微分方程建模案例
微分方程方法建模概述及举例
微分方程方法建模概述及举例微分方程是数学中的一个重要分支,广泛应用于各个领域,特别是自然科学和工程学科中的建模问题。
本文将概述微分方程方法建模的基本思路,并通过举例说明其在实际问题中的应用。
1.问题抽象化:首先需要将实际问题抽象成一个或一组微分方程。
通过观察问题的物理过程和规律,了解问题中的变量、因果关系以及其演化过程。
将这些信息用数学语言表示出来,通常是通过建立数学模型来描述问题。
2.建立微分方程:基于问题的抽象化模型,我们可以建立相应的微分方程。
根据物理规律和描述问题演化的数学关系,确定方程中的变量、常数和系数。
对于复杂问题,可能需要引入附加的假设和近似,以简化问题求解。
3.求解微分方程:通过求解微分方程,可以得到问题的数学解。
求解方法包括解析解和数值解两种。
解析解通常是通过变量分离、常数变易、积分变换等方法,求得方程的具体解析形式。
数值解则是通过数值计算方法,如欧拉法、龙格-库塔法等,近似计算出微分方程的解。
4.模型验证和分析:将求得的数学解与实际问题进行比较和分析,验证模型的有效性和准确性。
通过对模型进行敏感性分析和参数优化,对模型进行改进和完善。
现在我们来通过两个实际问题的建模例子,进一步说明微分方程方法的应用。
1.指数增长模型问题:假设一个生物种群遵循指数增长规律,种群数量在一段时间内以固定比率增加。
已知在初始时刻,种群数量为100只,经过3个小时后,种群数量增加到了1000只。
求解该问题。
解答:我们可以建立如下的微分方程模型:dy/dt = k * y其中,y表示种群数量,t表示时间,k为增长率。
根据已知条件,当t=0时,y=100;当t=3时,y=1000。
将这些条件代入微分方程,就可以求解得到k的值。
然后再根据k的值,求解出种群数量y随时间t的变化。
2.弹簧振动模型问题:一个弹簧系统在无外力作用下,其振动满足以下微分方程:m* d^2y/dt^2 = -k * y,其中m为弹簧的质量,k为弹簧的劲度系数。
微分方程模型-伪造名画案
知识回顾 Knowledge Review
祝您成功!
设 t 时刻的原子数为N (t) ,则有
dN N
dt
为物质的衰变常数。
初始条件
N t t0
N0
N (t)
N e (tt0 ) 0
t
t0
1
ln
N0 N
t
t0
1
ln
N0 N
半衰期 T 1 ln 2
碳-14 T 5568 年
镭-226
T 1600 年
铀-238 T 45亿年 铅-210 T 22年
微分方程建模案例—— 范. 梅格伦伪造名画案
第二次世界大战比利时解放后,荷兰保安机关开始搜 捕纳粹分子的合作者,发现一名三流画家H.A.Vanmeegren 曾将17世纪荷兰著名画家Jan.Vermeer的一批名贵油画盗卖 给德寇,于1945年5月29日通敌罪逮捕了此人。
Vanmeegren被捕后宣称他从未出卖过荷兰的利益,所 有的油画都是自己伪造的,为了证实这一切,在狱中开始 伪造Vermeer的画《耶稣在学者中间》。当他的工作快完成 时,又获悉他可能以伪造罪被判刑,于是拒绝将画老化, 以免留下罪证。
但是,许多人还是不相信其余的名画是伪造的,因为, Vanmeegren在狱中作的画实在是质量太差,所找理由都 不能使怀疑者满意。直到20年后,1967年,卡内基梅隆 大学的科学家们用微分方程模型解决了这一问题。
原理 著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
(2)钋的半衰期为138天容易测定,铅210的半 衰期为22年,对要鉴别的300多年的颜料来说, 每克白铅中每分钟钋的衰变数与铅210的衰变数 可视为相等。
微分方程建模案例
微分方程建模案例微分方程是数学中的一种重要工具,它被广泛应用于各个领域的建模和问题求解中。
下面将以一个具体的案例来介绍微分方程建模的过程,并通过求解微分方程来解决实际问题。
案例:生物种群的增长模型在生态学中,研究生物种群的增长是一个重要的课题。
种群的增长速度与种群中的个体数量有关。
如果种群中个体数量增加的速度与当前个体数量成正比,可以建立如下的微分方程模型:$$\frac{dN}{dt} = rN$$其中,$N$表示种群的个体数量,$t$表示时间,$r$表示增长的速率。
这个微分方程描述了种群个体数量随时间变化的规律。
解:首先,我们需要求解上述微分方程,得到种群个体数量随时间的函数关系。
这是一个一阶线性常微分方程,我们可以使用分离变量的方法求解。
将微分方程变形为:$$\frac{dN}{N} = rdt$$将方程两边同时积分,得到:$$\int \frac{dN}{N} = \int rdt$$经过积分运算,得到:$$\ln N = rt + C$$其中,$C$为积分常数。
进一步求解,得到:$$N = e^{rt + C}$$根据初始条件,当$t=0$时,$N=N_0$,其中$N_0$为初始种群个体数量。
代入初始条件,解得$C=\ln N_0$,将其代入上述方程,得到最终的解:$$N = N_0e^{rt}$$这个解描述了种群个体数量随时间的增长情况。
接下来,我们来解决一个具体的问题,一个兔子种群的增长情况。
假设初始时刻兔子种群中有100只兔子,增长速率$r=0.02$,那么该种群在未来的10个月内,兔子的数量会如何变化?根据上面的微分方程解,代入初始条件$N_0=100$,$r=0.02$,$t=10$,得到:$$N=100e^{0.02t}$$将$t=10$代入上述方程,可以得到10个月后兔子种群的个体数量:所以,10个月后的兔子种群中大约有122只兔子。
通过这个模型,我们可以预测种群在未来的增长情况,并在实践中应用于生态学、环境保护等领域,为实际问题的决策提供参考。
数学建模-微分方程模型-饮酒驾车问题
和 x0 ,将体重 70kg 的某人在快速喝下 2 瓶啤酒之后一段时间内他血液中酒精含量的
测量值进行处理后,得到附录 1 所示的 y0 0 时的一组数据,并采用非线性最小二乘法 拟合算法对系数进行求解,得出参数如下。 x0 5193
=2.00796
=0.1855
同时可以看到,每瓶啤酒含酒精量为 2596.5mg。 所以,得出的血液中酒精含量关于时间的函数如下。
0.1855 t e 2.00756t ) 2860.78604(e y (t ) 0.1855( t 6) 2860.8028e 2.00756(t 6) 3800.7595e
0t 6 6 t 12
利用 matlab 对以上模型进行求解。 图 3 大李血液中酒精含量随时间变化图像
y (t ) ( y0 +5721.57208)e 0.1855t 5721.57208e 2.00796t
拟合效果如图。 图 1 函数的拟合效果
图 2 残差分析图
残差分析图
600 500 400 300 200 100 0 10 11 12 13 14 15 0.5 1.5 2.5 3.5 0.25 ‐100 ‐200 ‐300 ‐400 残差 0.75 4.5 16 1 2 3 4 5 6 7 8 9
时刻为 t 时胃肠道中的酒精含量。
y (t ) 时刻为 t 时血液中的酒精含量。
胃肠道中的酒精进入血液的转移率与胃肠道中酒精量的比值。 血液中的酒精的排除率与血液中酒精量的比值。
五、模型的建立与求解
5.1 问题一 根据题目叙述,大李的实际情况符合快速饮酒的模型。为了确定函数中的系数 ,
微分方程建模 个例
A1
C
C1
分析:1.追击开始后,大家将进入正方 A 形里面,距离将变小,由于追击的规则 及四个人速度和方向的假定,四人还是 在某个正方形的顶点上。 2.会不会出现四个人绕一个圆循环追? 不会!距离会不断缩小最后到一点,就 是正方形的中心。追击曲线是四条指向 D1 中心的螺旋线(可能绕中心几周) 3.坐标架怎么建? D O点在中心,直角坐标架。
2H g
2.二氧化碳的吸收
空气通过盛有CO2的吸收剂的圆柱形器皿,已知它吸收CO2的量与 CO2的浓度及吸收层的厚度成正比,今有含CO28%的空气通过厚度 为10cm的吸收层后浓度为2%,求: (1)若吸收层变为30cm厚,出口浓度是多少? (2)要使出口浓度为1%,应该设多厚的吸收层? 解: 记吸收层厚度为d,等分n份,每小层d/n厘米。入口浓 度为8%,在每小层看吸收量,第一层后被吸收量为: kd k8%d/n,含量变为: 8%(1)
v0t y x(0) 0 y , 就是曲线的切向量, 1 x y (0) 0
Q(1,v0t) 模型里y(t),x(t)都是t的函数,但是三个 变量不好处理,注意我们要求的是y(x)。 P(x,y) O 1 x
(1 x) y y v0t实现了变量t的分离
再建立一个y(t),x(t),t的关系:t时间里导弹已 飞行的距离是可求的。 x 1 y2 dx 5v0t (1 x) y y v0t , x0 0, y0 0
v r (0) 2 2 , (2r cos dx cos dr r sin d dx r sin cos d , , y r sin dy sin dr r cos d dy r cos sin dr d 1 sin cos dx dr r r cos r sin dy
数学建模
微分方程应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一。嫌疑犯问题(尸体温度的变化率正比于尸
人口(亿)5
可以看出,人口每增长十亿的时间,由一百 年缩短为十二三年。我们赖以生存的地球,已经带 着它的60亿子民踏入了21世纪。 长期以来,人类的繁衍一直在自发地进行着。 只是由于人口数量的迅速膨胀和环境质量的急剧恶 化,人们才猛然醒悟,开始研究人类和自然的关系, 人口数量的变化规律,以及如何进行人口控制等问 题。
当T 37。 时,有21.1 11.5e 0.110 t 37,所以 C t 2.95小时 2小时57分 所以 Td 8小时20分 2小时57分 5小时23分 即被害人死亡时间大约 在下午5: ,因此张某不 23 能被排除在嫌疑犯之外 。
二、微分方程模型
引言
体温度与室温的差)
受害者的尸体于晚上7:30被发现。法医于晚上
32.6。 ,一小时 C 8:20赶到凶案现场,测得尸体体温为
后,当尸体即将被抬走时,测得尸体温度为 31.4。C
室温在几小时内始终保持21.1。C ,此案最大的嫌疑犯是 张某,但张某声称自己是无罪的,并有证人说:“下 午张某一直在办公室上班,5:00时打了一个电话,打 完电话后就离开了办公室。”从张某的办公室到受害 者家(凶案现场)步行需5分钟,现在的问题:是张某 不在凶案现场的证言能否使他被排除在嫌疑犯之外 ? 解设T (t ) 表示时刻t尸体的温度,并记晚 : 为t 0,则 8 20
返回
微分方程型建模实例题
一个数学问题都可以用不同的方法来求解的,不同的方法做出来效果不同,效率也不同。
下面就微分方程模型建模展开建模。
下面给出些微分方程建立模型的实例,供大家参考。
1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。
设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间?2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少?3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间?4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。
5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度?6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。
8.1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。
9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常数,()10.实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为0.005。
常微分方程数学建模案例分析
常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
数学建模,第三章-微分方程模型
8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt
微分方程与差分方程建模
p(r , t )dr p(r dr1 , t dt)dr (r, t ) p(r, t )drdt
[ p(r dr1 , t dt ) p(r , t dt )] [ p(r , t dt ) p(r , t )] (r , t ) p(r , t )dt , dt dr1
3)平均寿命
S (t ) t e
0 ( r ,t ) dr
t
d
t时刻出生的人,死亡率按 (r,t) 计算的平均存活时间
4)老龄化指数
控制生育率
(t ) R(t ) / S (t )
控制 N(t)不过 大 控制 (t)不过 高
Malthus模型和Logistic模型的总结 Malthus模型和Logistic模型均为对微分方程(3.7) 所作的模拟近似方程。前一模型假设了种群增长率r为一常 数,(r被称为该种群的内禀增长率)。后一模型则假设环 境只能供养一定数量的种群,从而引入了一个竞争项。 用模拟近似法建立微分方程来研究实际问题时必须对 求得的解进行检验,看其是否与实际情况相符或基本相符。 相符性越好则模拟得越好,否则就得找出不相符的主要原 因,对模型进行修改。 Malthus模型与Logistic模型虽然都是为了研究种群数量的 增长情况而建立的,但它们也可用来研究其他实际问题,只要这 些实际问题的数学模型有相同的微分方程即可。
模型4
di dt si i ds si dt i (0) i0 , s (0) s0
SIR模型
消去dt /
1 di ds s 1 i s s i0
0
相轨线
相轨线 i (s ) 的定义域
常微分方程在数学建模中的应用(免费版)
常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是|⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.;例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;@(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,t N d d 单减,即人口增长率t Nd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿. )值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为—⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 。
微分方程模型-碳定年代法
(1.6)和(1.7)两式相除,得
x(0) x (t )
x0 x(t )
将上式代入(1.5),得
t
T ln 2
ln
x(0) x(t)
(1.8)
这样由(1.8)可知,只要知道生物体在死亡时体
内14C的蜕变速度 x(0) 和现在时刻t的蜕变速
度x(t) ,就可以求得生物体的死亡时间了,在实
际计算上,都假定现代生物体中14C的蜕变
速度与生物体死亡时代生物体中14C的蜕变
速度相同。
马王堆一号墓年代的确定
马王堆一号墓于1972年8月出土,其时测得 出土的木炭标本的14C平均原子蜕变数为 29.78/s,而新砍伐木头烧成的木炭中14C 平均 原子蜕变数为38.37/s,又知14C的半衰期为 5568年,这样,我们可以 把 x(0) 38.37 / s, x(t) 29.78/ s , T=5568 年 代入(1.8),得
考古、地质学等方面的专家常用 14C测定法(通常称碳定年代法)
来估计文物或化石的年代。
14C的蜕变规律
14C是一种由宇宙射线不断轰击大气层,使 大气层产生中子,中子与氮气作用生成的具 有放射性的物质。这种放射性碳可氧化成二 氧化碳,二氧化碳被植物所吸收,而植物又 作为动物的食物,于是放射性碳被带到各种 动植物体内。
碳定年代法的计算
由(1.4)解得
t T ln x0 ln 2 x(t)
(1.5)
由于x(0),x(t)不便于测量,我们可把(1.5)作如
下修改.
对(1.2)式两边求导数,得
x(t) x0kekt kx(t) (1.6) 而 x(0) kx(0) kx0 (1.7)
常微分方程第五章微分方程建模案例
第五章微分方程建模案例微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。
微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。
微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。
本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。
下面简要介绍利用方程知识建立数学模型的几种方法:1.利用题目本身给出的或隐含的等量关系建立微分方程模型这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。
例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。
2.从一些已知的基本定律或基本公式出发建立微分方程模型我们要熟悉一些常用的基本定律、基本公式。
例如从几何观点看,曲线上某点)yy=点的导数;力学中的牛顿第二运动(x(xyy=的切线斜率即函数在该)F=,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一定律:ma阶导数等等。
从这些知识出发我们可以建立相应的微分方程模型。
例如在动力学中,如何保证高空跳伞者的安全问题。
12.数学建模-随机微分方程法
(3) 股票价格的随机模型 在对任何资产(例如股票)进行投资时,投资者所关心的是对资 产投资的回报率多大,而不是该资产的绝对增加量多大。例如, 有两种股票 A 与 B , 假定它们每年每股都平均增加10元,股票 A 的 市价为 100元/ 股,股票 B 的市价为 1000元/ 股。 显然,股票 A 是 投资者的最佳选择,因为它的回报率为 10 % , 而股票B的回报率 只有 1 % 。 在进行股票投资时,如果记 Si 是第 i 天的股票价格,则投资的 S i +1 Si 日回报率为:
dz = ε dt
对于维纳过程而言, 对于维纳过程而言 我们常称其随机变量在某个时刻的平均值为该 平均漂移” 变量在该时刻的 “平均漂移”, 而称在单位时间处的平均漂移为该维 纳过程的漂移率 ; 同时还称此随机变量在单位时间处的方差值为该 . 维纳过程的方差率. 上面讨论到的维纳过程, 维纳过程的方差率 上面讨论到的维纳过程 其漂移率应是 0 , 方差 率应是 1 . 这里 , 漂移率为 0 , 意味着在未来任何时刻 , z 的期望值 的一段时间段后, 等于它的当前值 ; 方差率为 1 , 意味着在长度为 T 的一段时间段后 z 的变化的方差为 1×T = T . × 的维纳过程,我们常称之为 漂移率为 0、方差率为 1 的维纳过程 我们常称之为 基本维纳过 、 程 . 软件程序可以写为: 生成 基本维纳过程 的 Mathematica 软件程序可以写为:
R e a l , 1 ,
- 1 0 0 , 1 0 0
;
* D t
0 . 5
,
i ,
1 0 0
= y
,
i
i i ,
+ 0 . 3 D t
1 0 0
1 ,
第五章 微分方程建模 第四节 铅球掷远模型
a = sin
和最佳成绩为
∗
−1
v ; 2 2(v + gh)
v 2 R = v + 2gh . g
∗
第四节
铅球掷远模型
如果测得该运动员的出手高度 h = 1.5 m,铅球初速 , 度为 v = 10m/s,则有 , 得最佳出手角度为 最佳成绩为
a ∗ ≈ 41.4 ,
R∗ = 11.4m .
第四节
铅球掷远模型
在右图坐标系下, 在右图坐标系下,铅球运动方程为
x ɺɺ = 0 ; ɺ x(0) = 0 , x(0) = v cos a .
y ɺɺ = − g ; ɺ y(0) = h , y(0) = v sin a .
第四节
铅球掷远模型
分= x(t ) = sinacos a + 2 sin a + v cos a , g g g
这个关系式还可以表示为
1 2
R2 g = 2v2 cos2 a(h + Rtana) .
第四节
铅球掷远模型
dR = 0 ,得最佳出手角度为 由此计算 da a∗
x ( t ) = ( v cos a )t ;
1 2 y ( t ) = (v sin a )t − gt + h . 2
又令 y ( t ) = 0 ,可得
1 t = v sin a + v 2 sin 2 a + 2 gh , g
∗
(
)
第四节
铅球掷远模型
代入 x ( t ) 可以求得铅球的投掷距离为
第四节
铅球掷远模型
某铅球运动员正在训练,如果不考虑阻力, 某铅球运动员正在训练,如果不考虑阻力,设铅球初 与地面夹角), 速度为 v,出手高度为 h,出手角度为 a (与地面夹角 , , , 与地面夹角 试建立投掷距离 R 与 v,h,a 的关系式的数学模型。并 , , 的关系式的数学模型。 在 v,h 一定的条件下求该运动员的最佳出手角度和最佳 , 成绩。 成绩。
数学建模及典型案例分析
d dt [ p(t)V (t)] p1(t)r1(t) p2 (t)r2 (t)
下面讨论池中盐水体积的变化。
t t
t t
V (t t) V (t) t
r1( )d t
r2 ( )d
由积分中值定理,存在η∈(t, t+Δt), 使得
进一步讨论
如果只测量一次尸体的温度, 你能估计出死亡的时间吗?
例2 湖水污染浓度
有一个小湖, 水容量为2000m3, 分别有一 入水口和出水口, 水流量都为0.1m3/s. 在 上午11:05时, 因交通事故一个盛有毒性 化学物质Z的容器倾翻, 在入口处注入湖 中. 于11:35时事故得到控制, 但已有数量 不详的化学物质泻入湖中, 初步估计为 5~20m3. 建立一个模型, 估计湖水污染程 度随时间的变化规律, 并估计
z rT
rT
(e V
1).
这样就可以得到物质Z在时刻t的浓度为
c(t)
z
rT
z
rT
rt
(1- e V ), 0 t
rT
rt
(e V -1)e V , T
T, t.
c(t)在[0,T]内是增函数,在[T,∞)内是减函数, 且c(t)是连续
的, 所以c(t)的最大值为
V (t t) V (t) [r1(t t) r2 (t t)]t
于是有
d dt
V
(t
)
r1
(t
)
r2
(t
)
t
V (t) V0 0 [r1( ) r2 ( )]d
d dt
3.微分方程模型(缉私艇追击走私船问题)解析
c 2
1 1 r
x c
1r
r
1 ,1
c r1
x
cr r2 1
dy
1
x
r
c
r
dx 2 c x
y(c) 0
当 x 0 时, y 缉私艇不可能追赶上走私船。
3)
r 1 ,
y
1 2
x2 c2 2c
c ln
x c
当 x 0 时, y , 缉私艇不可能追赶上走私船。
微分方程模型实例2——缉私艇追击走私船问题
六. 实验任务
1. 有一只猎狗在B点位置发现了一只兔子在正东北方距离它200米的地 方O处,此时兔子开始以8米/秒的速度向正西北方距离为120米的洞口A全 速跑去,假设猎狗在追赶兔子的时候始终朝着兔子的方向全速奔跑,用计 算机仿真法等多种方法完成下面的实验: (1) 问猎狗能追上兔子的最小速度是多少? (2) 在猎狗能追上兔子的情况下,猎狗跑过的路程是多少? (3) 画出猎狗追赶兔子奔跑的曲线图。 (4) 假设在追赶过程中,当猎狗与兔子之间的距离为30米时,兔子由于
t=t+dt; jstx=jstx-b*dt*jstx/sqrt(jstx^2+(a*t-jsty)^2); jstxb=[jstxb,jstx]; jsty=jsty+b*dt*(a*t-jsty)/sqrt(jstx^2+(a*t-jsty)^2); jstyb=[jstyb,jsty]; zscy=a*t; zscyb=[zscyb,zscy]; end zscxb=zeros(length(zscyb)); plot(jstxb,jstyb,zscxb,zscyb,'*')
5.3.2 缉私艇追击走私船问题
数学建模微分方程的应用举例
数学建模——微分方程的应用举例分布图示★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题内容要点一、衰变问题例1 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量, 则dtdx表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为.kx dtdx-= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少.解方程(8.1)得通解.ktCex -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238)的半衰期约为50亿年;通常的镭(Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21kHt H C kHt e C e hH h ==-+故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112H C e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-= (8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dt x d 当2)(*Nt x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、价格调整模型在本章第一节例3已经假设, 某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P 的单调递增函数, 商品需求量Q 是价格P 的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为P P Q bP a P S βα-=+=)(,)( (8.6)其中βα,,,b a 均为常数, 且.0,0>>βb当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格baP e +-=βα 并称e P 为均衡价格.一般地说, 当某种商品供不应求, 即Q S <时, 该商品价格要涨, 当供大于求, 即Q S >时, 该商品价格要落. 因此, 假设t 时刻的价格)(t P 的变化率与超额需求量S Q -成正比, 于是有方程)]()([P S P Q k dtdP-= 其中,0>k 用来反映价格的调整速度.将(8.6)代入方程, 可得)(P P dtdPe -=λ (8.7) 其中常数,0)(>+=k b βλ方程(8.7)的通解为t e Ce P t P λ-+=)(假设初始价格,)0(0P P =代入上式, 得,0e P P C -=于是上述价格调整模型的解为t e e e P P P t P λ--+=)()(0由于0>λ知, +∞→t 时, .)(e P t P →说明随着时间不断推延, 实际价格)(t P 将逐渐趋近均衡价格e P .四、人才分配问题模型每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t 年教师人数为),(1t x 科学技术和管理人员数目为),(2t x 又设1外教员每年平均培养α个毕业生, 每年人教育、科技和经济管理岗位退休、死亡或调出人员的比率为βδδ),10(<<表示每年大学生毕业生中从事教师职业所占比率),10(<<δ于是有方程111x x dt dx δαβ-= (8.8) 212)1(x x dtdx δβα--= (8.9) 方程(8.8)有通解t e C x )(11δαβ-=(8.10)若设,)0(101x x =则,101x C =于是得特解te x x )(101δαβ-= (8.11)将(8.11)代入(8.9)方程变为tex x dtdx )(1022)1(δαββαδ--=+ (8.12) 求解方程(8.12)得通解t te x eC x )(122)1(δαβδββ---+= (8.13)若设,)0(202x x =则,110202x x C ⎪⎪⎭⎫⎝⎛--=ββ于是得特解 tt ex e x x x )(101020211δαβδββββ--⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--= (8.14) (8.11)式和(8.14)式分别表示在初始人数分别为)0(),0(21x x 情况, 对应于β的取值, 在t 年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取,1=β即毕业生全部留在教育界, 则当∞→t 时, 由于,δα>必有+∞→)(1t x 而,0)(2→t x 说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将β接近于零. 则,0)(1→t x 同时也导致,0)(2→t x 说明如果不保证适当比例的毕业生充实教师选择好比率β, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.五、追迹问题设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走; 甲从乙的左侧O 点出发, 始终对准乙以)1(0>n mv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻t , 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是有,1tan 0xyt v y --='=θ (8.15) 由题设, 曲线的弧长OP 为,1002t nv dx y x='+⎰解出t v 0代入(8.15), 得.11)1(02⎰'+=+'-x dx y ny y x 两边对x 求导, 整理得.11)1(2y ny x '+=''- 这就是追迹问题的数学模型.这是一个不显含y 的可降阶的方程, 设p y x p y ''=''='),(, 代入方程得211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分, 得|,|ln |1|ln 1)1ln(12C x np p +--=++即 .1112nxC p p -=++ 将初始条件00||==='x x p y 代入上式, 得.11=C 于是,1112nxy y -='++' (8.16) 两边同乘,12y y '+-'并化简得,112n x y y --='+-' (8.17)(8.16)与(8.17)式相加, 得,11121⎪⎭⎫ ⎝⎛---='n n x x y两边积分, 得.)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+-代入初始条件0|0==x y 得,122-=n nC 故所求追迹曲线方程为 ),1(11)1(1)1(2211>-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=-+n n n n x n x n y n n n n甲追到乙时, 即曲线上点P 的横坐标,1=x 此时.12-=n n y 即乙行走至离A 点12-n n个单位距离时被甲追到.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章微分方程建模案例微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。
微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。
微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。
本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。
下面简要介绍利用方程知识建立数学模型的几种方法:1.利用题目本身给出的或隐含的等量关系建立微分方程模型这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。
例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。
2.从一些已知的基本定律或基本公式出发建立微分方程模型我们要熟悉一些常用的基本定律、基本公式。
例如从几何观点看,曲线y=上某点的切线斜率即函数)yy=在该点的导数;力学中的牛顿第二运(x)(xy动定律:maF=,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一阶导数等等。
从这些知识出发我们可以建立相应的微分方程模型。
例如在动力学中,如何保证高空跳伞者的安全问题。
对于高空下落的物体,我们可以利用牛顿第二运动定律建立其微分方程模型,设物体质量为m,空气阻209210力系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时刻t 时物体的下落速度为v ,初始条件:0)0(=v . 由牛顿第二运动定律建立其微分方程模型:2kv mg dtdv m -= 求解模型可得:)1]2(exp[)1]2(exp[+-=mkg t k m kg tmg v 由上式可知,当+∞→t 时,物体具有极限速度:kmg v v t ==∞→lim 1, 其中,阻力系数s k αρ=,α为与物体形状有关的常数,ρ为介质密度,s 为物体在地面上的投影面积。
根据极限速度求解式子,在ρα,,m 一定时,要求落地速度1v 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的直径大小来。
3.利用导数的定义建立微分方程模型导数是微积分中的一个重要概念,其定义为x y xx f x x f x f x x ∆∆=∆-∆+='→∆→∆00lim )()(lim )(, 商式xy ∆∆表示单位自变量的改变量对应的函数改变量,就是函数的瞬时平均变化率,因而其极限值就是函数的变化率。
函数在某点的导数,就是函数在该点的变化率。
由于一切事物都在不停地发展变化,变化就必然有变化率,也就是变化率是普遍存在的,因而导数也是普遍存在的。
这就很容易将导数与实际联系起来,建立描述研究对象变化规律的微分方程模型。
例如在考古学中,为了测定某种文物的绝对年龄,我们可以考察其中的放射性物质(如镭、铀等),已经证明其裂变速度(单位时间裂变的质量,即其变化率)与其存余量成正比。
我们假设时刻t 时该放射性物质的存余量R 是t 的函数,211由裂变规律,我们可以建立微分方程模型:kR dtdR -= 期中k 是一正的比例常数,与放射性物质本身有关。
求解该模型,我们解得:kt Ce R -=,其中c 是由初始条件确定的常数。
从这个关系式出发,我们就可以测定某文物的绝对年龄。
(参考碳定年代法)另外,在经济学领域中,导数概念有着广泛的应用,将各种函数的导函数(即函数变化率)称为该函数的边际函数,从而得到经济学中的边际分析理论。
4.利用微元法建立微分方程模型一般的,如果某一实际问题中所求的变量p 符合下列条件:p 是与一个变量t 的变化区间],[b a 有关的量;p 对于区间],[b a 具有可加性;部分量i p ∆的近似值可表示为i i t f ∆)(ξ。
那么就可以考虑利用微元法来建立微分方程模型,其步骤是:首先根据问题的具体情况,选取一个变量例如t 为自变量,并确定其变化区间],[b a ;在区间],[b a 中随便选取一个任意小的区间并记作[dt t t +,],求出相应于这个区间的部分量p ∆的近似值。
如果p ∆能近似的标示为],[b a 上的一个连续函数在t 处的值)(t f 与dt 的乘积,我们就把dt t f )(称为量p 的微元且记作dp .这样,我们就可以建立起该问题的微分方程模型:dt t f dp )(=.对于比较简单的模型,两边积分就可以求解该模型。
例如在几何上求曲线的弧长、平面图形的面积、旋转曲面的面积、旋转体体积、空间立体体积;代数方面求近似值以及流体混合问题;物理上求变力做功、压力、平均值、静力矩与重心;这些问题都可以先建立他们的微分方程模型,然后求解其模型。
5.熟悉一些经典的微分方程模型,对一些类似的问题,经过稍加改进或直接套用这些模型。
多年来,在各种领域里,人们已经建立起了一些经典的微分方程模型,熟悉这些模型对我们是大有裨益的。
212案例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过%80 )/(ml mg .现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是)/%(56ml mg ,又过两个小时后, 测得其酒精含量降为)/%(40ml mg ,试判断: 事故发生时,司机是否违反了酒精含量的规定?解 模型建立设)(t x 为时刻t 的血液中酒精的浓度, 则在时间间隔],[t t t ∆+内, 酒精浓度的改变量t t x x ∆⋅≈∆)(,即t t kx t x t t x ∆-=-∆+)()()(其中0>k 为比例常数, 式前负号表示浓度随时间的推移是递减的, 两边除以t ∆, 并令0→∆t , 则得到,d d kx tx -= 且满足40)5(,56)3(==x x 以及0)0(x x =.模型求解容易求得通解为kt c t x -=e )(, 代入0)0(x x =,得到kt x t x -=e )(0.则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得17.04056e 40e 56e 25030=⇒=⇒⎩⎨⎧==--k x x k k k 将17.0=k 代入得 25.93e 5656e 17.03017.030≈⋅=⇒=⨯⨯-x x >80.故事故发生时,司机血液中的酒精浓度已超出规定.案例2 在凌晨1时警察发现一具尸体, 测得尸体温度是C o 29, 当时环境温度是C o 21.一小时后尸体温度下降到C o 27,若人的正常体温是C o 37,估计死者的死亡时间.解 运用牛顿冷却定律T ')(T T out -=-α,得到它的通解为)(0out out T T T T -+=t α-e ,这里0T 是当0=t 时尸体的温度,也就是所求的死亡时间时尸体的温度,将题目提供的参数代入213⎩⎨⎧=-+=-++--27e)2137(2129e )2137(21)1(t t αα 解得168e =-t α 和 166e )1(=+-t α 则34e =α, 进一步得)(409.2)12(,2877.0h Ln t ≈-=≈αα. 这时求得的t 是死者从死亡起到尸体被发现所经历的时间, 因此反推回去可推测死者的死亡时间大约是前一天的夜晚35:10.案例3 建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并求h v ,一定的条件下求最佳出手角度.解 在图5-1坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x = ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为 ααααcos )2sin (cos sin 212222v g h g v g v R ++=. 图5-1 这个关系还可表为 )tan (cos 2222ααR h v g R +=. 由此计算0d d =*ααR,得最佳出手角度和最佳成绩分别为:)(2sin 21gh v v+=-*α, gh v gv R 22+=*. 设s m v m h /10,5.1==,则 4.41=*α,m 4.11=*R .案例4 在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象.解 记B 的浓度为时间t 的函数)(t y ,A 的浓度为)(t x .一、假设2141.mol 1A 分解后产生nmol B .2.容体的体积在反应过程中不变.二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx t x-=d d ,其中k 为比例系数.设反应开始时0=t ,A 的浓度为0x ,由题中条件知当20=t (分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-0)0(d d x x kx t x得kt x t x -=e )(0,它应满足020021e )20(x x x k ==⨯-.解得 2ln 201=k ,所以得)2ln 200e )((tx t x -=.由于B 的浓度为x 浓度减少量的n 倍,故有)e 1(]e [)(2ln 2002ln 2000ttnx x x n t y ---=-=.三、作图(如图5-2)nx215图5-2案例5 车间空气清洁问题某生产车间内有一台机器不断排出2CO ,为了清洁车间里的空气,用一台鼓风机通入新鲜空气来降低车间空气中的2CO 含量,那么,上述做法的清洁效果如何呢?这一问题是利用平衡原理来建模,即建立其微分方程模型.请注意,平衡原理在建立微分方程模型时常表现为区间],[x x x ∆+上的微元形式:某个量在该区间上的增加量等于该区间段内进入量与迁出量的差.解 1.问题分析与假设上述清洁空气的原理是通过鼓风机通入新鲜的空气,其2CO 含量尽管也有但较低.新鲜空气与车间内空气混合后再由鼓风机排出室外,从而降低2CO 含量.为讨论问题方便,假设通入的新鲜空气能与原空气迅速均匀混合,并以相同风量排出车间.此问题中的主要变量及参数设为:车间体积:V (单位:立方米),时间:t (单位:分钟),机器产生2CO 速度:r (单位:立方米/分钟),鼓风机风量:K (单位:立方米/分钟)新鲜空气中2CO 含量:%m ,开始时刻车间空气中2CO 含量:%x ,t 时刻车间空气中2CO 含量:)%(t x .2.模型建立考虑时间区间],[t t t ∆+,并利用质量守恒定律:],[t t t ∆+内车间空气中2CO 含量的“增加”等于],[t t t ∆+时间内,通入的新鲜空气中2CO 的量加上机器产生的2CO 的量减去鼓风机排出的2CO 的量,即2CO 增加量=新鲜空气中含有2CO 量+机器产生的2CO 量-排出的2CO 量 数学上表示出来就是216⎰∆+-∆+∆=-∆+tt t ds s Kx t r t Km t x t t x V )%(%)]()%([.其中0≥t . 于是令0→∆t ,取极限便得⎪⎩⎪⎨⎧=>-=.)0(,0,0x x t bx a dt dx 其中.,100VK b V r Km a =+= 3.模型求解与分析此问题是一阶线性非齐次常微分方程的初值问题. 解之得},exp{)100(100}exp{)()(00t VK K r Km x K r Km bt b a x b a t x -+-++=--+= 这就是t 时刻车间空气中含2CO 的百分比.显然,,1000x K r Km <+否则2CO 含量只能增加. 令,+∞→t 则有,100100)(lim Kr m K r Km t x t +=+=+∞→ 这说明了,车间空气中2CO 的含量最多只能降到%100K r Km +.由此可见,鼓风机风量越大(K 越大),新鲜空气中2CO 含量越低(m 越小),净化效果越好.4.模型的优缺点分析及改进方向:优点:模型简洁,易于分析和理解,并体现了建立微分方程模型的基本思想,而且所得到的结果与常识基本一致.缺点:建立数学模型时所作出的假设过于简单.改进方向:(1) 考虑新鲜空气和车间内的空气的混合扩散过程重新建模;(2)若要使得车间空气中的2CO 含量达到一定的指标,确定最优的实施方案.案例6 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。