指数函数基础练习

合集下载

指数函数基础达标测试卷(A3打印版)

指数函数基础达标测试卷(A3打印版)

新人教A 版高一数学必修1试卷指数函数基础达标试卷考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟. 2.请将各题答案写在答题卡上.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分)1. 将根式53-a 化为分数指数幂是 【 】 (A )53-a (B )53a (C )53a - (D )35-a 2. 指数函数()x f y =的图象过点()4,2,则()3f 的值为 【 】 (A )4 (B )8 (C )16 (D )13. 设5.1361.029.0121,8,4-⎪⎭⎫⎝⎛===y y y ,则 【 】(A )321y y y >> (B )312y y y >> (C )231y y y >> (D )123y y y >> 4. ()122-=+x ax f (0>a 且1≠a )的图象恒过的定点是 【 】(A )()1,2-- (B )()1,2-(C )()1,1-- (D )()1,1-5. 函数x y -=2的图象为 【 】(A ) (B )(C ) (D )6. 已知关于x 的不等式x x 24331-->⎪⎭⎫⎝⎛,则该不等式的解集为 【 】(A )[)+∞,4 (B )()+∞-,4 (C )()4,-∞- (D )(]1,4-7. 已知指数函数xa y =,若当1>x 时,恒有2>y ,则实数a 的取值范围是 【 】(A )()2,11,21 ⎪⎭⎫ ⎝⎛ (B )()2,121,0 ⎪⎭⎫⎝⎛(C )()2,1 (D )[)+∞,28. 设()x f 是定义在R 上的奇函数,当x ≥0时,()bx x f x ++=22(b 为常数),则()=-1f 【 】(A )1 (B )1- (C )3 (D )3-9. 已知()()⎩⎨⎧≥<-+=1,1,43x a x a x x f x 是R 上的增函数,则实数a 的取值范围是 【 】(A )⎪⎭⎫⎢⎣⎡+∞,23 (B )⎥⎦⎤ ⎝⎛23,1(C )()1,0 (D )()+∞,110. 已知()12-=x x f ,当c b a <<时,有()()()b f c f a f >>,则必有 【 】 (A )0,0,0<<<c b a (B )0,0,0>><c b a(C )c a 22<- (D )2221<+<c a11. 若对于任意(]1,-∞-∈x ,都有()1213<-x m 成立,则m 的取值范围是 【 】(A )⎪⎭⎫ ⎝⎛∞-31, (B )⎥⎦⎤ ⎝⎛∞-31,(C )()1,∞- (D )(]1,∞-12. 已知函数()x f ,()x g 分别是R 上的奇函数和偶函数,且满足()()x x g x f 2=-,则有 【 】(A )()()()032f f f << (B )()()()230f f f << (C )()()()302f f f << (D )()()()320f f f <<第 Ⅱ 卷(非选择题 共90分)二、填空题(每小题5分,共20分)13.已知集合{}0,1,2--=M ,⎭⎬⎫⎩⎨⎧>⎪⎭⎫ ⎝⎛=221x x N ,则=N M __________. 14. 函数()32221--⎪⎭⎫⎝⎛=x x x f 的单调递减区间是__________.15. 已知函数()x a x f =(0>a 且1≠a )在[]2,1上的最大值和最小值之和为12,则a 的值为__________.16. 已知()x f 是定义在R 上的偶函数,且在区间()0,∞-上单调递增,若实数a 满足()()221->-f f a ,则a 的取值范围是__________.三、解答题(共70分)17.(10分)(1)求值:()()[]41423202155.18336.9412-++⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--;(2)已知32121=+-a a ,求2323-+a a 的值.18.(12分)已知函数()x x b a x f -=(0>a 且1≠a ,0>b 且1≠b ),且()21=f ,()122=f .(1)求b a ,的值;(2)若[]1,2-∈x ,求()x f 的值域.19.(12分)已知函数()()x xa a x f -+=21(0>a 且1≠a )的图象经过点⎪⎭⎫⎝⎛941,2.(1)求()x f 的解析式;(2)证明:()x f 在[)+∞,0上是增函数.20.(12分)已知()122+-=x x ax f (∈a R )的图象关于原点对称.(1)求a 的值;(2)若存在[]1,0∈x ,使不等式()0122<+-+x x bx f 成立,求实数b 的取值范围.21.(12分)已知函数()x a b x f ⋅=(b a ,为常数,0>a 且1≠a )的图象经过点()6,1A ,()24,3B . (1)试确定函数()x f 的解析式;(2)若关于x 的不等式m b a xx -⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛11≥0在区间(]1,∞-上恒成立,求实数m 的值取值范围.22.(12分)已知函数()x x a ka x f --=(0>a 且1≠a )是奇函数. (1)求常数k 的值; (2)若()381=f ,且函数()()x mf a a xg x x 222-+=-在[)+∞,1上的最小值为2-,求实数m 的值.。

指数函数基础练习.docx

指数函数基础练习.docx

练习题一,选择题1.下列函数是指数函数的是()A.y = -2xB. y = 2x+,C. y = 2_xD. y=l x2.函数y =@—2尸在R上为增函数,则a的取值范围是()A. a>0 且a7^1B. a>3C. a<3D. 2<a<33.函数y=厂2+1@〉0, a^l)的图象必经过点( )A. (0,1)B. (1,1)C. (2,0)D. (2,2)4.f(x)=|jl|x|, xGR,那么班0是()A.奇函数且在(0, + <-)上是增函数B.偶函数且在(0, + 8)上是增函数C.奇函数且在(0, + 8)上是减函数D.偶函数且在(0,5.方程广「命的解为()A. 2B. -2C. -1D. 16.方程4^=令的解为()A. 2B. -2C. -1D. 17.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。

经过3个小时,这种细菌由1个nJ繁殖成()A.511 个B.512 个C.1O23 个D1024 个8.在统一平面直角坐标系中,函数/(兀)8. 设a,b,c,d 都是不等于1的正数,y = a\y = h\y = c\y = d x 在同一•处标系中的图像如图所示,则a,b,c,d 的10. y= 0.3戶的值域是( )4. (-oo,0) B.[l,+x) C.(0,l] 0.(- oo,l]11. 当xe[-l,l]时函数/(x) = 3v -2的值域是()A. --,1 B\-1,1] C. 1,- D.[0,l3 3 2 2 1 1 | £ 512. 化简(/沪)(—3决质)十(丄,沪)的结果 ( ) A . 6a B • -a C . -9a D . 9a 2设指数函数/(x) = a x (a > 0卫主1),则下列等式中不正确的是(0,1] B • (04) C • (0,+o>)13. 14. f(nx) = [f(x)]n (n e Q) f(xyy=[f(x)]n {f(y)Y (n G N") 函数 y = (x-5)°4-(x-2p{x \ x 5,x 工 2} B . {x\x > 2}{x\x>5} D . {x\2< x < 5^x > 5}15. 函数/(x) = 2-,A 1的值域是16. 若指数函数y = (a + \)x 在(—oo, + 00)上是减函数,那么(A 、 0 < a < IB 、 -l<a <0C 、D 、 a <-11&函数/(x) = 2V , g(x) = x + 2,便.f(x) = g(x)成立的x 的值的集合() A 、是0 B 、有且只有一个元索C 、有两个元素D 、有无数个元素19.下列关系式中正确的是( )9 ( 1 \3 ( 1 \3 ( \ \3 A.-<2_L5 < 丄 B.- < - 3 \2 J(2 丿 \ 2> (1 < 1 \3 (1、 1 r 1 \i c. 2-1-5 < 1 —< A D.2 15 < - < 1 (2丿a二,填空题1. 两数y=pa"—1的定义域是( — 8, 0],则实数a 的取值范围为 _________2. 函数 f (x )=(*)_l, xe [ — 1, 2]的值域为 _______ ・3. 函数/(兀)=G 沏+1(。

(完整版)指数函数习题大全

(完整版)指数函数习题大全

指数函数一、选择题1. 函数()xf x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( ) A.()()()f xy f x f y =B.()()()f xy f x f y =+ C.()()()f x y f x f y += D.()()()f x y f x f y +=+ 2.下列各式中,正确的是___.(填序号) ①12()a a -=-;②133a a -=-;③2(0)a a a =-<;④3443()()()a a a b b=≠、b 0. 3.当[]1,1-∈x 时函数23)(-=xx f 的值域是( ) [][]55A.,1 B.1,1 C.1, D.0,133⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦ 4.函数x a y =在[]1,0上的最大值与最小值的和为3,则a =( )A.21B.2C.4D.41 5.已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)b a 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( ) A 、1个 B 、2个 C 、3个 D 、4个 6.函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞7.函数 ( )的图象是( )8.函数 与 的图象大致是( ).9.下列函数式中,满足1(1)()2f x f x +=的是( ) A 、 1(1)2x + B 、14x + C 、2x D 、2x - 10.若, ,则函数 的图象一定在( ) A .第一、二、三象限 B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限11.已知 且 , ,则 是( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与 有关二、填空题1.已知234x -=,则x =___________2.设0.90.48 1.512314,8,()2y y y -===,则123,,y y y 的大小关系是________________ 3.当0a >且1a ≠时,函数2()3x f x a -=-必过定点 .4.函数()f x 的定义域为[1,4],则函数(2)x f -的定义域为______________5已知 的定义域为,则 的定义域为__________. 6.已知函数()x x f x a a-=+(0a >,1a ≠),且(1)3f =,则(0)(1)(2)f f f ++的值是 .7.若21(5)2x f x -=-,则(125)f = 8.函数x x y 28)13(0-+-=的定义域为9.方程223x x -+=的实数解的个数为________________ 10.已知,当其值域为 时, 的取值范围是_________三、解答题 1.计算141030.7533270.064()[(2)]160.012-----+-++-2.计算322526743-+-+-.3.已知,求函数 的值域.4.若函数( 且 )在区间 上的最大值是14,求的值。

指数函数练习题(包含详细答案)

指数函数练习题(包含详细答案)

1.给出下列结论: ②n a n =|a |(n >1,n ∈N *,n 为偶数);④若2x =16,3y =127,则x +y =7.其中正确的是( )A .①②B .②③C .③④D .②④答案 B解析 ∵2x =16,∴x =4,∵3y =127,∴y =-3.∴x +y =4+(-3)=1,故④错.2.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)答案 C3.函数f (x )=3-x -1的定义域、值域是( )A .定义域是R ,值域是RB .定义域是R ,值域是(0,+∞)C .定义域是R ,值域是(-1,+∞)D .以上都不对答案 C解析 f (x )=(13)x -1,∵(13)x >0,∴f (x )>-1.4.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 答案 D解析 y 1=21.8,y 2=21.44,y 3=21.5,∵y =2x 在定义域内为增函数,∴y 1>y 3>y 2.5.函数f (x )=a x -b 的图像如图,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 答案 D6.(2014·成都二诊)若函数f (x )=(a +1e x -1)cos x 是奇函数,则常数a 的值等于( ) A .-1B .1C .-12D.12 答案 D7.(2014·山东师大附中)集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .R 答案 B8.函数f (x )=3·4x -2x 在x ∈[0,+∞)上的最小值是( )A .-112B .0C .2D .10 答案 C解析 设t =2x ,∵x ∈[0,+∞),∴t ≥1.∵y =3t 2-t (t ≥1)的最小值为2,∴函数f (x )的最小值为2.9.已知函数f (x )=⎩⎨⎧x -1,x >0,2-|x |+1,x ≤0.若关于x 的方程f (x )+2x -k =0有且只有两个不同的实根,则实数k 的取值范围为( )A .(-1,2]B .(-∞,1]∪(2,+∞)C .(0,1]D .[1,+∞) 答案 A解析 在同一坐标系中作出y =f (x )和y =-2x +k 的图像,数形结合即可.10.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变化时,函数b =g (a )的图像可以是( ) 答案 B解析 函数y =2|x |的图像如图.当a =-4时,0≤b ≤4;当b =4时,-4≤a ≤0.11.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 答案 (-2,-1)∪(1,2)解析 函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则0<a 2-1<1,解得1<a <2或-2<a <-1.12.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.答案 2解析 ∵y =a x 在[0,1]上为单调函数,∴a 0+a 1=3,∴a =2.13.(2014·沧州七校联考)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.答案 [2,+∞)解析 f (1)=a 2=19,a =13,f (x )=⎩⎪⎨⎪⎧ (13)2x -4,x ≥2,(13)4-2x , x <2.∴单调递减区间为[2,+∞).14.若0<a <1,0<b <1,且,则x 的取值范围是________.答案 (3,4)解析 log b (x -3)>0,∴0<x -3<1,∴3<x <4.15.若函数y =2-x +1+m 的图像不经过第一象限,则m 的取值范围是______.答案 m ≤-216.是否存在实数a ,使函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上的最大值是14?答案 a =3或a =13解析 令t =a x ,则y =t 2+2t -1.(1)当a >1时,∵x ∈[-1,1],∴a x ∈[1a ,a ],即t ∈[1a ,a ].∴y =t 2+2t -1=(t +1)2-2在[1a ,a ]上是增函数(对称轴t =-1<1a ).∴当t =a 时,y max =(a +1)2-2=14.∴a =3或a =-5.∵a >1,∴a =3.(2)当0<a <1时,t ∈[a ,1a]. ∵y =(t +1)2-2在[a ,1a ]上是增函数, ∴y max =(1a +1)2-2=14.∴a =13或a =-15.∵0<a <1,∴a =13.综上,a =3或a =13.17.(2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中a ,b 满足a ·b ≠0.(1)若a ·b >0,判断函数f (x )的单调性;(2)若a ·b <0,求f (x +1)>f (x )时的x 的取值范围.答案 (1)a >0,b >0时,f (x )增函数;a <0,b <0时,f (x )减函数(2)a <0,b >0时,x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ;a >0,b <0时,x <log 1.5⎝ ⎛⎭⎪⎫-a 2b 解析 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,∴f (x 1)-f (x 2)<0,∴函数f (x )在R 上是增函数.当a <0,b <0时,同理,函数f (x )在R 上是减函数.(2)f (x +1)-f (x )=a ·2x +2b ·3x >0.当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ; 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .18.已知函数f (x )=-2x2x +1. (1)用定义证明函数f (x )在(-∞,+∞)上为减函数;(2)若x ∈[1,2],求函数f (x )的值域;(3)若g (x )=a 2+f (x ),且当x ∈[1,2]时g (x )≥0恒成立,求实数a 的取值范围.答案 (1)略 (2)[-45,-23] (3)a ≥85(2)∵f (x )在(-∞,+∞)上为减函数,∴f (x )的值域为[-45,-23].(3)当x ∈[1,2]时,g (x )∈[a 2-45,a 2-23].∵g (x )≥0在x ∈[1,2]上恒成立,∴a 2-45≥0,∴a ≥85.。

指数函数的练习题

指数函数的练习题

指数函数的练习题指数函数是高中数学中的重要内容,它在数学和实际生活中都有广泛的应用。

通过练习题的形式,我们可以更好地理解和掌握指数函数的相关概念和性质。

下面,我将给大家提供一些指数函数的练习题,希望能够对大家的学习有所帮助。

练习题一:简单指数函数计算1. 计算 $2^3$ 和 $(-3)^2$ 的值。

2. 计算 $10^{-2}$ 和 $\left(\frac{1}{2}\right)^{-3}$ 的值。

练习题二:指数函数的性质1. 如果 $a > 1$,那么 $a^x$ 是否是递增函数?为什么?2. 如果 $0 < a < 1$,那么 $a^x$ 是否是递增函数?为什么?3. 如果 $a > 1$,那么 $a^x$ 是否有上界?为什么?练习题三:指数函数的图像1. 画出函数 $y = 2^x$ 和 $y = \left(\frac{1}{2}\right)^x$ 的图像。

2. 画出函数 $y = 3^x$ 和 $y = \left(\frac{1}{3}\right)^x$ 的图像。

练习题四:指数函数的应用1. 假设某种细菌的数量每小时增加50%,现在有1000个细菌,经过多少小时后细菌的数量会达到5000个?2. 一笔投资每年以5%的利率复利计算,如果初始投资为10000元,经过多少年后投资会翻倍?练习题五:指数函数的方程1. 解方程 $2^x = 8$。

2. 解方程 $3^{2x-1} = \frac{1}{9}$。

通过以上的练习题,我们可以加深对指数函数的理解和运用。

在计算指数函数的值时,我们需要注意底数的正负以及指数的大小。

指数函数的性质也是我们需要掌握的重要内容,它们对于理解函数的增减性和图像的变化有着重要的影响。

通过绘制指数函数的图像,我们可以更直观地观察函数的特点和变化趋势。

指数函数在实际生活中也有广泛的应用。

在金融领域中,复利计算常常使用指数函数的概念。

(完整)指数函数基础练习及答案

(完整)指数函数基础练习及答案

指数函数练习1. 函数(1)x y 4=; (2) 4x y =; (3) x y 4-=; (4) x y )4(-=; (5) x y π=; (6) 24x y =;(7) x x y =; (8) 1()1(>-=a a y x , 且a 1≠)中,是指数函数的是2. 函数33(0,1)x y a a a-=+>≠恒过的定点是 3. 若1()21xf x a =+-是奇函数,则a = 【答案】【解析】12(),()()2112xx x f x a a f x f x --=+=+-=--- 21121()21122112122x x x x x xa a a a ⇒+=-+⇒=-==----故 4. 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( )A 、 01<<aB 、 -<<10aC 、 a =-1D 、 a <-15. 函数213-=x y 的定义域为6. 若函数()1222-=--aax xx f 的定义域为R ,则实数a 的取值范围 . []0,1-7. 设0x >,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是( B )A 1b a <<B 1a b <<C 1b a <<D 1a b <<8. 如图,指出函数①y=a x ;②y=b x ;③y=c x ;④y=d x的图象,则a,b,c,d 的大小关系是BA a 〈b 〈1〈c 〈dB b<a 〈1〈d<cC 1〈a<b 〈c 〈dD a 〈b<1〈d<c9. 下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( C )y y y yO x O x O x O xAB C D111110. 函数x xx x e e y e e--+=-的图像大致为( A )。

指数函数习题(经典含答案及详细解析)

指数函数习题(经典含答案及详细解析)

2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且A .f (b x )≤f (c x) B .f (b x )≥f (c x) lg(a x -2x-5 ≥5 [9,(9,1,,1[1,[1,,1)上的最大值比最小值大,则234x x ---+11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.的取值范围.指数函数答案指数函数答案1.1.解析:由解析:由a ⊗b =îïíïìa a ≤bba >b得f (x )=1⊗2x=îïíïì2xx,1x答案:答案:A A 2. 2. 解析:∵解析:∵f (1(1++x )=f (1(1--x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)(0)==3,∴c =3.3.∴∴f (x )在(-∞,-∞,1)1)1)上递减,在上递减,在上递减,在(1(1(1,+∞)上递增.,+∞)上递增.,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0<0,则,则3x<2x<1<1,∴,∴f (3x)>f (2x). ∴f (3x )≥f (2x ). 答案:答案:A A3.3.解析:由于函数解析:由于函数y =|2x-1|1|在在(-∞,-∞,0)0)0)内单调递减,在内单调递减,在内单调递减,在(0(0(0,+∞)内单调递增,而函数在,+∞)内单调递增,而函数在区间区间((k -1,k +1)1)内不单调,所以有内不单调,所以有k -1<0<k +1,解得-,解得-1<1<k <1. 答案:答案:C C4. 4. 解析:由题意得:解析:由题意得:A =(1,2)(1,2),,a x -2x >1且a >2>2,由,由A ⊆B 知a x -2x>1在(1,2)(1,2)上恒成立,即上恒成立,即a x -2x -1>0在(1,2)(1,2)上恒成立,令上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0ln2>0,所以函数,所以函数u (x )在(1,2)(1,2)上单调递增,则上单调递增,则u (x )>u (1)(1)==a -3,即a ≥3.≥3. 答案:答案:B B5. 5. 解析:数列解析:数列解析:数列{{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,为增函数,注意a 8-6>(3>(3--a )×7-)×7-33,所以îïíïìa >13-a >0a8-6-a -3,解得2<a <3.答案:答案:C C6. 6. 解析:解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,的图象,当a >1时,必有a -1≥12,即1<a ≤2,≤2,当0<a <1时,必有a ≥12,即12≤a <1<1,,综上,12≤a <1或1<a ≤2.≤2.答案:答案:C C7. 7. 解析:当解析:当a >1时,y =a x 在[1,2][1,2]上单调递增,故上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax 在[1,2][1,2]上单调递减,故上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线曲线||y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果的图象如图所示,由图象可得:如果||y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]1,1].. 答案:答案:[[-1,1]9. 9. 解析:如图满足条件的区间解析:如图满足条件的区间解析:如图满足条件的区间[[a ,b ],当a =-=-11,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-=-11,b =1时区间长度最大,最大值为2,故其差为1. 答案:答案:1 110. 10. 解:要使函数有意义,则只需-解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.≤1. ∴函数的定义域为∴函数的定义域为{{x |-4≤x ≤1}.≤1}. 令t =-x 2-3x +4,则t =-x 2-3x +4=-=-((x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-=-44或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x ---+的值域为的值域为[[28,1]1]..+)+(≤-时,≤234()2x x ---+在,-32]-32,-32,,-32][1a,,1a ]=1a,即(1a+=13或-15(或13.。

指数函数习题及答案完整版

指数函数习题及答案完整版

指数函数习题及答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】指数函数习题一、选择题1.定义运算ab=,则函数f(x)=12x的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( ) A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若AB,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2]D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由ab=得f(x)=12x=答案:A2.解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x ). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4.解析:由题意得:A =(1,2),a x -2x >1且a >2,由AB 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5.解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数, 注意a 8-6>(3-a )×7-3,所以,解得2<a <3. 答案:C6.解析:f (x )<x 2-a x <x 2-<a x ,考查函数y =a x 与y =x 2-的图象, 当a >1时,必有a -1≥,即1<a ≤2, 当0<a <1时,必有a ≥,即≤a <1, 综上,≤a <1或1<a ≤2. 答案:C7.解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =,得a =.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=,得a =.故a =或. 答案:或8.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9.解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110.解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +)2+,∴当-4≤x ≤1时,t max =,此时x =-,t min =0,此时x =-4或x =1. ∴0≤t ≤.∴0≤≤.∴函数y =2341()2x x --+[,1].由t =-x 2-3x +4=-(x +)2+(-4≤x ≤1)可知,当-4≤x ≤-时,t 是增函数, 当-≤x ≤1时,t 是减函数. 根据复合函数的单调性知:y =1()2[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11.解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,],故当t =,即x =-1时, y max =(+1)2-2=14. ∴a =或-(舍去). 综上可得a =3或.12.解:法一:(1)由已知得3a +2=183a =2a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。

指数练习题及答案

指数练习题及答案

指数练习题及答案一、选择题1. 计算下列哪个指数表达式的值等于32:A. \(2^5\)B. \(4^3\)C. \(5^2\)D. \(3^4\)2. 如果 \(a^m = b^n\),且 \(a\) 和 \(b\) 都是正整数,\(m\) 和\(n\) 都是正整数,那么下列哪个选项是正确的?A. \(a = b\)B. \(m = n\)C. \(a = b^{\frac{1}{n}}\)D. 无法确定3. 指数函数 \(y = 2^x\) 的图像在 x 轴上的截距是:A. 0B. 1C. -1D. 没有截距4. 以下哪个表达式是正确的:A. \((a^m)^n = a^{mn}\)B. \((a^m)^n = a^{n^m}\)C. \((a^m)^n = a^{n/m}\)D. \((a^m)^n = a^{m/n}\)5. 如果 \(x\) 和 \(y\) 是正数,且 \(x^2 = y^3\),那么 \(x\)和 \(y\) 的关系是:A. \(x = y\)B. \(x = y^{\frac{3}{2}}\)C. \(x = y^{\frac{2}{3}}\)D. \(x = y^2\)二、填空题6. 计算 \(3^3\) 的结果是______。

7. 如果 \(2^6 = 64\),那么 \(2^{12}\) 等于______。

8. 根据指数法则,\((a \cdot b)^n = a^n \cdot b^n\),那么 \((3 \cdot 5)^2\) 等于______。

9. 如果 \(4^x = 16\),那么 \(x\) 的值是______。

10. 计算 \((\frac{1}{2})^{-2}\) 的结果是______。

三、解答题11. 证明:\((a^m)^n = a^{mn}\)。

12. 给定 \(a = 2\),\(m = 3\),\(n = 4\),计算 \((a^m)^n\)。

指数函数与对数函数基础练习题

指数函数与对数函数基础练习题

指数函数、对数函数基础练习题一、选择题1、设5.1348.029.0121,8,4-⎪⎭⎫⎝⎛===y y y ,则 ( )DA. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2、如果lgx =lga +3lgb -5lgc ,那么( )CA .x =a +3b -cB .cabx 53=C .53cab x = D .x =a +b 3-c 33、设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则( )CA .M ∪N=RB .M=NC .M ⊇ND .M ⊆N4、下列函数图象正确的是( )BA B C D 5、下列关系式中,成立的是 ( )AA .10log 514log 3103>⎪⎭⎫⎝⎛>B . 4log 5110log 3031>⎪⎭⎫⎝⎛>C . 03135110log 4log ⎪⎭⎫⎝⎛>>D .0331514log 10log ⎪⎭⎫⎝⎛>>6、函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( )DA (]a ,0B ()+∞,0C (]1,0D [)+∞,1 二、填空题7、函数)2(log 221x y -=的定义域是 ,值域是 .(][)2,112 --, [)+∞,0;8、若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x的图象有两个公共点,则a 的取值范围是 .210<<a 9、函数),且10(≠>=a a a y x在[]21,上的最大值比最小值大2a,则a 的值是__ 2321或10、函数 在区间 上的最大值比最小值大2,则实数 =___.或 ;11、设函数)1(log 2-=x y ,若[]2,1∈y ,则∈x []3,5 12、已知||lg )(x x f =,设)2(),3(f b f a =-=,则a 与b 的大小关系是 a b >三、解答题13、比较下列比较下列各组数中两个值的大小:(1)6log 7,7log 6; (2)3log π,2log 0.8; (3)0.91.1, 1.1log 0.9,0.7log 0.8; (4)5log 3,6log 3,7log 3. 解:(1)∵66log 7log 61>=, 77log 6log 71<=,∴6log 7>7log 6; (2)∵33log log 10π>=, 22log 0.8log 10<=,∴3log π>2log 0.8. (3)∵.91.11.11>=,1.1 1.1log 0.9log 10<=,0.70.70.70log 1log 0.8log 0.71=<<=,∴0.91.1>0.7log 0.8> 1.1log 0.9.(4)∵3330log 5log 6log 7<<<, ∴5log 3>6log 3>7log 3.14、设x ,y ,z ∈R +,且3x =4y =6z . 求证:yx z 2111=-; 证明:设3x=4y=6z=t . ∵x >0,y >0,z >0,∴t >1,lg t >0,6lg lg ,4lg lg ,3lg lg log 3tz t y t t x ==== ∴yttttxz21lg 24lg lg 2lg lg 3lg lg 6lg 11===-=-.15、若8log 3p =,3log 5q =,求lg 5.解:∵8log 3p =, ∴)5lg 1(32lg 33lg 33log 2-==⇒=p p p , 又∵ q ==3lg 5lg 5log 3,∴ )5lg 1(33lg 5lg -==pq q , ∴ pq pq 35lg )31(=+ ∴ pqpq3135lg +=.16、设a>0,xx e a a e x f +=)(是R 上的偶函数. (1) 求a 的值;(2) 证明:)(x f 在()+∞,0上是增函数.(1)解 依题意,对一切R x ∈有)()(x f x f -=,即.x x x x ae aee a a e +=+1所以011=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-x x e e a a 对一切R x ∈成立,由此得到01=-a a , 即,12=a ,又因为a>0,所以a=1(2)证明 设,021x x <<()()()()212112212121211111121x x x x x x x x x x x x x x e e e e e e e e e e e x f x f +++--=⎪⎭⎫ ⎝⎛--=-+-=- 由0,0.,1221>->x x x x 得0,11221>->+x x x x e e e()()().,0)(,021上是增函数在即+∞<-∴x f x f x f17、已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=. (1)求函数f (x )的定义域;(2)求函数f (x )的值域. 解:(1)函数的定义域为(1,p ).(2)当p >3时,f (x )的值域为(-∞,2log 2(p +1)-2);当1<p ≤3时,f (x )的值域为(-∞,1+log2(p +1)).18、求函数y =log 22x ·log 24x(x ∈[1,8])的最大值和最小值. 【解】 令t =log 2x ,x ∈[1,8],则0≤log 2x ≤log 28即t ∈[0,3]∴y =(log 2x -1)(log 2x -2)=(t -1)(t -2)=t 2-3t +2=(t -23)2-41t ∈[0,3]∴当t =23,即log 2x =23,x =223=22时,y 有最小值=-41.当t =0或t =3,即log 2x =0或log 2x =3,也即x =1或x =8时,y 有最大值=2.教。

指数函数、对数函数、幂函数基本性质练习(含答案)

指数函数、对数函数、幂函数基本性质练习(含答案)

1、用根式的形式表示下列各式)0(>a 151a = 232a- =2、用分数指数幂的形式表示下列各式: 134y x = 2)0(2>=m mm3、求下列各式的值 12325= 232254-⎛⎫⎪⎝⎭=4、解下列方程 11318x - = 2151243=-x1、下列函数是指数函数的是 填序号1xy 4= 24x y = 3xy )4(-= 424x y =..2、函数)1,0(12≠>=-a a a y x 的图象必过定点 ..3、若指数函数xa y )12(+=在R 上是增函数;求实数a 的取值范围 ..4、如果指数函数xa x f )1()(-=是R 上的单调减函数;那么a 取值范围是 A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中;正确的是A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:10.53.1 2.33.1 20.323-⎛⎫⎪⎝⎭0.2423-⎛⎫⎪⎝⎭3 2.52.3- 0.10.2-7、函数xx f 10)(=在区间1-;2上的最大值为 ;最小值为 .. 函数xx f 1.0)(=在区间1-;2上的最大值为 ;最小值为 ..8、求满足下列条件的实数x 的范围:182>x22.05<x9、已知下列不等式;试比较n m ,的大小:1nm22< 2nm 2.02.0< 3)10(<<<a a a n m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-;求该函数的表达式并指出它的定义域、值域和单调区间..11、函数x y ⎪⎭⎫ ⎝⎛=31的图象与xy -⎪⎭⎫⎝⎛=31的图象关于 对称..12、已知函数)1,0(≠>=a a a y x在[]2,1上的最大值比最小值多2;求a 的值 ..13、已知函数)(x f =122+-x x a是奇函数;求a 的值 ..14、已知)(x f y =是定义在R 上的奇函数;且当0<x 时;xx f 21)(+=;求此函数的解析式..对数第11份1、将下列指数式改写成对数式11624= 2205=a答案为:1 2 2、将下列对数式改写成指数式13125log 5= 210log 2a =-答案为:1 2 3、求下列各式的值164log 2= 227log 9 = 30001.0lg = 41lg = 59log 3= 69log 31= 78log 32=4、此题有着广泛的应用;望大家引起高度的重视已知.,0,1,0R b N a a ∈>≠>12log a a =_________ 5log a a =_________ 3log -a a =_________ 51log a a =________一般地;ba a log =__________2证明:N a Na =log5、已知0>a ;且1≠a ;m a =2log ;n a =3log ;求n m a +2的值..6、1对数的真数大于0; 2若0>a 且1≠a ;则01log =a ; 3若0>a 且1≠a ;则1log =a a ;4若0>a 且1≠a ;则33log =a a;以上四个命题中;正确的命题是 7、若33log =x ;则=x8、若)1(log 3a -有意义;则a 的范围是 9、已知48log 2=x ;求x 的值10、已知0)](lg [log log 25=x ;求x 的值对数第12份1、下列等式中;正确的是___________________________.. 131log 3= 210log 3=303log 3= 413log 3=53log 53log 252= 612lg 20lg =-7481log 3= 824log 21=2、设1,0≠>a a 且;下列等式中;正确的是________________________.. 1)0,0(log log )(log >>+=+N M N M N M a a a 2)0,0(log log )(log >>-=-N M NM N M a a a3)0,0(log log log >>=N M NMN M a a a4)0,0(log log log >>=-N M NMN M a a3、求下列各式的值1)42(log 532⨯=__________2125log 5=__________31)01.0lg(10lg 2lg 25lg 21-+++=__________ 45log 38log 932log 2log 25333-+- =__________525lg 50lg 2lg 20lg 5lg -⋅-⋅=__________ 61lg 872lg 49lg 2167lg214lg +-+-=__________ 750lg 2lg )5(lg 2⋅+=__________85lg 2lg 3)5(lg )2(lg 33⋅++=__________ 4、已知b a ==3lg ,2lg ;试用b a ,表示下列各对数.. 1108lg =__________ 22518lg=__________ 5、1求32log 9log 38⨯的值__________;28log 7log 6log 5log 4log 3log 765432⨯⨯⨯⨯⨯=__________6、设3643==yx ;求yx 12+的值__________.. 7、若nm 110log ,2lg 3==;则6log 5等于 ..对数函数第13份1、求下列函数的定义域: 1)4(log 2x y -= 2)1,0(1log ≠>-=a a x y a 3)12(log 2+=x y411lg-=x y 5)1(log )(31-=x x f 6)3(log )()1(x x f x -=- 答案为1 2 3 4 5 6 2、比较下列各组数中两个值的大小:133log 5.4log 5.5⎽⎽⎽⎽⎽ 21133log log e π⎽⎽⎽⎽⎽3lg 0.02lg3.12⎽⎽⎽⎽⎽ 4ln 0.55ln 0.56⎽⎽⎽⎽⎽ 52log 7⎽⎽⎽⎽⎽4log 50 676log 5log 7⎽⎽⎽⎽⎽ 75.0log 7.0⎽⎽⎽⎽⎽ 1.17.080.5log 0.3;0.3log 3;3log 2 97.0log 2 7.0log 3 7.0log 2.0 答案为8 93、已知函数x y a )1(log -=在),0(+∞上为增函数;则a 的取值范围是 ..4、设函数)1(log 2-=x y ;若[]2,1∈y ;则∈x5、已知||lg )(x x f =;设)2(),3(f b f a =-=;则a 与b 的大小关系是 ..6、求下列函数的值域1 )1lg(2+=x y 2)8(log 25.0+-=x y对数函数2第14份1、已知5log,5.0log ,6.0log 325.0===c b a ;则c b a ,,的大小 ..2、函数0(3)3(log >+-=a x y a 且)1≠a 恒过定点 ..3、将函数)2(log 3+=x y 的图象向 得到函数x y 3log =的图象;将明函数3log 2y x =+的图象向 得到函数x y 3log =的图象..4、1函数1lg 1lg )(++-=x x x f 的奇偶性是 .. 2函数()1()log (0,1)111a xf x a a x x+=>≠-<<-的奇偶性为5、若函数x x f 21log )(=;则)3(),31(),41(-f f f 的大小关系为 ..6、已知函数)1,0(log ≠>=a a x y a 在]4,2[∈x 上的最大值比最小值多1;求实数a 的值 ..幂函数第15份幂函数的性质A 、xy 2= B 、2x y -=C 、x y 2log =D 、21-=xy2、写出下列函数的定义域;判断其奇偶性12x y =的定义域 ;奇偶性为 23x y =的定义域 ;奇偶性为 321x y =的定义域 ;奇偶性为 431x y =的定义域 ;奇偶性为 51-=x y 的定义域 ;奇偶性为3、若一个幂函数)(x f 的图象过点)41,2(;则)(x f 的解析式为4、比较下列各组数的大小 17.17.14.3____5.3 23.03.03.1___2.1 36.16.15.2___4.2--5、已知函数12+=m x y 在区间()+∞,0上是增函数;求实数m 的取值范围为 ..6、已知函数2221()(1)m m f x m m x --=++是幂函数;求实数m 的值为 ..函数与零点第16份1、证明:1函数462++=x x y 有两个不同的零点;2函数13)(3-+=x x x f 在区间0;1上有零点2、二次函数243y x x =-+的零点为 ..3、若方程方程2570x x a --=的一个根在区间1-;0内;另一个在区间1;2内;求实数a 的取值范围 ..二分法第17份1、设0x 是方程062ln =-+x x 的近似解;且),(0b a x ∈;1=-a b ;z b a ∈,;则b a ,的值分别为 、2、函数x x y 26ln +-=的零点一定位于如下哪个区间A 、()2,1B 、()3,2C 、()4,3D 、()6,53、已知函数()35xf x x =+-的零点[]0,x a b ∈;且1b a -=;a ;b N *∈;则a b += .4、根据表格中的数据;可以判定方程20xe x --=的一个根所在的区间 为5、函数()lg 3f x x x =+-的零点在区间(,1)m m +()m Z ∈内;则m = .6、用二分法求函数43)(--=x x f x 的一个零点;其参考数据如下:据此数据;可得方程043=--x x的一个近似解精确到0.01为 7、利用计算器;列出自变量和函数值的对应值如下表:那么方程22xx =的一个根位于下列区间的分数指数幂第9份答案12、33222,x y m3、1125 281254、1512 216指数函数第10份答案1、12、1,12⎛⎫⎪⎝⎭3、12a >- 4、C5、C6、,,<<<7、11100,,10,10100 8、13(2)1x x ><-9、1m n <2m n >3m n >10、12xy ⎛⎫= ⎪⎝⎭;定义域R;值域()0,+∞单调减区间(),-∞+∞11、y 轴12、213、114、12,0()0,012,0xx x f x x x -⎧+<⎪==⎨⎪-->⎩对数第11份答案1、略2、略3、1623234-405262-7354、12;5;3-;15;b 2略5、126、123478、1a <9、10、100对数第12份答案1、45672、43、1132337241-51-607181 4、123a b +2322a b +-5、1103236、17、1m n m+- 对数函数第13份答案1、1{}|4x x <2{}|1x x > 31|2x x ⎧⎫>-⎨⎬⎩⎭4{}|1x x >5{}|12x x <≤6{}|132x x x <<≠且2、1<2<3<4<5<6<7>80.5log 0.3>3log 2>0.3log 3; 92log 0.7<3log 0.7<7.0log 2.03、2a >4、[]3,55、a b >6、1[)0,+∞2{}|3y y ≥- 对数函数2第14份答案1、c a b >>2、()4,33、向右平移2各单位;向下平移2各单位4、1偶函数2奇函数5、11()()(3)43f f f >>-6、122或 幂函数第15份答案1、D2、略3、1R;偶函数;2R;奇函数;3{}|0x x ≥;非奇非偶函数;4R;奇函数;5{}|0x x ≠;奇函数;6{}|0x x ≠;偶函数4、245、{}|0x x >6、原点7、减8、B 9、C10、D 11、2()f x x -=12、,,><> 13、12m >-14 函数与零点第16份答案1、 略2、 3;13、解:令2()57f x x x a =--则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-<⇒>⎪⎨<⇒--<⇒>-⎪⎪>⇒-->⇒<⎩ 06a ∴<<二分法第17份答案1、2;32、B3、3其中1,2a b ==4、1;25、26、1.567、(1.8,2.2)。

指数函数基础训练题(含详解)

指数函数基础训练题(含详解)
【详解】
因为 ,所以 ,所以函数 是奇函数,
因为 ,且 与 均为增函数,
所以 在 上是增函数,
故选:A.
【点睛】
本题考查函数的奇偶性的判断,指数函数的单调性的应用,属于基础题.
4.A
【解析】
【分析】
找中间量0或1进行比较大小,可得结果
【详解】
,所以 ,
故选:A.
【点睛】
此题考查利用对数函数、指数函数的单调性比较大小,属于基础题
故答案为 .
【点睛】
对于形如 , 且 的指数型函数,其恒过的定点的求解方法:
先令 ,计算出 的值即为定点的横坐标,再根据 的值计算出 的值即为纵坐标,所以恒过的定点为 .
12.
【解析】
【分析】
利用指数函数 的单调性可得出 与 的大小关系.
【详解】
,所以,函数 为 上的增函数,
, .
故答案为: .
【点睛】
本题考查指数函数单调性的应用,属于基础题.
13.
【解析】
【分析】
由指数函数的单调性,将不等式化为 ,求解即可.
【详解】
,化为 ,
解得 ,
所以不等式的解集是 .
故答案为: .
【点睛】
本题考查指数不等式的解法,指数函数的单调性应用是解题的关键,属于基础题.
14.(1) (2) (3)
【解析】
【分析】
(1)化为同底数的幂的形式后,根据指数函数的单调性可得结果;
10.
【解析】
【分析】
令指数为0时,可得定点.
【详解】
当 时, ,
函数 的图象必经过 .
故答案为: .
【点睛】
本题考查指数型函数的定点问题,属于基础题.

指数函数练习题

指数函数练习题

指数函数练习题1. 计算下列指数函数的值:- \( f(x) = 2^x \) 当 \( x = 3 \)- \( g(x) = 3^x \) 当 \( x = -2 \)- \( h(x) = 5^x \) 当 \( x = 0.5 \)2. 确定下列指数函数的单调性:- \( f(x) = 4^x \)- \( g(x) = (1/2)^x \)3. 给定函数 \( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \),求当 \( x \) 增加时,函数值 \( y \) 的变化趋势。

4. 用指数函数表示下列数列的通项公式:- \( 2, 4, 8, 16, \ldots \)- \( 1/8, 1/4, 1/2, 1, \ldots \)5. 已知 \( f(x) = 2^x \),求 \( f(-2) \) 和 \( f(2) \) 的值。

6. 给定 \( y = 3^x \),求 \( x \) 使得 \( y = 27 \)。

7. 证明指数函数 \( y = a^x \)(其中 \( a > 0 \) 且 \( a \neq1 \))在其定义域内是连续的。

8. 一个细菌种群每分钟翻倍,初始时有 100 个细菌。

使用指数函数描述 30 分钟后细菌的数量。

9. 一个投资账户的本金为 \( P \),年利率为 \( r \)(以小数形式表示),假设每年复利一次,求该账户 \( t \) 年后的金额。

10. 已知 \( f(x) = 10^x \),求 \( f(-1) \),\( f(0) \),和\( f(1) \) 的值。

11. 给定 \( y = 2^x \),求 \( x \) 使得 \( y = 32 \)。

12. 证明对于所有 \( x > 0 \),指数函数 \( y = e^x \) 总是大于\( y = x \)。

13. 一个物体从高度 \( h \) 落下,忽略空气阻力,其下落距离\( s \) 可以用 \( s = 0.5gt^2 \) 表示,其中 \( g \) 是重力加速度,\( t \) 是时间。

指数函数基础练习题

指数函数基础练习题

指数函数基础练习题一、选择题1. 若 f(x) = 2^x,则 f(3) 的值为:A. 2B. 4C. 8D. 162. 若 g(x) = 5^x,则 g(0) 的值为:A. 0B. 1C. 5D. 103. 若 h(x) = (1/3)^x,则 h(2) 的值为:A. 1/9B. 1/6C. 1/3D. 9/14. 若 k(x) = 10^x,则 k(-1) 的值为:A. 0.1B. 1C. 10D. 1005. 若 p(x) = e^x,则 p(1) 的值为:A. 1B. eC. e^2D. e^-1二、填空题1. 若 f(x) = 2^x,解方程 f(x) = 64,x 的值为 _______。

2. 若 g(x) = 5^x,解不等式 g(x) < 1,x 的取值范围为 _______。

3. 若 h(x) = (1/4)^x,解不等式 h(x) > 16,x 的取值范围为 _______。

4. 若 k(x) = 10^x,解方程 k(x) = 1000,x 的值为 _______。

5. 若 p(x) = e^x,解方程 p(x) = 5,x 的值约为 _______(保留两位小数)。

三、计算题1. 计算 f(2) + f(0) + f(-1) 的值。

2. 计算 g(3) - g(2) 的值。

3. 计算 h(1/2) + h(1/3) 的值。

4. 计算 k(-2) - k(0) 的值。

5. 若指数函数 f(x) = a * b^x,已知 f(0) = 3,f(2) = 27,求 a 和 b 的值。

四、解答题1. 将函数 f(x) = 4 * 2^x 的图像完整地画在坐标系中,并标出至少三个点的坐标。

2. 设函数 f(x) = 3 * 5^x,求函数 f(x) 的反函数,并说明反函数的定义域和值域。

3. 证明:指数函数 f(x) = b^x (其中 b > 0 且b ≠ 1)的图像经过点(0, 1)。

指数函数习题及答案(经典)

指数函数习题及答案(经典)

指数函数习题一、选择题1.定义运算a ⊗b =⎩⎨⎧a a ≤b b a >b,则函数f (x )=1⊗2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( )A .f (b x )≤f (c x )B .f (b x )≥f (c x )C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2) 4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x -1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x --+11.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1 x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1].由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =1()2[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。

考点09 指数函数(练习)(解析版)

考点09 指数函数(练习)(解析版)

考点9指数函数【题组一定义辨析】1.下列函数中指数函数的个数是。

①y =2x ;②y =x 2;③y =2x +1;④y =x x ;⑤y =(6a –3)x 12(23a a >≠,且.【答案】2【解析】只有①⑤是指数函数;②底数不是常数,故不是指数函数;③1222x x y +==⨯是2与指数2x y =的乘积;④中底数x 不是常数,不符合指数函数的定义,所以指数函数的个数是2.2.下列函数中,指数函数的个数为。

①112x y -⎛⎫= ⎪⎝⎭②y =a x ()01a a >≠且;③y =1x ;④2112xy ⎛⎫=- ⎪⎝⎭【答案】1【解析】由指数函数的定义可判定,只有②正确.3.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是。

【答案】12⎧⎫⎨⎬⎩⎭【解析】 函数2(232)x y a a a =-+是指数函数,22321a a ∴-+=且0a >,1a ≠,由22321a a -+=解得1a =或12a =,12a ∴=,4.已知函数2()(1)(1)x f x a a a =+-+为指数函数,则a =.【答案】1【解析】 函数()()()211xf x a a a =+-+为指数函数,21110a a a ⎧+-=∴⎨+>⎩解得1a =【题组二定义域】1.函数()1f x x =+-的定义域为__________.【答案】(2,1)-【解析】函数()1f x x =-x 满足:2650140210xx x x ⎧--≥⎪⎪⎛⎫->⎨⎪⎝⎭⎪⎪-≠⎩,解得6121x x x -≤≤⎧⎪>-⎨⎪≠⎩即21x -<<.故答案为:(2,1)-2.函数31()log f x x=的定义域为。

【答案】{}1|0x x <<【解析】要使函数有意义,则01220x x x >⎧⎪≠⎨⎪-≥⎩,解得0<x <1,3.设函数()f x =,则函数2(log )y f x =的定义域为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数基础练习集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-
指数函数课后作业
(一)选择题
1.下列不等式成立的是
( )
A. 2322<
B. 322121⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛
C. ()()7.09.033<
2.函数y =a |x|(0<a <1)的图像是
( )
3.函数的()[]()2,03∈=x x f x 值域为
( )
A .[0,9] B. [0,6] C. [1,6] D.
[1,9]
4.c <0,下列不等式中正确的是
( )
5.函数y =a x-1(a >0,a ≠1)过定点,则这个定点是( )
A .(0,1)
B .(1,2)
C .(-1,)
D .(1,1)
7.函数y=2-x的图像可以看成是由函数y=2-x+1+3的图像平移后得到的,平移过程是
[ ]
A.向左平移1个单位,向上平移3个单位
B.向左平移1个单位,向下平移3个单位
C.向右平移1个单位,向上平移3个单位
D.向右平移1个单位,向下平移3个单位
[ ]
A.是奇函数,且在R上是增函数
B.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数
D.是偶函数,且在R上是减函数
围是
[ ]
A.a>1 B.0<a<1
C.0<a<1或a>1;D.无法确定
范围是
[ ] A.a∈R B.a∈R且a≠±1
C.-1<a<1 D.-1≤a≤1
(二)填空题
1.(1)函数y=4x与函数y=-4x的图像关于________对称.
(2)函数y=4x与函数y=4-x的图像关于________对称.
(3)函数y=4x与函数、y=-4-x的图像关于________对称.
4.已知x>0,函数y=(a2-8)x的值恒大于1,则实数a的取值范围是________.
6.函数y=3-|x|的单调递增区间是________.
7.函数y=a x+2-3(a>0且a≠1)必过定点________.
9.比较a=、b=、c=三个数的大小关系是________.
10.某地1996年工业生产总值为2亿元,若以后每年以10%的平均增长率发展,经过x年后,年工业生产总值为y亿元,则y关于x的函数关系式y=________.
(三)解答题
(1)作出其图像;
(2)由图像指出其单调区间;
(3)由图像指出当x取什么值时有最值.
(1)判断函数f(x)的奇偶性和单调性;
(2)对于函数f(x),当x∈(-1,1)时,有f(1-t)+f(1-t2)<0,
求t的集合A.
(a> 0且a≠1)的奇偶性,并给出证明.
参考答案
(一)选择题
1.C,2.C,3.D,4.C,5.B,6.D,7.B,8.A,9.B,10.C
(二)填空题
1.(1)x轴,(2)y轴,(3)原点.2.偶.3.[3-9,39].4.(-∞,-3)∪(3,+∞).
>,(2)>.9.c>a>b.
10.2(1+10%)x(x∈N*).
(三)解答题
(2)函数的增区间是(-∞,-2],减区间是[-2,+∞).
(3)当x=-2时,此函数有最大值1,无最小值.
函数.
当0<a<1时,类似可证,f(x)在R上为增函数.
(2)∵f(1-t)+f(1-t2)<0,f(x)是奇函数,且在R上为增函数,
4.定义域为(-∞,0)∪(0,+∞)是关于原点对称的.F(-x)=(a。

相关文档
最新文档