最新全国7月自学考试信号与系统试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做试题,没答案?上自考365,网校名师为你详细解答!
全国2005年7月自学考试信号与系统试题
课程代码:02354
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号
内。每小题3分,共30分)
1. 设:如图—1所示信号f(t)。则:f(t)的数学表示式为( )。
A.f(t)=t ε(t)-(t-1)ε(t-1)
B.f(t)=(t-1)ε(t)-(1-t)ε(t-1)
C.f(t)=t ε(t)-t ε(t-1)
D.f(t)=(1-t)ε(t)-(t-1)ε(t-1)
2. 设:两信号f 1(t)和f 2(t)如图—2。则:f 1(t)和f 2(t)间的关系为( )。
A.f 2(t)=f 1(t-2)ε(t-2)
B.f 2(t)=f 1(t+2)ε(t+2)
C.f 2(t)=f 1(2-t)ε(2-t)
D.f 2(t)=f 1(2-t)ε(t+2)
3. 设:f(t)↔F(j ω)=ω
+ωj a e 0t j ,则f(t)为( )。 A.f(t)=e )t t (a 0+-ε(t)
B.f(t)=e )t t (a 0--ε(t+t 0)
C.f(t)=e )t t (a 0--ε(t-t 0)
D.f(t)=e )t t (a 0+-ε(t)
4. 设:一有限时间区间上的连续时间信号,其频谱分布的区间是( )。
A.有限,连续区间
B.无穷,连续区间
C.有限,离散区间
D.无穷,离散区间
5. 设:一LC 串联谐振回路,电感有电阻R ,电源S
U 的内阻为R S ,若电容C 上并接一负载电阻R L 。要使回路有载品质因素Q L 提高,应使( )。
A.R s 、R L 、R 均加大
B.R s 、R 减小,R L 加大
C.R s 、R L 、R 均减小
D.R s 、R L 加大,R 减小
6. 设:已知g τ(t)↔G τ(j ω)=τSa(
2
ωτ) 则:f(t)=g 2(t-1)↔F(j ω)为( )。
A.F(j ω)=Sa(ω)e j ω
B.F(j ω)=Sa(ω)e -j ω
C.F(j ω)=2Sa(ω)e j ω
D.F(j ω)=2Sa(ω)e -j ω
7. 某一离散因果稳定线性时不变系统的单位序列响应为h(n),请判断下列哪个为正确?( ) A.
∑∞-∞=∞=n |h(n)|
B.∞→n Lim h(n)=a,a ≠0
C.|h(n)|<∞
D.∞
→n Lim h(n)=0 8. 信号f(t)=ε(t)*(δ(t)-δ(t-4))的单边拉氏变换F(S)=( )。 A.s 1 B.4
s 1s 1+- C.s )e -(1-4s D.s
e -4s
9. 某一因果线性时不变系统,其初始状态为零,当输入信号为ε(t)时,其输出r(t)的拉氏变换为R(s),问当输入为ε(t-1)-ε(t-2)时,响应r 1(t)的拉氏变换R 1(s)=( )。
A.(e -s -e -2s )·R(s)
B.R(s-1)-R(s-2)
C.(2
-s 11-s 1-)R(s) D.R(s)s )e -(e -2s -s 10. 离散线性时不变系统的响应一般可分解为( )。
A.各次谐波分量之和
B.零状态响应和零输入响应
C.强迫响应和特解
D.齐次解和自由响应
二、填空题(每小题1分,共15分)
1. 已知:f(t)δ(t)=f(0)δ(t),其中f(t)应满足条件____________。
2. 设:信号f 1(t),f 2(t)如图—12,
f(t)=f 1(t)*f 2(t)
希:画出f(t)结果的图形
____________。
3. 设:y(t)=f 1(t)*f 2(t)
写出:y ′(t)=____________*____________。
4. 若:希望用频域分析法分析系统,f(t)和h(t)必须满足的条件是:____________和____________ 。
5. 一R 、L 、C 串联回路谐振时,其电压U
C0、U L0U S 间关系式为:____________,有两个显著特点为1.____________,2.____________。
6. 非周期连续时间信号的傅里叶变换F(j ω)是连续频谱,因为每个频率成份的振幅____________,故要用频谱____________表示。
7. 设:二端口网络如图—17,
则:网络参数矩阵元素之一为
z 12=0
I 11
1I U = =____________。
8. 傅里叶变换的时移性质是:当f(t)↔F(j ω),则f(t ±t 0)↔____________。
9. 根据线性时不变系统的微分特性,若:f(t)−−→−系统y f (t)
则有:f ′(t)−−→−系统
____________。 10. 已知因果信号f(t)↔F(s),则⎰∞-t
1)-f(t ·dt 的拉普拉斯变换为____________。
11. 稳定连续线性时不变系统的冲激响应h(t)满足____________。
12. 某一连续线性时不变系统对任一输入信号f(t)的零状态响应为f(t-t 0),t 0>0,则该系统函
数H(s)=____________。
13. 信号f(n)=δ(n)+(
2
1)n ε(n)的Z 变换等于____________。 14. 离散线性时不变系统的系统函数H(z)的所有极点位于单位圆上,则对应的单位序列响应h(n)为____________信号。
15. 信号f(n)=ε(n)·(δ(n)+δ(n-2))可____________信号δ(n)+δ(n-2)。
三、计算题(每小题5分,共55分)
1. 设:一串联谐振回路如图—26,已知ρ=1000Ω,C=100pF,Q=100,U s =1V
试求:(1)谐振频率f
(2)电感L
(3)电阻R
(4)回路带宽
(5)电流I ,电压U C0、U L0 2. 试:计算积分⎰∞
δ0
(t+3)e j ωt dt
3. 设:一电路系统如图—28
若:f(t)=e -(t-1)ε(t-1)
试:用傅里叶变换法,求u L (t)的零状态响应。
4. 设:系统的单位冲激响应为:h(t)=e -3t ε(t)
激励为:f(t)=ε(t)-ε(t-1)
希:用时域法,求系统的零状态响应y f (t)
5. 设:系统由微分方程描述如下:
y ″(t)+3y ′(t)+2y(t)=f ′(t)+3f(t)
试:用经典法,求系统的冲激响应h(t)。
6. 设:一系统以下列微分方程描述:
dt dy(t)+2y(t)=ε(t)
已知y(0-)=0
求:y(0+),即求:y(0+)-y(0-)=?
7. 描述某一因果线性时不变系统的微分方程为y ′(t)+ky(t)=f ′(t),其中k 为实常数,
(1)求系统函数H(s)及冲激响应h(t);
(2)确定k 的取值范围,使系统稳定;