两点之间_线段最短PPT
合集下载
初三数学复习专题课件:两点之间线段最短的应用
结合图形和数学表达式,将抽象的数学问 题具体化,有助于理解和解答问题。
分类讨论
反证法
对于一些复杂的问题,根据不同的情况进 行分类讨论,可以更全面地考虑所有可能 的情况。
在解题过程中,有时可以通过反证法来证 明某个结论,这种方法可以有效地解决一 些难以直接证明的问题。
解题策略分享
01
02
03
04
理解题意
在开始解题之前,首先要仔细 阅读题目,理解题目的要求和
条件,明确问题的目标。
分析问题
对题目进行分析,找出关键信 息,并尝试将问题分解为更小
的部分,以便逐一解决。
寻找规律
在解题过程中,要注意寻找规 律,这有助于发现更有效的解
题方法。
归纳总结
在解决问题后,要对解题过程 进行归E的五个顶点分别为 A(1,2)、B(3,4)、C(5,6)、D(7,5)、E(9,8),点F是 直线DE外一点,连接AF、BF、CF、DF、EF,其 中哪条线段最短?为什么?
题目1:已知四边形ABCD的四个顶点分别为 A(1,3)、B(3,1)、C(5,4)、D(2,6),点E是直线CD 外一点,连接AE、BE、CE、DE,其中哪条线段 最短?为什么?
复习目标
掌握两点之间线段最 短定理的基本概念和 证明方法。
培养学生的逻辑思维 和问题解决能力。
能够运用这个定理解 决实际问题,如最短 路径问题、时间最少 问题等。
02 两点之间线段最短的定义 与性质
定义解释
两点之间线段最短
在平面上,任意两点A和B之间的 所有连线中,线段AB是最短的。
定义证明
根据欧几里得几何,任意两点之 间的线段是两点之间所有连线中 最短的。
深入理解概念
13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册
∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
《最短路径问题》PPT课件
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
利用“两点之间线段最短”巧解数学题ppt课件(自制)
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。பைடு நூலகம்57、暗自伤心,不如立即行动。
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
A●
a
b
●
B
A
●
D
●
A′
●
●
C
a
b ●B
板书设计
利用“两点之间线段最短”巧解数学题
一、平面内两条线段之和最短的求法:⑴作其中一定 点关于对称轴的对应点;⑵连接对应点与另一定点的 线段;⑶常用勾股定理求其长。
例1 例2 例3 二、立体图形中两点之间距离最短求法:将立体图形
侧面展开,把立体图形的问题转化为平面图形问题, 然后利用两点之间线段最短来解决。
课题
利用“两点之间线段最短”巧 解数学题
教学目标
一知识与技能目标 1·通过本课学习,使学生掌握利用“两点之间线
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。பைடு நூலகம்57、暗自伤心,不如立即行动。
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
A●
a
b
●
B
A
●
D
●
A′
●
●
C
a
b ●B
板书设计
利用“两点之间线段最短”巧解数学题
一、平面内两条线段之和最短的求法:⑴作其中一定 点关于对称轴的对应点;⑵连接对应点与另一定点的 线段;⑶常用勾股定理求其长。
例1 例2 例3 二、立体图形中两点之间距离最短求法:将立体图形
侧面展开,把立体图形的问题转化为平面图形问题, 然后利用两点之间线段最短来解决。
课题
利用“两点之间线段最短”巧 解数学题
教学目标
一知识与技能目标 1·通过本课学习,使学生掌握利用“两点之间线
利用“两点之间线段最短”巧解数学题ppt 人教版
•
3、在比夜更深的地方,一定有比夜更黑的眼睛。
•
4、一切伟大的行动和思想,都有一个微不足道的开始。
•
5、从来不跌倒不算光彩,每次跌倒后能再站起来,才是最大的荣耀。
•
6、这个世界到处充满着不公平,我们能做的不仅仅是接受,还要试着做一些反抗。
•
7、一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。
A
B
M
●
OP
N
A B
M
●
N
OP
●
A′
4、由平面到立体,能力飞跃
议一议
题④如图:圆锥底面半径为3cm,母线L为9cm, C为母线PB中点,在圆锥的侧面上,从A 到C 的最短距离为
P
●C
A
B
做一做
题⑤如图:已知圆柱底面圆的半径为2/π,高
为2,AB、CD分别是两底面的直径,AD、 BC是母线,若一只小虫从A点出发从侧面 爬行到C点,则小虫爬行最短路线的长度是
例4 例5
P
A′
︶
C
A B
•
1、许多人企求着生活的完美结局,殊不知美根本不在结局,而在于追求的过程。
•
2、慢慢的才知道:坚持未必就是胜利,放弃未必就是认输,。给自己一个迂回的空间,学会思索,学会等待,学会调整。人生没有假设,当下即是全部。背不动的,放下了;伤不起的,看淡了;想不通的,不想了;恨不过的,抚平了。
一、平面内两条线段之和最短的求法:⑴ 找图形对称轴。 ⑵作其中一定点关于对称 轴的对应点; ⑶连接对应点与另一定点的 线段;⑷常用勾股定理求其长。
二、立体图形中两点之间距离最短求法: 将立体图形侧面展开,把立体图形的问题 转化为平面图形问题,然后利用两点之间 线段最短来解决。
《两点之间线段最短》课件
Floyd算法
1
算法步骤
深入了解Floyd算法的实现步骤。
时间复杂度分析
2
分析Floyd算法的时间复杂度。
3
算法优化
介绍一些对Floyd算法进行优化的方法。
分支界定算法
1
算法步骤
详细讲解分支界定算法的实现步骤。
时间复杂度分析
2
分析分支界定算法的时间复杂度。
3
算法优化
探索如何对分支界定算法进行优化,提高 效率。
时间复杂度分析
简单算法的时间复杂度如何?我 们来一起分析。
缺点与局限性
了解简单算法的缺点和局限性, 为后续算法做铺垫。
Dijkstra算法
1
算法步骤
详细介绍Dijkstra算法的执行步骤。
2
时间复杂度分析
分析Dijkstra算法的时间复杂度。
3
算法优化
探索如何对Dijkstra算法进行优化,提高效率。
2 如何根据实际问题选择合适的算法
提供一些建议,帮助你根据实际问题选择合适的算法。
3 未来发展方向展望
展望两点之间线段最短问题的未来发展方向。
《两点之间线段最短》 PPT课件
欢迎来到《两点之间线段最短》课件!本课程将介绍如何解决两点之间线段 最短问题,并深入探讨不同算法的优缺点以及适用场景。让我们一起开始吧!
问题描述
1 两点之间线段最短问题
我们将探讨什么是两点之间线段最短问题,以及为什么需要解决这个问题。
简单算法
勾股定理求解
使用勾股定理来计算两点之间的 距离。
综合比较
算法的时间复杂度和 空间复杂度对比
比较各算法的时间复杂度和空间 复杂度,找到最适合问题的算法。
两点之间线段最短PPT
线段的计算
长度计算
线段的长度等于两点之间的水平或垂直距离。
斜率计算
线段具有固定的斜率,斜率等于线段两端点之间 的高度差除以水平距离。
角度计算
线段与水平线之间的角度等于tan-1(斜率),或者 使用三角函数计算。
线段的作图方法
确定端点
确定线段起止的两个点,可以是坐标系中的任意位置。
连接两点
使用直线或曲线工具连接两个端点,形成线段。
微积分
在微积分中,可以利用两 点之间的线段性质来研究 函数的增减性和极值问题。
理论证明中的应用
欧几里得几何
变分法
在欧几里得几何中,两点之间的线段 是唯一最短的路径,这是欧几里得几 何的基本公理之一。
在变分法中,可以利用两点之间的线 段性质来推导和证明最小作用量原理 和Euler-Lagrange方程等重要结论。
推论
如果存在一条曲线连接A和B,使 得曲线的长度小于线段AB的长度, 那么这条曲线是不存在的。
03
证明两点之间线段最短
证明方法一:几何证明
总结词:直观明了
详细描述:通过几何图形,利用两点之间的直线段最短,可以直观地证明两点之 间线段最短。
证明方法二:代数证明
总结词:严谨推导
详细描述:利用代数方法,通过建立坐标系,设两点坐标,然后计算两点之间各种路径的距离,最终推导出两点之间线段最 短。
两点之间线段最短
目录
• 引言 • 两点之间线段最短的定义 • 证明两点之间线段最短 • 两点之间线段最短的应用 • 两点之间线段最短的扩展知识
01
引言
主题引入
01
两点之间线段最短是几何学中的 基本定理之一,也是日常生活中 经常遇到的现象。
两点之间_线段最短精品PPT课件
点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,
这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多
少?
A
5
A
3
1
5
C
12
B ∵ AB2=AC2+BC2=169, ∴ AB=13.
B
课堂练习
有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底
面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少
两点之间 线段最短
看图思考
为什么大家都喜欢走捷径呢?
绿地里本没有路,走的人多了… …
你来做一做
在纸上任意点两点,用线联接它们,量 一下它们的长短,比较一下谁最短?
得出结论:
两点之间,线段最短!
定义概念
两点之间的所有连线中,线段最短. 简单说成:两点之间,线段最短.
连接两点间的线段的长度,叫做这两 点的距离。
∴AB=13(m) .
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
拓展视野
蚂蚁爬行路线最短问题
一只蚂蚁要从正方体 的一个顶点A沿表面 爬行到顶点B,怎样 爬行路线最短?如果 要爬行到顶点C呢?
拓展视野
蚂蚁爬行路线最短问题
蚊子 ●
举例一
●
壁虎
糖果
举例二
蚂蚁
蚊子
●
糖果
提分专题十二 利用“两点之间,线段最短”求最值中考复习课件
的中点,则 + 的最小值为____.
第2题图
(2)线段差最大问题
模型
展示
续表
问题:两定点 , 位于直线 同侧,在直 问题:两定点 ,
线 上找一点 ,使 − 的值最大.
位于直线 异侧,在Fra bibliotek解决:根据三角形任意两边之差小于第三
直线 上找一点 ,
分析 之差小于第三边
针对训练
3.如图,在矩形 中, = 3 , = 4 ,连接
, 是 的中点, 是 上一点,且 = 1 ,
是 上一动点,则 − 的最大值为(
A. 10 −
5
2
B.
85
2
5
C.
2
)
D.
√
13
2
第3题图
4.如图,已知 △ 为等腰直角三角形,
知, + 的最小值即为线段
的长,连接 交直线 于点
点 ,使得 + 的值最
小.
解决:将同侧点转化为异侧
即可解决
模型 对于“两定一动”线段和最小问题,利用两点之间,线段最短即可解
分析 决
针对训练
1.如图, △ 的面积为12, = , = 4 , 的
续表
要使 △ 的周长最小,即 + + 的值最小.根据两点之
间,线段最短,将三条线段转化到同一直线上即可.分别作点 关
模型
于 , 的对称点 ′ , ″ ,连接 ′″ ,分别交 , 于
分析
点 , ,点 , 即为所求, △ 周长的最小值即为线段
是 ∠ 内一点,在 上找一点 , 上找一点 ,
2023中考数学专题复习-利用“两点之间,线段最短”解决最值问题(课件)
三是实际背景问题,来求最优化问题.
问题2:解决以几何图形为背景的最值问题我们
将运用到哪些知识?
“两点之间,线段最短”、轴对称点、勾股定理、
三角形三边关系、垂线段最短、线段垂直平分线的
性质、矩形、菱形……
复习回顾
O
(1)两点之间线段最短。
(1)两点之间线段最短。
(2)线段垂直平分线的性质、轴对称。
(2)线段垂直平分线的性质、轴对称。
第2题答图
3.如图,在菱形 ABCD 中,若 AD=6,∠ABC=120°,E 是 BC 的中点,
P 为对角线 AC 上的一个动点,连接 PB,PE,则 PE+PB 的最小值为
3 3
__________.
【解析】如答图,连接 BD,DP,DE.∵四边形 ABCD 是菱形,∴B,D
关于直线 AC 对称,∴DE 的长即为 PE+PB 的最小值.∵∠ABC=120°,
M,N 分别是射线 OA,OB 上异于点 O 的动点,则△PMN 周长的最小
值是__________.
6
【解析】如答图,作点 P 关于 OB 的对称点 P′,作点 P 关于 OA 的对称
点 P″,连接 P′P″,则 P′P″的长就是△PMN 周长的最小值.在△OP′P″
中,OP′=OP″,∠AOB=30°,∴∠P′OP″=60°.∵OP=6,∴P′P″=6.
即为所求,△PCD 周长的最小值即为线段 P′P″的长.
“两定两动”型
6.如图,已知正方形 ABCD 的边长为 3,点 E 在边 AB 上且 BE=1,点
P,Q 分别是边 BC,CD 上的动点(均不与顶点重合),则四边形 AEPQ 周
2+2 13
长的最小值是__________.
问题2:解决以几何图形为背景的最值问题我们
将运用到哪些知识?
“两点之间,线段最短”、轴对称点、勾股定理、
三角形三边关系、垂线段最短、线段垂直平分线的
性质、矩形、菱形……
复习回顾
O
(1)两点之间线段最短。
(1)两点之间线段最短。
(2)线段垂直平分线的性质、轴对称。
(2)线段垂直平分线的性质、轴对称。
第2题答图
3.如图,在菱形 ABCD 中,若 AD=6,∠ABC=120°,E 是 BC 的中点,
P 为对角线 AC 上的一个动点,连接 PB,PE,则 PE+PB 的最小值为
3 3
__________.
【解析】如答图,连接 BD,DP,DE.∵四边形 ABCD 是菱形,∴B,D
关于直线 AC 对称,∴DE 的长即为 PE+PB 的最小值.∵∠ABC=120°,
M,N 分别是射线 OA,OB 上异于点 O 的动点,则△PMN 周长的最小
值是__________.
6
【解析】如答图,作点 P 关于 OB 的对称点 P′,作点 P 关于 OA 的对称
点 P″,连接 P′P″,则 P′P″的长就是△PMN 周长的最小值.在△OP′P″
中,OP′=OP″,∠AOB=30°,∴∠P′OP″=60°.∵OP=6,∴P′P″=6.
即为所求,△PCD 周长的最小值即为线段 P′P″的长.
“两定两动”型
6.如图,已知正方形 ABCD 的边长为 3,点 E 在边 AB 上且 BE=1,点
P,Q 分别是边 BC,CD 上的动点(均不与顶点重合),则四边形 AEPQ 周
2+2 13
长的最小值是__________.
探索最短路径(课件)-2023-2024学年四年级上册数学青岛版
探索最短路径
• 学科:数学 • 学段:小学 • 适用年级: 四年级上册 • 所在知识模块:青岛版数学-平行与相交-探索最短路径
探索最短路径
ห้องสมุดไป่ตู้点与点之间
点与线之间
从A地到B地有五条道路,时间紧急,张先生要从B
地赶往A地乘车,问:此时张先生应该怎么走?
①
·A
②
③
·B
④
⑤
定义概念
两点之间的所有连线中,线段最短. 简单说成:两点之间,线段最短.
C
小马饮水
一匹马,他要到河边喝水,怎么走最近?
从直线外一点到这条直线所画的 垂直线段的长度叫做点到直线的 距离。
A
小马饮水
·A
小马饮水
·A
从A、B两点各修一条小路与公路连接,怎样修最 近?你能画出来吗?
·A
·B
路 公
从A、B两点各修一条小河与公路连接,怎样修最 近?你能画出来吗?
·A
·B
路 公
总结:最短路径 (1)点与点之间,( 线段 )最短, 这条( 线段的长度 )叫两点间的距离。
(2)点与线之间,(垂直线段)最短, 这条(垂直线段的长度)叫点到直线的距离。
连接两点间的线段的长度,叫做这两 点的距离。
我是公路工程师
1.如图:这是A、B两地之间的公路,在公路工程改造 计划时,为使A、B两地行程最短,应如何设计线路? 在图中画出。简述你的理由。
B.
A
两点之间线段最短
我是公交规划者
2.在一条笔直的公路两侧,分别有A、B两个村庄,如 图,现在要在公路l上建一个汽车站C,使汽车站到 A、B两村庄的距离之和最小,请在图中画出汽车站 的位置.
• 学科:数学 • 学段:小学 • 适用年级: 四年级上册 • 所在知识模块:青岛版数学-平行与相交-探索最短路径
探索最短路径
ห้องสมุดไป่ตู้点与点之间
点与线之间
从A地到B地有五条道路,时间紧急,张先生要从B
地赶往A地乘车,问:此时张先生应该怎么走?
①
·A
②
③
·B
④
⑤
定义概念
两点之间的所有连线中,线段最短. 简单说成:两点之间,线段最短.
C
小马饮水
一匹马,他要到河边喝水,怎么走最近?
从直线外一点到这条直线所画的 垂直线段的长度叫做点到直线的 距离。
A
小马饮水
·A
小马饮水
·A
从A、B两点各修一条小路与公路连接,怎样修最 近?你能画出来吗?
·A
·B
路 公
从A、B两点各修一条小河与公路连接,怎样修最 近?你能画出来吗?
·A
·B
路 公
总结:最短路径 (1)点与点之间,( 线段 )最短, 这条( 线段的长度 )叫两点间的距离。
(2)点与线之间,(垂直线段)最短, 这条(垂直线段的长度)叫点到直线的距离。
连接两点间的线段的长度,叫做这两 点的距离。
我是公路工程师
1.如图:这是A、B两地之间的公路,在公路工程改造 计划时,为使A、B两地行程最短,应如何设计线路? 在图中画出。简述你的理由。
B.
A
两点之间线段最短
我是公交规划者
2.在一条笔直的公路两侧,分别有A、B两个村庄,如 图,现在要在公路l上建一个汽车站C,使汽车站到 A、B两村庄的距离之和最小,请在图中画出汽车站 的位置.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 学校
路线2
路线3 • 少年宫
• 商店
看图思考
把原来弯曲的河 道改直,A、B两 地间的河道长度 有什么变化?
看图思考
公园里设计了曲折迂 回的桥,这样做对游 人观赏湖面风光有什 么影响? 与修一座笔直的桥相 比,这样做是否增加 了游人在桥上行走的 路程? 说出其中的道理。
1、两点之间线段的长度,叫做这两点间的距 离。( ) 2、乘火车,从北京到石家庄的路程是260千 米,可以说北京与石家庄之间的距离是260 千米。( ) 3、比一比,小明从家走到学校,走那条路线 最近?
预习检测
说说线段、射线、直线之间的
相同点和不同点。
学习目标
感受两点之间的所有连线中线段最
短
理解两点间的距离,掌握测量两点
间距离的方法
问题引入
小明家
你来做一做
在纸上任意点两点,用线联接它们,量
一下它们的长短,比较一下谁最短? ①
• A
②
③
• B
得出结论:
两点之间,线段最短!
归纳:
连接两点间的线段的长度,叫做这两 点的距离。
两点之间的所有连线中,线段最短. 简单说成:两点之间,线段最短.
看图思考
从A地到B地有五条道路,时间紧急,张先生要从B
地赶往A地乘车,问:此时张先生应该怎么走?
① ② A
·
③ ④
ห้องสมุดไป่ตู้
·
B
⑤
下面是小明家到学校的路线图。 哪条路线最近?为什么?
小明家 •
路线1
• 小明家
•
学校
课堂小结:
这节课你有什么收获?
路线2
路线3 • 少年宫
• 商店
看图思考
把原来弯曲的河 道改直,A、B两 地间的河道长度 有什么变化?
看图思考
公园里设计了曲折迂 回的桥,这样做对游 人观赏湖面风光有什 么影响? 与修一座笔直的桥相 比,这样做是否增加 了游人在桥上行走的 路程? 说出其中的道理。
1、两点之间线段的长度,叫做这两点间的距 离。( ) 2、乘火车,从北京到石家庄的路程是260千 米,可以说北京与石家庄之间的距离是260 千米。( ) 3、比一比,小明从家走到学校,走那条路线 最近?
预习检测
说说线段、射线、直线之间的
相同点和不同点。
学习目标
感受两点之间的所有连线中线段最
短
理解两点间的距离,掌握测量两点
间距离的方法
问题引入
小明家
你来做一做
在纸上任意点两点,用线联接它们,量
一下它们的长短,比较一下谁最短? ①
• A
②
③
• B
得出结论:
两点之间,线段最短!
归纳:
连接两点间的线段的长度,叫做这两 点的距离。
两点之间的所有连线中,线段最短. 简单说成:两点之间,线段最短.
看图思考
从A地到B地有五条道路,时间紧急,张先生要从B
地赶往A地乘车,问:此时张先生应该怎么走?
① ② A
·
③ ④
ห้องสมุดไป่ตู้
·
B
⑤
下面是小明家到学校的路线图。 哪条路线最近?为什么?
小明家 •
路线1
• 小明家
•
学校
课堂小结:
这节课你有什么收获?