设计用数值型截面”的各参数, 16 4.23 如何考虑横、竖向预应力钢筋的作用, 17 4.24 板单元“面内厚度”与“面外厚度”的区别, 18 4.25 定义“塑性材料”与定义“非弹性铰”的区别, 19 4.26 定义“非弹性铰”时,为什么提示“项目:不能同时使用的材料、截面和构件类型”, 204.27 为什么“非弹性铰特性值”不能执行自动计算, 21 4.28 为什么“非弹性铰特性值”自动计算的结果P1〉P2, 21 4.29 程序中有多处可定义“阻尼比”,都适用于哪种情况, 22 4.30 如何定义弯桥支座,* 244.31 如何快速定义多个支承点的只受压弹性连接, 24 4.32 如何模拟满堂支架, 254.33 如何连接实体单元和板单元, 254.34 如何模拟桩基础与土之间的相互作用, 26 4.35 梁格法建模时,如何模拟湿接缝, 264.36 为什么用“弹性连接”模拟支座时,运行分析产生了奇异,* 27 4.37 为什么两层桥面之间用桁架单元来连接后,运行分析产生奇异,* 274.38 “梁端刚域”与“刚域效果”的区别, 284.39 为什么定义梁端刚域后,梁截面偏心自动恢复到中心位置, 29 4.40 为什么“只受压弹性连接”不能用于移动荷载分析, 29 4.41 为什么“刚性连接”在施工阶段中不能钝化, 304.42 如何考虑PSC箱梁的有效宽度, 304.43 为什么只考虑节点质量进行“特征值分析”时,程序提示“ERROR”, 31 4.44 如何删除重复单元,第五章“荷载”中的常见问题 25.1 为什么自重要定义为施工阶段荷载, 25.2 “支座沉降组”与“支座强制位移”的区别, 25.3 如何定义沿梁全长布置的梯形荷载, 35.4 如何对弯梁定义径向荷载, 45.5 如何定义侧向水压力荷载, 55.6 如何定义作用在实体表面任意位置的平面荷载, 65.7 如何按照04公路规范定义温度梯度荷载, 75.8 定义“钢束布置形状”时,直线、曲线、单元的区别, 8 5.9 如何考虑预应力结构管道注浆, 85.10 为什么预应力钢束采用“2-D输入”与“3-D输入”的计算结果有差别, 9 5.11 “几何刚度初始荷载”与“初始单元内力”的区别, 10 5.12 定义索单元时输入的初拉力与预应力荷载里的初拉力的区别, 11 5.13 为什么定义“反应谱荷载工况”时输入的周期折减系数对自振周期计算结果没有影响, 115.14 定义“反应谱函数”时,最大值的含义, 115.15 为什么定义“节点动力荷载”时找不到已定义的时程函数, 12 5.16 如何考虑移动荷载横向分布系数, 135.17 为什么按照04公路规范自定义人群荷载时,分布宽度不起作用, 145.18 定义车道时,“桥梁跨度”的含义, 155.19 如何定义曲线车道, 155.20 定义“移动荷载工况”时,单独与组合的区别, 15 5.21 定义移动荷载子荷载工况时,“系数”的含义, 16 5.22 为什么定义车道面时,提示“车道面数据错误”, 16 5.23 “结构组激活材龄”与“时间荷载”的区别, 175.24 施工阶段定义时,边界组激活选择“变形前”与“变形后”的区别, 17 5.25 定义施工阶段联合截面时,截面位置参数“Cz”和“Cy”的含义, 17第六章“分析”中的常见问题第七章“结果”中的常见问题 37.1 施工阶段分析时,自动生成的“CS:恒荷载”等的含义, 3 7.2 为什么“自动生成荷载组合”时,恒荷载组合了两次, 3 7.3 为什么“用户自定义荷载”不能参与自动生成的荷载组合, 4 7.4 为什么在自动生成的正常使用极限状态荷载组合中,汽车荷载的组合系数不是0.4或0.7, 57.5 为什么在没有定义边界条件的节点上出现了反力, 5 7.6 为什么相同的两个模型,在自重作用下的反力不同, 6 7.7 为什么小半径曲线梁自重作用下内侧支反力偏大, 6 7.8 为什么移动荷载分析得到的变形结果与手算结果不符, 7 7.9 为什么考虑收缩徐变后得到的拱顶变形增大数十倍, 8 7.10 为什么混凝土强度变化,对成桥阶段中荷载产生的位移没有影响, 8 7.11 为什么进行钢混叠合梁分析时,桥面板与主梁变形不协调, 97.12 为什么悬臂施工时,自重作用下悬臂端发生向上变形, 10 7.13 为什么使用“刚性连接”连接的两点,竖向位移相差很大, 11 7.14 为什么连续梁桥合龙后变形达上百米, 127.15 为什么主缆在竖直向下荷载作用下会发生上拱变形, 13 7.16 为什么索单元在自重荷载作用下转角变形不协调, 14 7.17 为什么简支梁在竖向荷载下出现了轴力, 147.18 为什么“移动荷载分析”时,车道所在纵梁单元的内力远大于其它纵梁单元的内力, 15 7.19 如何在“移动荷载分析”时,查看结构同时发生的内力, 15 7.20 空心板梁用单梁和梁格分析结果相差15%, 177.21 为什么徐变产生的结构内力比经验值大上百倍, 177.22 如何查看板单元任意剖断面的内力图, 187.23 为什么相同荷载作用下,不同厚度板单元的内力结果不一样, 19 7.24为什么无法查看“板单元节点平均内力”, 217.25 如何一次抓取多个施工阶段的内力图形, 217.26 如何调整内力图形中数值的显示精度和角度, 227.27 为什么在城-A车道荷载作用下,“梁单元组合应力”与“梁单元应力PSC”不等, 25 7.28 为什么“梁单元组合应力”不等于各分项正应力之和, 25 7.29 为什么连续梁在整体升温作用下,跨中梁顶出现压应力, 25 7.30 为什么PSC截面应力与PSC设计结果的截面应力不一致, 26 7.31 为什么“梁单元应力PSC”结果不为零,而“梁单元应力”结果为零, 26 7.32 如何仅显示超过某个应力水平的杆件的应力图形, 27 7.33 为什么“水化热分析”得到的地基温度小于初始温度, 29 7.34 “梁单元细部分析”能否查看局部应力集中, 307.35 为什么修改自重系数对“特征值分析”结果没有影响, 30 7.36 为什么截面偏心会影响特征值计算结果, 317.37 为什么“特征值分析”没有扭转模态结果, 327.38 “屈曲分析”时,临界荷载系数出现负值的含义, 327.39 “移动荷载分析”后自动生成的MVmax、MVmin、MVall工况的含义, 33 7.40 为什么“移动荷载分析”结果没有考虑冲击作用, 337.41 如何得到跨中发生最大变形时,移动荷载的布置情况, 34 7.42 为什么选择影响线加载时,影响线的正区和负区还会同时作用有移动荷载, 35 7.43 为什么移动荷载分析得到的结果与等效静力荷载分析得到结果不同, 35 7.44 如何求解斜拉桥的最佳初始索力, 367.45 为什么求斜拉桥成桥索力时,“未知荷载系数”会出现负值, 38 7.46为什么定义“悬臂法预拱度控制”时,提示“主梁结构组出错”, 38 7.47 如何在预拱度计算中考虑活载效应, 387.48 桥梁内力图中的应力、“梁单元应力”、“梁单元应力PSC”的含义, 39 7.49 由“桥梁内力图”得到的截面应力的文本结果,各项应力结果的含义, 40 7.50 为什么定义查看“结果>桥梁内力图”时,提示“设置桥梁主梁单元组时发生错误~”, 41 7.51 为什么无法查看“桥梁内力图”, 417.52 施工阶段分析完成后,自动生成的“POST:CS”的含义, 42 7.53 为什么没有预应力的分析结果, 427.54 如何查看“弹性连接”的内力, 447.55 为什么混凝土弹性变形引起的预应力损失为正值, 44 7.56 如何查看预应力损失分项结果, 457.57 为什么定义了“施工阶段联合截面”后,无法查看“梁单元应力”图形, 46 7.58 为什么拱桥计算中出现奇异警告信息, 477.59 如何在程序关闭后,查询“分析信息”的内容, 48 第八章“设计”中的常见问题 28.1 能否进行钢管混凝土组合结构的设计验算, 28.2 施工阶段联合截面进行PSC设计的注意事项, 28.3 PSC设计能否计算截面配筋量, 38.4 为什么执行PSC设计时提示“跳过:没有找到钢束序号为(1)的构件”, 3 8.5 为什么执行PSC设计时提示“钢束组中有其他类型的钢束材料”, 3 8.6 为什么PSC设计时,提示“PSC设计用荷载组合数据不存在”, 3 8.7 A类构件能否分别输出长、短期荷载组合下的正截面抗裂验算结果, 4 8.8 为什么PSC设计结果中没有“正截面抗裂验算”结果, 4 8.9 为什么PSC设计时,斜截面抗裂验算结果与梁单元主拉应力分析结果不一致, 4 8.10 为什么承载能力大于设计内力,验算结果仍显示为“NG”, 5 8.11 PSC设计斜截面抗剪承载力结果表格中“跳过”的含义, 5 8.12 为什么改变箍筋数量后,对斜截面抗剪承载力没有影响, 6 8.13 为什么定义“截面钢筋”后,结构承载能力没有提高, 7 8.14 如何指定PSC设计计算书封面上的项目信息内容, 9 第九章“查询”中的常见问题 29.1 如何查询任意节点间距离, 29.2 如何查询梁单元长度、板单元面积、实体单元体积, 2 9.3 如何查询模型的节点质量, 3第十章“工具”中的常见问题 210.1 如何取消自动保存功能, 210.2 如何定义快捷键, 210.3 如何查询工程量, 310.4 为什么采用SPC计算的薄壁钢箱截面的抗扭惯性矩小于理论计算值, 4 10.5 为什么相同的截面用CAD与SPC计算的截面特性不同, 5 10.6 为什么SPC里定义的截面无法导出sec格式文件, 5第一章“文件”中的常见问题1.1 如何方便地实现对施工阶段模型的数据文件的检查,具体问题本模型进行施工阶段分析,在分析第一施工阶段时出现“WARNING : NODE NO.7 DX DOFMAY BE SINGULAR”,如下图所示。
MIDAS CIVIL 计算之 结合规范讲后处理
活载正应力影响线
–梁应力—Sig_xx 12种情况下的最不利内力下对应的应 PSC应–5~10点的意义 –剪力作用下的剪应力 –扭矩作用下的剪应力 PSC自定义截面中的另外几个数值 –主拉—Sig_p1
–主压—Sig_p2
查看各单项荷载—组合1
一、结合规范讲后处理
主讲人:江安
2006年12月厦门
计算目标
承载能力极限验算 –强度 –稳定 –机动
正常使用极限验算 –变形(预拱度) –应力 –裂缝 –振动
查看各单项荷载—振形
振形
–检查模型 –基频 –质量参与系数
查看各单项荷载—反力
反力 –施工阶段荷载—永久作用;成桥阶段
(POSTCS) —可变作用 –累计 –反力表格 –局部方向 –各工况的意义 –收缩徐变的二次力,一次无意义 –只受压(拉)计算时的判断 –CS合计的意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲简支梁模型的计算
1.1工程概况
20米跨径的简支梁,横截面如图1-1所示。
图1-1横截面
1.2迈达斯建模计算的一般步骤
第一步:建立结点
前第二步:建立单元
处
第三步:定义材料和截面
理
第四步:定义边界条件
第五步:定义荷载工况
第六步:输入荷载
第七步:分析计算
后
处
理
第八步:查看结果
1.3具体建模步骤
第01步:新建一个文件夹,命名为Model01,用于存储工程文件。
这里,在桌面的
“迈达斯”文件夹下新建了它,目录为C:\Documentsand 桌面迈达斯模型01。
第02步:启动MidasCivil.exe,程序界面如图1-2所示。
图1-2程序界面
第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。
图1-3新建工程
第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documentsand
桌面迈达斯模型01,输入工程名“简支梁.mcb”。
如图1-4所示。
图
1-4保存工程
第05步:打开工程目录C:\Documentsand 桌面迈达斯模型01,
新建一个excel文件,命名为“结点坐标”。
在excel里面输入结点的x,y,z坐标
值。
如图1-5所示。
图
1-5结点数据
第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。
如图1-6所示。
图1-6建立节点
第07步:打开工程目录桌面迈达斯模型01,再新建一个excel文件,命名为“单元”。
在excel里面输入单元结点号。
如
图1-6所示。
图1-6单元节点
第08步:选择树形菜单表格按钮“表格->结构表格->单元”,将excel里面的数据拷
贝到单元表格的“节点1、节点2”列,并“ctrl+s”保存。
如图1-7所示。
图
1-7建立单元
第09步:单击树形菜单的菜单按钮,选择“结构分析->模型->材料和截面特性->材料”,弹出材料和截面对话框,如图1-8所示。
单击“添加”,弹出“材料数据”对
话框,在设计类型栏里选择“混凝土”,在数据库栏里选择混凝土强度“C30”,其
他为默认选择,然后单击确定,并关闭材料和截面对话框。
如图1-9所示。
图1-8定义材料
图1-9材料数据
第10步:启动AutoCAD,在AutoCAD里面以cm为单位绘制如图1-1所示的截面,并保存为.dxf文件,命名为“主梁截面.dxf”,存储在工作目录C:\Documentsand
桌面迈达斯模型01。
如图1-10所示。
图
1-10绘制主梁截面
第11步:返回迈达斯主程序界面,选择菜单“工具(T)->截面特性值计算器(e)”,运
行MIDAS/SPC程序,在Setting对话框中设置Length的单位为cm(与AutoCad里面保持一致),如图1-11所示。
图1-11截面特性值计算器第12步:选择菜单“File-
>Import->AutoCADDXF”,弹出导入对话框,选择上一步生成的“主梁截面.dxf”文件,单击OK导入。
如图1-12所示。
图1-12导入dxf文件第13
步:选择树形菜单“Section->Generate”,弹出如图1-13所示的对话框,在
“Tppe”选项里选择“Plane”单选按钮。
单击图标工具栏里的按钮Select ,然后
框选截面,使截面里的每根线条都选上。
再单击树形菜单里的Apply按钮,完成截面
的生成。
如图1-13所示。
图
1-13形成截面
第14步:单击图标工具栏里的CalculateProperty按钮,树形菜单弹出如图
1-14所示的对话框,单击Apply按钮完成截面特性计算。
图
1-14计算截面特性值
第15步:单击图标工具栏里的Explort按钮,树形菜单弹出如图1-15所示的对话框,选择“MIDASSectionFile”文件,导出.sec文件,在FileName选项里选择文
件保存路径,这里保存在工作目录,并命名为“主梁截面.sec”,然后关闭
MIDAS/SPC程序。
图
1-15导出截面的为sec文件
第16步:回到迈达斯主程序界面,单击树形菜单的菜单按钮,选择“结构分析->模
型->材料和截面特性->截面”,弹出材料和截面对话框。
单击“添加”按钮,弹出截面数据对
话框。
选择“设计截面”,在下拉菜单中选择“设计用数值截面”。
名
称项输入“主梁”。
然后单击“截面数据”按钮,选择“从SPC导入”,导入上一
步生成的“主梁截面.sec”文件。
填入相关参数,如图1-16所示。
单击确认,最后
关闭材料和截面对话框。
回到主界面,显示三维模型,如图1-17所示。
图1-16截面数据图1-17模型生成
第17步:单击树形菜单的菜单按钮,选择“结构分析->模型->边界条件->一般支
承”弹出边界条件对话框,单击图标工具栏里的窗口选择工具,然后框选节点1,这里节点1为固定支座,所以勾选Dx,Dy,Dz,Rx,Rz,使节点1只能绕y轴转
动。
然后单击适用按钮。
如图1-18所示。
同样的操作,框选节点21,节点21为可变支座,所以勾选Dy,Dz,Rx,Rz,使节点21能绕y轴转动和x方向移动。
最后单击适用按钮,完成约束条件的添加。
图
1-18约束条件
第18步:单击树形菜单的菜单按钮,选择“结构分析->静力荷载->静力荷载工况”
弹出静力荷载工况对话框,输入名称、类型和说明,单击添加按钮,如图1-19所示。
图1-18静力荷载工况
第19步:单击树形菜单的菜单按钮,选择“结构分析->静力荷载->节点荷载”弹出荷载对话框,选择工况一,在Fz一栏填入-1,表示竖直向下的单位力。
框选节点
11,然后单击“适用”按钮,完成荷载添加。
如图1-19所示。
图1-19添加荷载
第20步:模型建立完成,这一步就是运行计算。
选择主菜单“分析(A)->运行分析(A)”,程序开始分析计算。
如图1-20所示。
图
1-20运行分析
第21步:计算完成之后就可以查看变形、内力和挠度的情况了。
单击树形菜单的菜
单按钮,选择“结构分析->结果->位移->位移形状”,单击适用,显示变形,如图1-
21所示。
选择“结构分析->结果->内力->梁单元内力图”,单击适用,显示内力,如图1-22所示。
选择“结构分析->结果->应力->梁单元应力图”,单击适用,显示应力,如图1-23所示。
图1-21变形图
图1-22弯矩图
图1-23梁底拉应力图。