高中三角函数公式大全-必背知识点
三角函数公式大全高中
三角函数公式大全高中一、同角三角函数的基本关系。
1. 平方关系。
- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(secα=(1)/(cosα))- 1+cot^2α=csc^2α(cscα=(1)/(sinα))2. 商数关系。
- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。
1. 终边相同的角的三角函数值相等。
- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值关系。
- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y = x对称的角的三角函数值关系(α与(π)/(2)-α)- sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα4. 关于y轴对称的角的三角函数值关系(α与π-α) - sin(π-α)=sinα- cos(π - α)=-cosα- tan(π-α)=-tanα5. 关于原点对称的角的三角函数值关系(α与π+α) - sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα6. α与(3π)/(2)-α的三角函数关系。
- sin((3π)/(2)-α)=-cosα- cos((3π)/(2)-α)=-sinα- tan((3π)/(2)-α)=cotα7. α与(3π)/(2)+α的三角函数关系。
- sin((3π)/(2)+α)=-cosα- cos((3π)/(2)+α)=sinα- tan((3π)/(2)+α)=-cotα三、两角和与差的三角函数公式。
- sin(A + B)=sin Acos B+cos Asin B2. 两角和的余弦公式。
高中数学必修四三角函数知识点总结
高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。
高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。
高中三角函数公式汇总与解析
高中三角函数公式汇总与解析【引言】三角函数是高中数学中的一大重点内容,掌握三角函数的公式是学好数学的基础。
本文将对高中三角函数的公式进行汇总与解析,以帮助读者更好地理解和运用这些公式。
【正文】一、角度与弧度的转换在三角函数中,角可以用度数表示,也可以用弧度表示。
两者之间的转换关系如下:1度=π/180弧度1弧度=180/π度二、基本三角函数公式1. 正弦函数(sin)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. sin(-x) = -sin(x)b. sin(x+π) = -sin(x)2. 余弦函数(cos)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. cos(-x) = cos(x)b. cos(x+π) = -cos(x)3. 正切函数(tan)①定义域:x≠(2k+1)π/2,其中k为整数②值域:实数集R③周期性:T=π④奇偶性:a. tan(-x) = -tan(x)b. tan(x+π) = tan(x)三、和差角公式1.正弦函数:sin(A±B) = sin(A)cos(B)±cos(A)sin(B) 2.余弦函数:cos(A±B) = cos(A)cos(B)∓sin(A)sin(B)tan(A±B) = (tan(A)±tan(B))/(1∓tan(A)tan(B))四、倍角公式1.正弦函数:sin(2A) = 2sin(A)cos(A)2.余弦函数:cos(2A) = cos²(A) - sin²(A) = 2cos²(A) - 1 = 1 - 2sin²(A) 3.正切函数:tan(2A) = (2tan(A))/(1 - tan²(A))五、半角公式1.正弦函数:sin(A/2) = ±√[(1-cos(A))/2]2.余弦函数:cos(A/2) = ±√[(1+cos(A))/2]3.正切函数:tan(A/2) = ±√[(1-cos(A))/(1+cos(A))]六、倒数公式1.正弦函数:csc(A) = 1/sin(A)sec(A) = 1/cos(A)3.正切函数:cot(A) = 1/tan(A)七、和角公式1.正弦函数:sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)2.余弦函数:cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)3.正切函数:tan(A) + tan(B) = (sin(A)+sin(B))/(cos(A)+cos(B))【结论】本文对高中三角函数的公式进行了汇总与解析,包括角度与弧度的转换、基本三角函数公式、和差角公式、倍角公式、半角公式、倒数公式和和角公式。
三角函数公式的高考数学知识点总结知识点总结
三角函数公式的高考数学知识点总结知识点总结三角函数公式大全:锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA -SinA =1-2SinA =2CosA -1tan2A=(2tanA)/(1-tanA )(注:SinA 是sinA的平方 sin2(A) )+cot=2/sin2tan-cot=-2cot21+cos2=2cos1-cos2=2sin1+sin=(sin/2+cos/2)=2sina(1-sina)+(1-2sina)sina =3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa =4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin (a/2)=(1-cos(a))/2cos (a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinsin = [cos(-)-cos(+)] /2coscos = [cos(+)+cos(-)]/2sincos = [sin(+)+sin(-)]/2cossin = [sin(+)-sin(-)]/2诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当_+y+z=nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA) +(cosB) +(cosC) =1-2cosAcosBcosC(8)(sinA) +(sinB) +(sinC) =2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0 cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0 以及 sin ()+sin (-2/3)+sin (+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
三角函数公式大全(方便记忆)
三角函数公式大全(方便记忆)三角函数是数学中非常重要的一类函数,常见的三角函数有正弦函数、余弦函数、正切函数等。
它们是描述角度和边长之间关系的函数,广泛应用于几何、物理、工程等领域。
下面是一些常用的三角函数公式,方便记忆和应用。
1. 正弦函数(sine function):正弦函数是一个周期性函数,周期为2π,其定义域为实数集,值域为[-1,1]。
正弦函数的公式如下:sin(x) = o/h = b/c2. 余弦函数(cosine function):余弦函数也是一个周期性函数,周期为2π,其定义域为实数集,值域为[-1,1]。
余弦函数的公式如下:cos(x) = a/h = c/b3. 正切函数(tangent function):正切函数是一个周期性函数,周期为π,其定义域为实数集(除了π/2+kπ,k为整数),值域为全体实数。
正切函数的公式如下:tan(x) = o/a = b/c4. 余切函数(cotangent function):余切函数也是一个周期性函数,周期为π,其定义域为实数集(除了kπ,k为整数),值域为全体实数。
余切函数的公式如下:cot(x) = a/o = c/b5. 正割函数(secant function):正割函数是一个周期性函数,周期为2π,其定义域为实数集(除了π/2+kπ,k为整数),值域为(-∞,-1]∪[1,+∞)。
正割函数的公式如下:sec(x) = h/a = c/b6. 余割函数(cosecant unction):余割函数也是一个周期性函数,周期为2π,其定义域为实数集(除了kπ,k为整数),值域为(-∞,-1]∪[1,+∞)。
余割函数的公式如下:csc(x) = h/o = b/a7.三角函数的和差公式:sin(a±b) = sin(a)cos(b) ± cos(a)sin(b)cos(a±b) = cos(a)cos(b) ∓ sin(a)sin(b)tan(a±b) = (tan(a) ± tan(b))/(1 ∓ tan(a)tan(b))8.三角函数的倍角公式:sin(2a) = 2sin(a)cos(a)cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a) tan(2a) = 2tan(a)/(1 - tan^2(a))9.三角函数的半角公式:sin(a/2) = ±√[(1 - cos(a))/2]cos(a/2) = ±√[(1 + cos(a))/2]tan(a/2) = ±√[(1 - cos(a))/(1 + cos(a))]10.倍角和半角公式的推广:sin(θ) = 2sin(θ/2)cos(θ/2)cos(θ) = cos^2(θ/2) - sin^2(θ/2)tan(θ) = (2tan(θ/2))/(1 - tan^2(θ/2))这只是一些常见的三角函数公式,还有很多其他的公式和性质,需要根据具体的问题和应用进行进一步的学习和探索。
高中三角函数公式大全 必背知识点
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A)=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=b a b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 其他a•sina+b•cosa=)b (a 22+×sin(a+c)[其中tanc=a b]a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a)21-sin(a) = (sin 2a -cos 2a)2非重点三角函数csc(a) =a sin 1 sec(a) =a cos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosαcos (2π+α)= -si nαtan (2π+α)= -cotαcot (2π+α)= -tanα sin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)物理公式A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b||a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n (n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/ 41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1 )=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B 是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2 ]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2pxx2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(1)tanA+tanB+tanC=tanA·tanB·tanC (2)sinA+tsinB+sinC=4cos(A/2)cos(B/2) cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBco sC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)co sβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。
高中数学三角函数公式大全
高中数学三角函数公式大全1500字高中数学中的三角函数公式是非常重要且常用的知识点,它们有助于解决各种与三角函数有关的问题。
下面是一个包含一些高中数学三角函数公式的大全,共计1500字。
一、基本公式1. 弦的定义:在单位圆上,点P(x,y)对应的弦为OP,则弦的长度为2y。
2. 弧度制和角度制的转换公式:- 弧度制转角度制:角度 = 弧度× 180°/π- 角度制转弧度制:弧度 = 角度×π/180°3. 余弦函数和正弦函数的关系:cos²θ + sin²θ = 14. 三角函数的互余关系:- 余弦函数和正弦函数的互余关系:cosθ = sin(π/2 - θ),sinθ = cos(π/2 - θ)- 正割函数和余割函数的互余关系:secθ = csc(π/2 - θ),cscθ = sec(π/2 - θ)- 正弦函数和余割函数的互余关系:sinθ = csc(θ),cscθ = sin(θ)- 余弦函数和正割函数的互余关系:cosθ = sec(θ),secθ = cos(θ)- 正弦函数和余弦函数的互余关系:sin(π - θ) = sinθ, cos(π - θ) = -cosθ二、和差角公式1. 余弦函数的和差角公式:- cos(α + β) = cosαcosβ - sinαsinβ- cos(α - β) = cosαcosβ + sinαsinβ2. 正弦函数的和差角公式:- sin(α + β) = sinαcosβ + cosαsinβ- sin(α - β) = sinαcosβ - cosαsinβ3. 余弦函数和正弦函数的和差角公式的整理形式:- cos(α + β) = cosαcosβ - sinαsinβ = cosαcosβ - cosαsinβtanβ = cosβ(cosα - sinαtanβ)- cos(α - β) = cosαcosβ + sinαsinβ = cosαcosβ + cosαsinβtanβ = cosβ(cosα + sinαtanβ)- sin(α + β) = sinαcosβ + cosαsinβ = cosαsinβ/cosβ + sinα = (sinαcosβ + cosαsin β)/cosβ = (sinαsecβ + cosαtanβ)/cosβ- sin(α - β) = sinαcosβ - cosαsinβ = cosαsinβ/cosβ - sinα = (sinαcosβ - cosαsin β)/cosβ = (sinαsecβ - cosαtanβ)/cosβ4. 正切函数的和差角公式:- tan(α + β) = (tanα + tanβ)/(1 - tanαtanβ)- tan(α - β) = (tanα - tanβ)/(1 + tanαtanβ)5. 反余弦函数的和差角公式:- arccos(cosαcosβ - sinαsinβ) = α + β或 2π - (α + β)- arccos(cosαcosβ + sinαsinβ) = α - β或 2π - (α - β)6. 反正弦函数的和差角公式:- arcsin(sinαcosβ + cosαsinβ) = α + β或π - (α + β) - arcsin(sinαcosβ - cosαsinβ) = α - β或π - (α - β)三、倍角公式1. 余弦函数和正弦函数的倍角公式:- cos2θ = 2cos²θ - 1- sin2θ = 2sinθcosθ2. 余弦函数和正切函数的倍角公式:- cos2θ = 1 - 2sin²θ = (1 - tan²θ)/(1 + tan²θ)3. 正弦函数和正切函数的倍角公式:- sin2θ = 2sinθcosθ = 2tanθ/(1 + tan²θ)4. 正切函数的倍角公式:- tan2θ = (2tanθ)/(1 - tan²θ)5. 反余弦函数的倍角公式:- arccos(2cos²θ - 1) = 2θ或 2π - 2θ- arccos((1 - tan²θ)/(1 + tan²θ)) = 2θ或 2π - 2θ6. 反正弦函数的倍角公式:- arcsin(2sinθcosθ) = 2θ或π - 2θ- arcsin(2tanθ/(1 + tan²θ)) = 2θ或π - 2θ四、半角公式1. 余弦函数的半角公式:- cos(θ/2) = ±√((1 + cosθ)/2)2. 正弦函数的半角公式:- sin(θ/2) = ±√((1 - cosθ)/2)3. 正切函数的半角公式:- tan(θ/2) = sinθ/(1 + cosθ) = (1 - cosθ)/sinθ4. 反余弦函数的半角公式:- arccos((1 + cosθ)/2) = θ/2 或 -θ/2- arccos((1 - cosθ)/2) = θ/2 或 -θ/25. 反正弦函数的半角公式:- arcsin(√((1 - cosθ)/2)) = θ/2 或π/2 - θ/2- arcsin(-√((1 - cosθ)/2)) = -θ/2 或π/2 + θ/2六、特殊角值1. 30°和150°的正弦、余弦和正切值:- sin30° = 1/2,cos30° = √(3)/2,tan30° = 1/√(3)- sin150° = 1/2,cos150° = -√(3)/2,tan150° = -1/√(3) 2. 45°和135°的正弦、余弦和正切值:- sin45° = √(2)/2,cos45° = √(2)/2,tan45° = 1- sin135° = √(2)/2,cos135° = -√(2)/2,tan135° = -13. 60°和120°的正弦、余弦和正切值:- sin60° = √(3)/2,cos60° = 1/2,tan60° = √(3)- sin120° = √(3)/2,cos120° = -1/2,tan120° = -√(3)以上是一些高中数学三角函数公式的大全。
高中数学三角函数公式归纳
高中数学三角函数公式归纳高中数学三角函数公式归纳三角函数是高中数学中的重要内容,其公式是学习三角函数的基础。
在高中数学中,我们主要学习了正弦函数、余弦函数、正切函数以及其反函数。
这些函数都有一些常用的公式,下面我将对这些公式进行归纳整理。
1. 正弦函数的公式:(1)周期性: sin(x+2πk) = sin x,其中 k∈Z(2)奇偶性: sin(-x) = - sin x(3)值域范围: -1 ≤ sin x ≤ 1(4)正弦函数的平方等于余弦函数的平方与1的差值: sin²x + cos²x = 12. 余弦函数的公式:(1)周期性: cos(x+2πk) = cos x,其中 k∈Z(2)奇偶性: cos(-x) = cos x(3)值域范围: -1 ≤ cos x ≤ 1(4)余弦函数的平方等于正弦函数的平方与1的差值: sin²x + cos²x = 13. 正切函数的公式:(1)周期性: tan(x+πk) = tan x,其中 k∈Z(2)奇偶性:tan(-x) = - tan x(3)值域范围: -∞ < tan x < ∞4. 反正弦函数的反函数公式:(1)正弦函数的反函数: y = sin^(-1)(x) => x = sin(y)(2)值域范围: - π/2 ≤ y ≤ π/2(3)对称性: sin^(-1)(-x) = - sin^(-1)(x)(4)角度关系:sin^(-1)(x) + cos^(-1)(x) = π/25. 反余弦函数的反函数公式:(1)余弦函数的反函数: y = cos^(-1)(x) => x = cos(y)(2)值域范围: 0 ≤ y ≤ π(3)对称性: cos^(-1)(-x) = π - cos^(-1)(x)(4)角度关系:sin^(-1)(x) + cos^(-1)(x) = π/26. 反正切函数的反函数公式:(1)正切函数的反函数: y = tan^(-1)(x) => x = tan(y)(2)值域范围: -π/2 < y < π/2以上是常用的三角函数公式,对于学习三角函数非常重要。
高三数学公式:三角函数公式知识点总结
高三数学公式:三角函数公式知识点总结这篇高三数学公式:三角函数公式大全是特地为大家整理的,希望对大家有所帮助!三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA -SinA =1-2SinA =2CosA -1tan2A=(2tanA)/(1-tanA )(注:SinA 是sinA的平方 sin2(A) )三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin3a=sin(2a+a)2))/2=covers(2)/2tan ()=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos1-cos2=2sin1+sin=(sin/2+cos/2)=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin (a/2)=(1-cos(a))/2cos (a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinsin = [cos(-)-cos(+)] /2coscos = [cos(+)+cos(-)]/2sincos = [sin(+)+sin(-)]/2cossin = [sin(+)-sin(-)]/2诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin() = sincos() = -cossin() = -sinco(2)1+(tan) =(sec)(3)1+(cot) =(csc)(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA) +(cosB) +(cosC) =1-2cosAcosBcosC(8)(sinA) +(sinB) +(sinC) =2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0 cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0 以及 sin ()+sin (-2/3)+sin (+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
高中数学_三角函数公式大全全部覆盖.doc
三角公式汇总一、任意角的三角函数在角 的终边上任取 一点 P( x, y) ,记:22rxy ,..正弦: sinyx余弦: cosrry 正切: tanx注:我们还可以用单位圆中的有向线段表示任意角的三角函数: 如图,与单位圆有关的有向 线段 MP 、 OM 、 AT 分别叫做角 的正弦线、余弦线、正.. 切线。
二、同角三角函数的基本关系式商数关系: tansin ,cos平方关系: sin 2cos 21,三、诱导公式⑴2k ( kZ ) 、 、 、 、2 的三角函数值, 等于 的同名函数值,前面加上一个把看成锐角时原函数值的符号。
(口诀:函数名..不变,符号看象限)⑵、、3、3的三角函数值, 等于 的异名函数值,2 222前面加上一个把 看成锐角时原函数值的符号。
(口诀:函数名改变,符号看..象限)四、和角公式和差角公式sin( ) sin cos cos sin sin( ) sin cos cos sin cos() coscossinsincos( ) cos cos sin sintan()tantantan tan1 tan()tan tantantan1五、二倍角公式sin 22sin coscos2cos 2sin 22 cos 21 1 2sin 2( )2 tantan21 tan 2二倍角的余弦公式( ) 有以下常用变形:(规律:降幂扩角,升幂缩角)1 cos2 2cos 2 1 cos22sin 21 sin2 (sincos )21 sin2 (sincos)2cos 21 cos2 , sin 21 sin2 , tan1 cos2 sin 2。
22sin 21 cos2六、万能公式(可以理解为二倍角公式的另一种形式)2 tan 1 tan 2 , tan 22 tan 。
sin 22, cos2tan 2 1 tan 21 tan1万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。
高中数学三角函数应知应会必记公式汇总
高中数学三角函数应知应会必记公式汇总设是一个任意角,它的终边与单位圆交于点(,),那么正弦sinα=y,余弦cosα=x,正切tanα=(x≠0).设α是一个任意角,它的终边上任意一点P(x,y),记r=,那么正弦sinα=,余弦cosα=,正切tanα= (x≠0).3同角三角函数的基本关系式(必记)(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα(α≠+kπ,k∈Z).记)5和角、差角公式(必记)6二倍角公式(必记)二倍角公式有以下常用变形结论:(规律:升幂缩角,降幂扩角)(会推导)1、升幂公式:2、降幂公式:3、正余弦的和差与积结构互化4、正切的和差与积结构互化5、倍半关系弦切互化7半角公式(熟悉其中一组即可)(会推导)8万能公式(可以理解为二倍角公式的另一种形式)(会推导)万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
万能公式推导思路:9和差化积公式(会推导)了解和差化积公式的推导,有助于我们理解并掌握好公式:10积化和差公式(会推导)我们可以把积化和差公式看成是和差化积公式的逆应用。
11辅助角公式(必记)12正弦定理(必记)13余弦定理(必记)14三角形的面积公式(必记)说明:三角问题解题思路的三个转化方向:1、转化角:分析角的和差倍半关系、异角化同角、非特殊角化特殊角。
2、转化函数名:异名化同名、弦切互化、正余弦互化。
3、转化结构:凑公式结构、和差与积结构的互化、升幂或降幂、因式分解、配完全平方、分式的合并与拆分,整式与分式的互化,出根号,分母有理化、通分、消项、去分母等代数式恒等变形方法与三角公式的分解合并的灵活结合。
三角函数高中所有公式
三角函数高中所有公式三角函数是数学中一个重要的分支,它在高中阶段就开始学习,是数学课程中的重要内容。
在学习三角函数的过程中,掌握所有的公式是非常重要的,下面我将详细介绍高中阶段学习三角函数涉及的所有公式。
1. 正弦函数的相关公式:正弦函数的定义域为实数集,值域为[-1,1],是一个奇函数,周期为2π。
其主要公式包括:- 正弦函数的基本关系式:sin^2(x) + cos^2(x) = 1- 正弦函数的诱导公式:sin(-x) = -sin(x),sin(π±x) = ±sin(x),sin(π/2±x) = cos(x),sin(3π/2±x) = -cos(x)- 正弦函数的和差化积公式:sin(x±y) = sinx*cosy ± cosx*siny2. 余弦函数的相关公式:余弦函数的定义域为实数集,值域为[-1,1],是一个偶函数,周期为2π。
其主要公式包括:- 余弦函数的基本关系式:sin^2(x) + cos^2(x) = 1- 余弦函数的诱导公式:cos(-x) = cos(x),cos(π±x) = -cos(x),cos(π/2±x) = -sin(x),cos(3π/2±x) = sin(x)- 余弦函数的和差化积公式:cos(x±y) = cosx*cosy - sinx*siny3. 正切函数的相关公式:正切函数的定义域为实数集,值域为全体实数,是一个奇函数,周期为π。
其主要公式包括:- 正切函数的定义:tan(x) = sin(x) / cos(x)- 正切函数的诱导公式:tan(-x) = -tan(x),tan(π±x) = tan(x)- 正切函数的和差化积公式:tan(x±y) = (tanx ± tany) / (1 ∓ tanx*tany)4. 余切函数的相关公式:余切函数的定义域为实数集,值域为全体实数,是一个奇函数,周期为π。
三角函数公式大全(很详细)
高中三角函数公式大全[图]1 三角函数的界说1.1 三角形中的界说图1 在直角三角形中界说三角函数的示意图在直角三角形ABC,如下界说六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数1.2 直角坐标系中的界说图2 在直角坐标系中界说三角函数示意图在直角坐标系中,如下界说六个三角函数:•正弦函数r•余弦函数•正切函数•余切函数•正割函数•余割函数2 转化关系2.1 倒数关系2.2 平方关系2 和角公式3 倍角公式.半角公式3.1 倍角公式3.2 半角公式3.3 全能公式4 积化和差.和差化积4.1 积化和差公式证实进程起首,sin(α+β)=sinαcosβ+sinβcosα(已证.证实进程见《和角公式与差角公式的证实》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式)则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于是sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式)将正弦的和角.差角公式相加,得到sin(α+β)+sin(α-β)=2sinαcosβ则sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一)同样地,应用引诱公式cosα=sin(π/2-α),有cos(α+β)=sin[π/2-(α+β)]=sin(π/2-α-β)=sin[(π/2-α)+(-β)]=sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α)=cosαcosβ-sinαsinβ于是cos(α+β)=cosαcosβ-sinαsinβ(余弦和角公式)那么cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβcos(α-β)=cosαcosβ+sinαsinβ(余弦差角公式)将余弦的和角.差角公式相减,得到cos(α+β)-cos(α-β)=-2sinαsinβ则sinαsinβ=cos(α-β)/2-cos(α+β)/2(“积化和差公式”之二)将余弦的和角.差角公式相加,得到cos(α+β)+cos(α-β)=2cosαcosβ则cosαcosβ=cos(α+β)/2+cos(α-β)/2(“积化和差公式”之三)这就是积化和差公式:sinαcosβ=sin(α+β)/2+sin(α-β)/2sinαsinβ=cos(α-β)/2-cos(α+β)/2cosαcosβ=cos(α+β)/2+cos(α-β)/24.2 和差化积公式部分证实进程:sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosαcos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβcos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβtan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+sinβcosα)/ (cosαcosβ-sinαsinβ)=(cosαtanαcosβ+cosβtanβcosα)/(cosαcosβ-cosαtanαcosβtanβ)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=tan[α+(-β)]=[tanα+tan(-β)]/[1-tanαtan(-β)]=(tanα-tanβ)/(1+tanαtanβ)引诱公式•sin(-a)=-sin(a)•cos(-a)=cos(a)•sin(pi/2-a)=cos(a)•cos(pi/2-a)=sin(a)•sin(pi/2+a)=cos(a)•cos(pi/2+a)=-sin(a)•sin(pi-a)=sin(a)•cos(pi-a)=-cos(a)•sin(pi+a)=-sin(a)•cos(pi+a)=-cos(a)•tgA=tanA=sinA/cosA两角和与差的三角函数•sin(a+b)=sin(a)cos(b)+cos(α)sin(b)•cos(a+b)=cos(a)cos(b)-sin(a)sin(b)•sin(a-b)=sin(a)cos(b)-cos(a)sin(b)•cos(a-b)=cos(a)cos(b)+sin(a)sin(b)•tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))•tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三角函数和差化积公式•sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)•sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)•cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)•cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式•sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]•cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]•sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]二倍角公式•sin(2a)=2sin(a)cos(a)•cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)半角公式•sin^2(a/2)=(1-cos(a))/2•cos^2(a/2)=(1+cos(a))/2•tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))全能公式•sin(a)= (2tan(a/2))/(1+tan^2(a/2))•cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))•tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式•a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [个中,tan(c)=b/a]•a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [个中,tan(c)=a/b]•1+sin(a)=(sin(a/2)+cos(a/2))^2•1-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数•csc(a)=1/sin(a)•sec(a)=1/cos(a)双曲函数•sinh(a)=(e^a-e^(-a))/2•cosh(a)=(e^a+e^(-a))/2•tgh(a)=sinh(a)/cosh(a)经常应用公式表(一)1.乘法公式(1)(a+b)²=a2+2ab+b2 (2)(a-b)²=a²-2ab+b²(3)(a+b)(a-b)=a ²-b ²(4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b²) 2.指数公式:(1)a 0=1 (a ≠0)(2)a P-=P a1(a ≠0)(3)a mn =m na(4)a m a n =a n m + (5)a m ÷a n=n m aa =anm -(6)(a m )n =a mn(7)(ab )n =a n b n(8)(b a)n =n nba (9)(a )2=a(10)2a =|a|3.指数与对数关系:(1)若a b=N,则Nb a log =(2)若10b=N,则b=lgN(3)若be =N,则b=㏑N4.对数公式:(1)ba b a =log , ㏑e b =b (2)N aaN=log ,e Nln =N(3)aN N a ln ln log =(4)ab b e a ln =(5)N M MN ln ln ln +=(6)N M N Mln ln ln-=(7)Mn M n ln ln =(8)㏑nM =M n ln 15.三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =6.特别角三角函数值:7.倍角公式:(1)αααcos sin 22sin =(2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a -(2)(2cos α)2=2cos 1a +(3)2tanα=a a sin cos 1+=a a cos 1sin +9.三角函数与反三角函数关系:(1)若x=siny,则y=arcsinx (2)若x=cosy,则y=arccosx(3)若x=tany,则y=arctanx (4)若x=coty,则y=arccotx10.函数界说域求法:(1)分式中的分母不克不及为0,(a 1α≠0)(2)负数不克不及开偶次方,(a α≥0)(3)对数中的真数必须大于0,(N a log N>0)(4)反三角函数中arcsinx,arccosx 的x 知足:(--1≤x ≤1)(5)上面数种情形同时在某函数消失时,此时应取其交集.11.直线情势及直线地位关系:(1)直线情势:点斜式:()00x x k y y -=-斜截式:y=kx+b 两点式:121121x x x x y y y y --=--(2)直线关系:111:b x k y l +=222:b x k y l +=平行:若21//l l ,则21k k =垂直:若21l l ⊥,则121-=⋅k k经常应用公式表(二)1.求导轨则:(1)(u+v )/=u /+v /(2)(u-v )/=u /-v /(3)(cu )/=cu /(4)(uv )/=uv /+u /v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 2.根本求导公式:(1)(c )/=0 (2)(x a )/=ax1-a (3)(a x )/=a xlna(4)(e x )/=e x (5)(㏒a x )/=a x ln 1(6)(lnx )/=x 1(7)(sinx )/=cosx (8)(cosx )/=-sinx(9)(tanx )/=2)(cos 1x =(secx )2(10)(cotx )/=-2)(sin 1x =-(cscx )2 (11)(secx)/=secx*tanx (12)(cscx)/=-cscx*cotx(13)(arcsinx)/=211x - (14)(arccosx)/=-211x -(15)(arctanx)/=211x + (16)()211cot x x arc +-=' 3.微分(1)函数的微分:dy=y /dx(2)近似盘算:|Δx|很小时,f ()x x ∆+0=f (x 0)+f /(x 0)*x ∆4.根本积分公式(1)kdx=kx+c (2)C x a dx x a a ++=+⎰111(3)c x dx x +=⎰ln 1(4)C a a dx a xx +=⎰ln(5)⎰+=c e dx e x x (6)⎰+-=Cx xdx cos sin (7)⎰+=C x xdx sin cos (8)C x dx x xdx +==⎰⎰tan cos 1sec 22(9)c x dx x xdx +-==⎰⎰cot sin 1csc 22(10)⎰+=-c x dx x arcsin 112 (11)c x dx x +=+⎰arctan 1125.定积分公式:(1)⎰⎰=b aba dt t f dx x f )()( (2)⎰=a a dx x f 0)( (3)()()dx x f dx x f ab b a ⎰⎰-=(4)⎰⎰⎰+=b ac a b cdx x f dx x f dx x f )()()((5)若f (x )是[-a,a]的持续奇函数,则⎰-=a a dx x f 0)((6)若f (x )是[-a,a]的持续偶函数,则:6.积分定理:(1)()()x f dt t f x a ='⎥⎦⎤⎢⎣⎡⎰(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==⎰8.积分办法 ()()b ax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin =()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =⎰ ⎰ - = a a adxx f dx x f 0 ) ( 2 ) (()3分部积分法:⎰⎰-udv=vduuv。
高中三角函数公式大全
高中三角函数公式大全1. 正弦函数(sine function):正弦函数用sin表示,定义域为实数集,值域为[-1,1]。
基本关系式:sinθ=opposite/hypotenuse基本恒等式:- 余角关系式:sin(π/2 - θ) = cosθ ;sin(π/2 + θ) = cosθ- 符号关系式:sin(-θ) = - sinθ ;sin(θ + 2πn) = sinθ (n 为任意整数)三角和差化简公式:- 和差化简:sin(α ± β) = sinα * cosβ ± cosα * sinβ- 差和化简:sinα + sinβ = 2 * sin((α + β) / 2) *cos((α - β) / 2)- 和差化简:sinα - sinβ = 2 * cos((α + β) / 2) *sin((α - β) / 2)2. 余弦函数(cosine function):余弦函数用cos表示,定义域为实数集,值域为[-1,1]。
基本关系式:cosθ = adjacent/hypotenuse基本恒等式:- 余角关系式:cos(π/2 - θ) = sinθ ;cos(π/2 + θ) = -sinθ- 符号关系式:cos(-θ) = cosθ ;cos(θ + 2πn) = cosθ (n 为任意整数)三角和差化简公式:- 和差化简:cos(α ± β) = cosα * cosβ ∓ sinα * sinβ- 差和化简:cosα + cosβ = 2 * cos((α + β) / 2) * cos((α - β) / 2)- 和差化简:cosα - cosβ = -2 * sin((α + β) / 2) *sin((α - β) / 2)3. 正切函数(tangent function):正切函数用tan表示,定义域为实数集,值域为整个实数集。
基本关系式:tanθ = opposite/adjacent基本恒等式:- 余角关系式:tan(π/2 - θ) = 1/tanθ ;tan(π/2 + θ) = -1/tanθ三角和差化简公式:- 和差化简:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanα * tanβ)- 和差化简:tanα + tanβ = sin(α + β) / cosα * cosβ- 和差化简:tanα - tanβ = sin(α - β) / cosα * cosβ4. 正割函数(secant function):正割函数用sec表示,定义域为除了θ = π/2 + πn (n为任意整数)的实数集,值域为实数集的负数和正数。
【高中数学】高中数学知识点:三角函数公式大全
【高中数学】高中数学知识点:三角函数公式大全高中数学知识点:完整的三角函数公式”,供您参考!高中数学知识点:三角函数公式大全三角函数看似众多而复杂,但只要我们掌握了三角函数的本质和内在规律,就会发现各种三角函数公式之间有着很强的联系。
掌握三角函数的内在规律和本质也是学好三角函数的关键。
以下是学习方法网络整理的三角函数公式的完整集合:锐角三角函数公式sinα=∠ α对边/斜边cosα=∠α的邻边/斜边tanα=∠ α对侧/∠ αcotα=∠α的邻边/∠α的对边倍角公式sin2a=2sina?cosacos2a=cosa^2-sina^2=1-2sina^2=2cosa^2-1tan2a=(2tana)/(1-tana^2)(注:新浪^2是新浪的平方,sin2(a))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中sint=b/(a^2+b^2)^(1/2)成本=a/(a^2+b^2)^(1/2)tant=b/aasinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4新浪[(√3/2-新浪]=4sina(sin60°-sina)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(√3/2)]=4cosa(cosa-cos30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式谭(a/2)=(1-cosa)/新浪=新浪/(1+cosa);cot(a/2)=sina/(1-cosa)=(1+cosa)/sina.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tana+tanb=sin(a+b)/cosacosb=tan(a+b)(1-tanatanb)tana-tanb=sin(a-b)/cosacosb=tan(a-b)(1+tanatanb)可积和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/twosinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/two诱导公式cos(-α)=cosαtan(-a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtana=sina/cosatan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα记忆归纳公式的技巧:奇数变量,偶数常量,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3) 1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任何非直角三角形,总有tana+tanb+tanc=tanatanbtanc证书:a+b=π-ctan(a+b)=tan(π-c)(tana+tanb)/(1-tanatanb)=(ta nπ-tanc)/(1+tanπtanc)分类可用tana+tanb+tanc=tanatanbtanc获得证书同样可以得证,当x+y+z=nπ(n∈z)时,该关系式也成立从Tana+tanb+Tanc=tanatanbtanc可以得出以下结论(5)cotacotb+cotacotc+cotbcotc=1(6)胶辊(a/2)+胶辊(b/2)+胶辊(c/2)=胶辊(a/2)胶辊(b/2)胶辊(c/2)(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc(8)(新浪)^2+(新浪)^2+(新浪)^2=2+2cosacosbcosc(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0和sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanatanbtan(a+b)+tana+tanb tan(a+b)=0更多频道:。
高中全部三角函数公式
高中数学必背知识点数学,严谨性、联系的观点、运动的观点。
理解并熟记根本概念和公式后,要按照规定的解题程序解题。
1、韦达定理:表示代数方程的根与系数之间的关系。
设一元二次方程中,两根x₁、x₂有如下关系:◆逆定理如果两数α和β满足如下关系:α+β = ,α·β= ,那么这两个数α和β是方程的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
●三角函数◆特殊三角函数值角度0 30 45 60 90 120 135 150 180 弧度01 00 11 0◆根本公式方便记忆注意,三角形注标规律。
区分正与余的关系;切与割的关系。
割的是c 线。
◆诱导公式sec(3π/2+α)=-cscαcsc(3π/2+α)=secαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα诱导公式口诀“奇变偶不变,符号看象限〞意义:k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:记忆方法二:无论α是多大的角,都将α看成锐角.◆和差公式◆和差化积公式◆积化和差公式◆倍角公式◆半角公式〔正负由所在的象限决定〕◆万能公式◆辅助角公式〔其中φ满足,〕◆三角函数函数对称轴对称中心图象y=sin xx=kπ+π/2(k∈Z)(kπ,0)(k∈Z)正弦函数正弦函数y=cos xx=kπ(k∈Z)(kπ+π/2,0)(k∈Z)余弦函数余弦函数◆正弦定理在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.那么有:正弦定理变形可得:y=tan x正切函数无(kπ/2+π/2,0)(k∈Z)正切函数y=cot x余切函数无(kπ/2,0)(k∈Z)余切函数◆余弦定理对于如下图的边长为a、b、c而相应角为α、β、γ的△ABC,有:也可表示为:点到直线的距离点到圆的极值平方差公式点差法〔隐患,需要验证或说是与开场的方程进展联立验证,确认结果正确与否。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A)=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A Asin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=b a b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a ) = -sina cos(π+a) = -cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 其他a•sina+b•cosa=)b (a 22+×sin(a+c)[其中tanc=a b]a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a)21-sin(a) = (sin 2a -cos 2a)2非重点三角函数csc(a) =a sin 1 sec(a) =a cos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosαcos (2π+α)= -sinαtan (2π+α)= -cotαcot (2π+α)= -tanα sin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不3.三角形中的一些结论:(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2) cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBco sC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)co sβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。