核磁共振和质谱分析解析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)对同一种核,当外磁场强度改变时,共振频率也随之而变。
例如,氢核在1.409 T 的磁场中,共振频率为60 MHZ ;而在2.350 T 时, 为100 MHZ。
16:51:49
核磁共振产生的条件:
(1) 核有自旋(磁性核)
(2)外磁场,使能级裂分;
(3)照射频率与外磁场的比值0 / B0 = / (2 )
B0
P
E= E2 - E1 = (h/2 ) B0
发生核磁共振时: E= h 0
共振频率 0 = (1/2 ) B0
16:51:49
总结:
(1)在相同 强度的外磁场下,不同的核,因磁旋比不同,发生共振的 频率不同,据此可以鉴别各种元素及同位素。
例如,在 2.3 T 的磁场中,1H 的共振频率为100 MHz ,13C 的为 25 MHz 只是氢核的1/4,而 133Cs 的仅仅是氢核的1/8 左右。
核磁共振成像 NMR
• 具有磁距的原子核在高强度磁场作用下, 可吸收适宜频率的电磁辐射,由低能态跃 迁到高能态的现象。如1H、3H、13C、15N、 19F、31P等原子核,都具有非零自旋而有磁 距,能显示此现象。由核磁共振提供的信 息,可以分析各种有机和无机物的分子结 构。 • 目前对核磁共振谱的研究主要集中在1H和 13C两类原子核的图谱。
6.626 1034 100.00 106 J s s 1 Ni exp 0.999984 23 1 Nj JK K 1.38066 10 298
两能级上核数目差:百万分之十;
16:51:49
驰豫(relaxtion)——高能态的核以非辐射的方式回到
讨论:
(1) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2: 11B,35Cl,79Br,81Br I=5/2:17O,127I
这类原子核的核电荷分布可看作一个椭圆 体,电荷分布不均匀,共振吸收复杂,研究应用 较少;
(2)I=1/2的原子核
如1H,13C
原子核可看作核电荷均匀分布的球体,并象陀 螺一样自旋,有磁矩产生,是核磁共振研究的主 要对象,C,H也是有机化合物的主要组成元素。
1 2.79270
H
16:51:48
13 0.70216
C
可以产生能级分裂的核
若原子核存在自旋,产生核磁矩,这些 核的 行为很像磁棒,在外加磁场
下,核磁体可以有(2I+1)种取向。
只有自旋量子数(I)不为零的核才具有磁矩
质量数(a) 原子序数(Z) 自旋量子(I) 奇数 奇或偶
1 3 5 , , 2 2 2
(1)在很强的外磁场中,某些磁 性原子核可以分裂成两个或更多 的量子化能级。 (2)用一个能量恰好等于分裂后相 邻能级差的电磁波照射,该核就可以 吸收此频率的波,发生能级跃迁,从 而产生 NMR 吸收。
16:51:48

NMR的形成
o P
I ≥1/2
P: 原子核的角动量
:
:
磁矩
磁旋比
16:51:49
NMR的形成

B0

FID


两能级上核数目差N/N= exp(- E/kT)
16:51:49
四.核磁共振波谱仪:
1.永久磁铁:提供外磁场,要
求稳定性好,均匀,不均匀性 小于六千万分之一。扫场线圈。
自旋量子数:
• I为零的原子核可以看wk.baidu.com是一种非自旋的球 体; • I为1/2的原子核可以看作是一种电荷分布均 匀的自旋球体,1H,13C,15N,19F,31P 的I均为1/2,它们的原子核皆为电荷分布均 匀的自旋球体; • I大于1/2的原子核可以看作是一种电荷分布 不均匀的自旋椭圆体。
NMR方法:
低能态
弛豫就是用来描述自旋“忘记”特定指向状态的速度。
•纵向驰豫也称自旋-晶格驰豫
处在高能级的核将能量以热能形式转移给周围分子骨架(晶格)中的其它 核,而回到低能级,这种释放能量的方式称为纵向驰豫。 周围的粒子,对固体样品是指晶格,对液体样品指周围的同类分子或溶剂分子。
横向驰豫也称自旋-自旋驰豫
自旋核之间进行内部的能量交换,高能态的核将能量转移给低能级的核,使 它变成高能态而自身返回低能态,这种释放能量的方式称为横向驰豫。
例子
1 I ,1H 1 , 13C6 ,19 F9 ,15 N 7 2 3 5 I ,11B5 , 35 Cl17 , I ,17 O8 2 2
12
偶数 偶数
16:51:48
偶数 奇数
0 1,2,3……
C6 , O8 , S16
16
32
I 1, 2H1 ,14 N 7 , I 3,10 B5
16:51:48
二、 核磁共振现象:
氢核(I=1/2),两种取向(两
个能级):
(1) 与外磁场平行,能量低,磁 量子数m=+ 1/2;
(2) 与外磁场相反,能量高, 磁量子数m=- 1/2;
16:51:48
自旋核在磁场中的行为:
1H
E2 =+ (h/4 ) B0 E E1 =- (h/4 ) B0 磁旋比; B0外磁场强度
16:51:48
基本原理:
• 根据量子力学原理,原子核与电子一样, 也具有自旋角动量( P ),其自旋角动量 的具体数值由原子核的自旋量子数决定 (I)。不同类型的原子核自旋量子数也不 同。
• 某种特定的原子核,在给定的外加磁场中, 只吸收某一特定频率射频场提供的能量, 这样就形成了一个核磁共振信号。
16:51:48
一、
原子核的自旋

(1)一些原子核像电子一样存在自旋现象, 因而有自旋角动量: I为自旋量子数 角动量: (2)由于原子核是具有一定质量的带正电的粒子,故在自旋时会 产生 核磁矩:m
= P
磁旋比,即核磁矩与自旋角动量的比值,不同的核具有不同的
磁旋比,它是磁核 一个特征(固定)值。
16:51:49
三.能级分布与弛豫过程:
不同能级上分布的核数目可由Boltzmann 定律计算:
Ei E j Ni E h exp exp exp Nj kT kT kT
磁场强度2.3488 T;25C;1H的共振频率与分配比:
相关文档
最新文档