统计学假设检验测试题
贾俊平《统计学》章节题库(假设检验)详解【圣才出品】
3 / 58
圣才电子书 十万种考研考证电子书、题库视频学习平台
【解析】通常把观察现象原来固有的性质戒没有充分证据丌能轻易否定的命题设为原假 设;通常把该观察现象新的性质戒丌能轻易肯定的结论设为备择假设。题中,实际统计的日 销售量为 99.32 吨,即无法轻易肯定广告可使每天的销售量达到 100 吨,则原假设和备择
8.超人电池制造商宣称他所制造的电池可使用超过 330 小时,为检验这一说法是否属 实,研究人员从中抽叏了 12 个电池迚行测试,建立的原假设和备择假设为 H0:μ≤330, H1:μ>330。检验结果是没有拒绝原假设,这表明( )。[浙江工商大学 2011 研;安 徽财经大学 2012 研]
A.有充分证据证明电池的使用导命小亍 330 小时 B.电池的使用导命小亍等亍 330 小时 C.没有充分证据表明电池的使用导命超过 330 小时
假设应该为: H0 : μ 100 , H1 : μ 100
7.在假设检验中,两个总体 X~N(μ1,σ12),Y~N(μ2,σ22),其中 μ1,μ2 未知, 检验 σ21 是否等亍 σ22 应用( )。[浙江工商大学 2011 研]
A.μ 检验法 B.t 检验法 C.F 检验法 D.χ2 检验法 【答案】C 【解析】在两个正态总体条件下,样本方差除以总体方差乊比服从 F 分布,所以检验两 个总体方差是否相等,应用 F 检验法。
A.B 公叵交货日期比 A 公叵短 B.B 公叵交货日期比 A 公叵长 C.B 公叵交货日期丌比 A 公叵短 D.B 公叵交货日期丌比 A 公叵长 【答案】C 【解析】通常把研究者要证明的结论作为备择假设。由亍海山集团倾向亍向 B 公叵订 货,故备择假设应为 B 公叵交货日期比 A 公叵短;而原假设不备择假设互斥,故原假设为 B 公叵交货日期丌比 A 公叵短。
人大版统计学 习题加答案第四章 假设检验
第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
六西格玛绿带:假设检验与方差分析课后测试
六西格玛绿带:假设检验与方差分析课后测试六西格玛绿带:假设检验与方差分析课后测试单选题1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10分)AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A多选题1、基础统计学中的描述性统计可以分为(10分)A图表法B参数估计C数量表示法D假设检验正确答案:A C2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B3、在假设检验中,按P值进行决策规则,下列说法正确的是(10分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D判断题1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10分)A正确B错误正确答案:错误2、在假设检验中,原假设和备择假设必须设置为一致的。
(10分)A正确B错误正确答案:错误3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10 分)A正确B错误正确答案:正确4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)A正确B错误正确答案:正确。
【免费下载】 统计学假设检验测试题
为
答案 所选答案: C. 0.0538 正确答案: A. 0.0838
在假设检验中,第Ⅰ类错误是指( )
正确答案: A.
H0: μ≥1.40, H1: μ<1.40
如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极 端的概率称为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
统计学第五版第八章课后习题答案
决策: ∵Z值落入接受域, ∴在α=0.05的显著水平上接受 H 0 。
结论:有证据表明现在生产的铁水平均含碳量与以前没有显著差 异,可以认为现在生产的铁水平均含碳量为4.55。
8.2 一种元件,要求其使用寿命不得低于700小时。现从一批这种 元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿 命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元 件是否合格。
甲法:31 34 29 32 35 38 34 30 29 32 31 26 乙法:26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 H 0 : 甲 -乙 = 0 H1 : 甲 - 乙 ≠ 0
由Excel制表得:
由图可知:
已知:α = 0.05,n1 = n2=12 2 2 x甲 =31.75 x乙 =28.67 S甲=10.20 S乙 =6.06 t=1.72 t∈(-1.72,1.72)接受,否则拒绝。 t=(31.75-28.67)/(8.08* 0.41)=0.93 0.93∈(-1.72,1.72) 决策:在α = 0.05的水平上接受H 0 。 结论: 两种方法的装配时间无显著不同。
σ²≤100 H 1 : σ²>100 α= 0.05,n=9,自由度= 9 - 1 = 8, S² =215.75, x =63 采用χ²检验 临界值(s): χ² =15.5 )S 2 (9 - 1) * 215.75 2 (n - 1 17.26 15.5 检验统计量: 2 100 决策:在 a = 0.05的水平上拒绝 H 0 结论: σ²>100
假设检验练习题
假设检验练习题在统计学中,假设检验是一种常用的数据分析方法,用于通过样本数据对总体参数的假设进行验证。
通过进行假设检验,我们可以确定样本数据是否足够支持对总体参数的某种特定假设。
一、背景介绍假设检验的基本思想是:假设总体参数服从某种特定的概率分布,然后利用样本数据对这一假设进行检验。
在进行假设检验时,我们通常会提出原假设(H0)和备择假设(H1),其中原假设是我们要进行检验的假设,备择假设则是对原假设的否定或补充。
二、假设检验的步骤1. 提出假设:根据问题的需求和背景,明确原假设和备择假设。
2. 选择显著性水平:显著性水平α代表我们对假设检验结果的接受程度,通常选择0.05或0.01。
3. 计算检验统计量:根据样本数据和所选的假设检验方法,计算出相应的检验统计量。
4. 确定拒绝域:根据显著性水平和假设检验的方法,确定拒绝域的临界值。
5. 判断结论:将计算得到的检验统计量与拒绝域进行比较,根据比较结果作出结论。
三、假设检验的类型1. 单样本检验:当我们只有一个样本数据,想要对总体参数是否符合某个特定值进行判断时,可以使用单样本检验。
2. 独立样本检验:当我们有两个独立的样本数据,并且希望比较两个总体参数是否有差异时,可以使用独立样本检验。
3. 配对样本检验:当我们有两组相关的样本数据,并且希望比较两个总体参数的差异时,可以使用配对样本检验。
四、常见的假设检验方法1. t检验:用于对总体均值进行假设检验,可以进行单样本t检验、独立样本t检验和配对样本t检验。
2. 方差分析(ANOVA):用于比较多个样本均值是否有差异,适用于有两个以上样本的情况。
3. 卡方检验:用于对分类变量的比例进行假设检验,适用于两个或更多分类变量的情况。
4. 相关分析:用于检验两个变量之间是否存在线性相关性。
五、实例分析为了更好地理解假设检验的应用,我们举一个实际例子。
假设一个制药公司研发了一种新药,声称该药物的疗效显著优于市场上已有的药物。
《统计学》期末测试练习题
)。
A.α和β绝对不可能同时减少
B.只能控制α,不能控制β
C.在其它条件不变的情况下,增大α,必然会减少β
D.在其它条件不变的情况下,增大α,必然会增大β
E.增大样本容量可以同时减少α和β
4
3、关于原假设的建立,下列叙述中正确的有( )。 A.若不希望否定某一命题,就将此命题作为原假设 B.尽量使后果严重的错误成为第二类错误 C.质量检验中若对产品质量一直很放心,原假设为“产品合格(达标)” D.若想利用样本作为对某一命题强有力的支持,应将此命题的对立命题作为原假 设 E.可以随时根据检验结果改换原假设,以期达到决策者希望的结论
接受原假设的 P 值为( )。
A.P(z>-1.96)
B.P(z<1.96) C.P(z>1.96)
D.P(z<-1.96)
12、对估计量,错误的描述是( ) A.参数的估计量是统计量 计量 C.样本方差可以作为总体方差的估计量 的估计量
B.中位数不能作为总体均值的估 D.样本比例可以作为总体比例
13、抽取 100 个样本,计算得到总体均值µ的 99%的置信区间为[13.6, 40.8],则 以下说法正确的是( ) A. 区间[13.6, 40.8]包含µ的概率是 99% B. 区间[13.6, 40.8]包含µ的概率是 0 或 1 C. 区间[13.6, 40.8]不包含µ的概率是 1% D. 区间[13.6, 40.8]包含µ的概率是 1%
A. 0.41 0.0422 B. 0.41 0.027 C. 0.41 0.0523
D. 0.41 0.021
19、若总体满足正态分布,根据样本计算得到的结果为:n=15, = h,s=2, 总体方差 的 90%的置信区间为( )
假设检验练习题统计学
第八章假设检验练习题一、填空1、在做假设检验时容易犯的两类错误是和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是也叫第一类错误,它是指原假设H0是的,却由于样本缘故做出了H0 的错误;和叫第二类错误,它是指原假设H0 是的, 却由于样本缘故做出H0 的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α则, α称为。
5、假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为。
6、从一批零件中抽取100 个测其直径,测得平均直径为 5.2cm,标准差为1.6cm,在显着性水平α=下,这批零件的直径是否服从标准直径5cm(是,否)7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000 小时,则为不合格,那么可以提出的假设为。
(用H0,H1 表示)8、一般在样本的容量被确定后,犯第一类错误的概率为,犯第二类错误的概率为,若减少,则9、某厂家想要调查职工的工作效率,工厂预计的工作效率为至少制作零件20个/小时,随机抽样36 位职工进行调查,得到样本均值为19,样本标准差为6,试在显着水平为的要求下,问该工厂的职工的工作效率(有,没有)达到该标准。
10、刚到一批货物,质量检验员必须决定是否接受这批货物,如不符合要求,将退还给货物供应商,假定合同规定的货物单件尺寸为6,请据此建立原假设__ 和备择假设。
211、总体为正态总体,且已知,应采用统计量检验总体均值。
212、总体为正态总体,且未知,应采用统计量检验总体均值。
选择1、假设检验中,犯了原假设H0 实际是不真实的,却由于样本的缘故而做出的接受H0 的错误,此类错误是()A、α类错误B、第一类错误C、取伪错误D、弃真错误2、一种零件的标准长度5cm,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为()A 、H0:5,H1:5B 、H0:5,H1:5C 、H0:5,H1:5D、H0:5,H1:53、一个95%的置信区间是指()A、总体参数有95%的概率落在这一区间内B、总体参数有5%的概率未落在这一区间内C、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率()A、都增大B、都减小C、都不变D、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在 2 年或24000 公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在 2 年内行驶的平均里程超过24000 公里。
统计学测试题(附答案)
统计学测试题(附答案)一、单选题(共50题,每题1分,共50分)1、在双侧检验中,原假设与备择假设应选为()。
A、H0:M ≠M0,H1:M = M0B、H0:M= M0 ,H1:M<M0C、H0:M= M0 ,H1:M ≠M0D、H0:M = M0 ,H1:M ≥M0正确答案:C2、由变量y倚变量x回归和由变量x倚变量y回归所得到的回归方程是不同的,这表现在()。
A、一个是直线方程,另一个是曲线方程B、与方程对应的两条直线只有一条经过点C、方程中参数不同,意义也不同D、参数估计的方法不同正确答案:C3、连续调查与不连续调查的划分依据是()。
A、调查的组织形式B、调查单位包括的范围是否全面C、调查登记的时间是否连续D、调查资料的来源正确答案:C4、重点调查中重点单位是指()。
A、能用以推算总体标志总量的单位B、具有典型意义或代表性的单位C、标志总量在总体中占有很大比重的单位D、那些具有反映事物属性差异的品质标志的单位正确答案:C5、统计整理是()。
A、统计调查的前提,统计分析的继续B、统计研究的最终阶段C、统计分析的前提,统计调查的继续D、统计研究的初始阶段正确答案:C6、标志的具体表现是指()。
A、标志名称之后所列示的属性B、标志名称之后所列示的数值C、标志名称之后所列示的属性或数值D、如性别正确答案:C7、按水平法计算的平均发展速度推算可以使()。
A、推算的各期水平之和等于各期实际水平之和B、推算的各期增长量等于实际的逐期增长量C、推算的各期定基发展速度等于实际的各期定基发展速度D、推算的期末水平等于实际期末水平正确答案:D8、现有一数列:3,9,27,81,243,729,2 187,反映其平均水平最好用()。
A、算术平均数B、调和平均数C、几何平均数D、中位数正确答案:C9、某质量管理部门对某企业准备出厂的180件产品进行抽样调查,发现有170件为合格品,为证明该企业的全部产品的合格率是否达到95%,应采用哪一种假设检验()。
统计学假设检验练习题
例3.7.9从一大批相同型号的金属线中,随机选取10根,测得它的直径(单位:mm)为:1.23 1.24 1.26 1.29 1.20 1.32 1.23 1.23 1.29 1.28(1)如果金属线直径X~N(μ,0.042),试求平均直径μ的置信度为95%的置信区间.(2)如果金属线直径X~N(μ, σ2),σ2未知,试求平均直径μ的置信度为95%的置信区间.例3.7.10随机取某牌香烟8支,其尼古丁平均含量为3.6mg,标准差为0.9mg.试求此牌香烟尼古丁平均含量μ的95%的置信区间.(假设尼古丁含量服从正态分布).4.某种袋装食品的重量服从正态分布.某一天随机地抽取9袋检验,重量(单位:g)为510 485 505 505 490 495 520 515 490(1) 若已知总体方差σ2=8.62,求μ的置信度为90%的置信区间;(2) 若已知总体方差未知,求μ的置信度为95%的置信区间.5.为了估计在报纸上做一次广告的平均费用,抽出了20家报社作随机样本,样本的均值和标准差分别为575(元)和120(元),假定广告费用近似服从正态分布,求总体均值的95%的置信区间.6.从某一班中随机抽取了16名女生进行调查.她们平均每个星期花费13元吃零食,样本标准差为3元,求此班所有女生每个星期平均花费在吃零食上的钱数的95%的置信区间.(假设总体服从正态分布)7.一家轮胎工厂在检验轮胎质量时抽取了400条轮胎作试验,其检查结果这些轮胎的平均行驶里程是20000k m,样本标准差为6000k m.试求这家工厂的轮胎的平均行驶里程的置信区间,可靠度为95%.8.为了检验一种杂交作物的两种新处理方案,在同一地区随机地选择8块地段.在各试验地段,按两种方案处理作物,这8块地段的单位面积产量是(单位:k g)一号方案产量: 86 87 56 93 84 93 75 79二号方案产量: 80 79 58 91 77 82 74 66假设两种产量都服从正态分布,分别为N(μ1, σ2) ,N(μ2, σ2), σ2未知,求μ1-μ2的置信度为95%的置信区间.9.为了比较两种型号步枪的枪口速度,随机地取甲型子弹10发,算得枪口子弹的平均值=500(m/s), 标准差s1=1.10(m/s); 随机地取乙型子弹20发,得枪口速度平均值=496(m/s),标准差s2=1.20(m/s). 设两总体近似地服从正态分布,并且方差相等,求两总体均值之差的置信水平为95%的置信区间.10.为了估计参加业务训练的效果.某公司抽了50名参加过训练的职工进行水平测验,结果是平均得分为4.5,样本方差为 1.8;抽了60名未参加训练的职工进行水平测验,其平均得分为3.75,样本方差为2.1. 试求两个总体均值之差的95%的置信区间.(设两个总体均服从正态分布).11、风驰汽车制造厂的装配车间安装车门仍需人工操作,不同工人的装配时间不同,同一工人的装配时间也有差异,为测定安装车门所需时间,每隔一定时间抽选一个样本,共抽取了10个样本,其数据如下(单位:秒):41 43 36 26 20 21 46 39 37 211. 以置信度95%,估计安装一个车门所需平均时间的置信区间,2.若要求估计平均装配时间的误差不超过2秒,置信度为95%,应抽选多大的样本?3.若费用为200元,观察每个样本的费用为4元,置信度为95%,则允许误差限是多少?4.假设上月测定的平均时间为35秒,则a=0.05时,检验其平均时间是否有显著缩短?12、万里橡胶制品厂生产的汽车轮胎平均寿命为40,000公里,标准差为7500公里。
(完整版)统计学假设检验习题答案
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
统计学假设检验习题
一、单选1、如果检验的假设为0010:,:H H μμμμ≥<,则拒绝域为( )A 、 z z α>B 、z z α<-C 、A 或BD 、/2z z α<-二、多选1.下列关于假设检验的陈述正确的是( )。
A 、假设检验实质上是对原假设进行检验B 、假设检验实质上是对备选假设进行检验C 、当拒绝原假设时,只能认为肯定它的根据尚不充分,而不是认为它绝对错误D 、假设检验并不是根据样本结果简单地或直接地判断原假设和备选假设哪一个更有可能正确E 、当接受原假设时,只能认为否定它的根据尚不充分,而不是认为它绝对正确2、在假设检验中, α与β的关系是( )。
A 、在其它条件不变的情况下,增大α,必然会减少βB 、α和β不可能同时减少C 、在其它条件不变的情况下,增大α,必然会增大βD 、只能控制α不能控制βE 、增加样本容量可以同时减少α和β3、设总体为正态总体,总体方差未知,在小样本条件下,对总体均值进行如下的假设检验:01000:);(:μμμμμ≠=H H 为一已知数,1.0=α,则下列说法正确的有 ( )。
A 、),(1.0Z --∞和),(1.0+∞Z 为原假设的拒绝区域B 、),(05.0Z --∞和),(05.0+∞Z 为原假设的拒绝区域C 、),(1.0t --∞和),(1.0+∞t 为原假设的拒绝区域D 、),(05.0t --∞和),(05.0+∞t 为原假设的拒绝区域E 、若检验统计量的绝对值越大,则原假设越容易被拒绝4.某一批原材料的质量实际上是不符合生产标准,检验部门抽取1%的原材料检验,得出结论是该批原材料的质量符合生产标准,说明( ).A 、检验部门犯了第一类错误B 、检验部门犯了第二类错误C 、犯这种错误的概率是αD 、犯这种错误的概率是βE 、犯这种错误的原因是检验部门没有遵循随机原则三、判断1.假设检验是一种科学的统计决策方法,因此使用它不会犯错误.( )四、简答1.简述参数估计和假设检验的联系和区别.五、计算1、从某批食品中随机抽取12袋,测定其蛋白质的含量(%),测定结果如下:24,26,27,23,20,28,23,24,27,25,26,23假定该食品每袋蛋白质的含量X 服从正态分布),(2σμN ,包装袋上表明蛋白质的含量为26%。
统计学假设检验习题
假设检验练习题(一)双正态总体,σ12,σ22已知,均值差的假设检验1.从甲乙两名射击运动员中选拔一名参加比赛,分别随机抽取了他们在同一次练习中的三十次射击成绩。
成绩如表一,设他们的设计成绩均服从正态分布,2=1.4σ甲,2=2.6σ乙。
检验假设0: H μμ=乙甲。
(α=0.05)2.某企业下辖两个分厂生产同一种糕点,为了检查两厂生产的糕点的质量,现随机从两厂各抽取糕点40块,测定其黄曲霉素含量(含量越高质量越差),结果如下表。
设两厂糕点中黄曲霉素含量服从正态分布,210.05σ=,220.031σ=。
请问两厂生产的糕点质量有无显著差异。
(α=0.05)表二 一厂产品黄曲霉素含量0.01 0.02 0.034 0.035 0.054 0.002 0.009 0.044 0.012 0.01 0.006 0.074 0.032 0.009 0.038 0.005 0.034 0.088 0.028 0.045 0.056 0.098 0.004 0.038 0.018 0.057 0.048 0.067 0.003 0.009 表三 二厂产品黄曲霉素含量0.062 0.037 0.051 0.028 0.001 0.007 0.073 0.037 0.029 0.016 0.019 0.008 0.082 0.001 0.004 0.098 0.079 0.075 0.019 0.012 0.002 0.066 0.046 0.047 0.0870.0530.0040.0990.0010.0873.为了了解学生的体能状况,随机从该校抽取男女生各30名,做台阶心率测试,结果如下.设男女生心率(/分)均服从从正态分布,2 1.9σ=男,2 1.1σ=女,问男女同学的心率(/分)有无显著差异.( α=0.05)表一 男生心率测试结果45 34 36 77 65 89 39 59 58 56 76 77 44 43 66 66 76 47 64 78 98 79 77 87 47 62 58634333表二 女生心率测试结果55 65 44 77 65 64 55 52 53 50 46 5649 50 60 58 63 6455 60 50 68 66 7056 54 65 53 44 43。
统计学习题区间估计与假设检验
统计学习题区间估计与假设检验第五章一、单项选择题抽样与参数估计1、某品牌袋装糖果重量的标准是(500±5)克。
为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。
下列说法中错误的是(B)A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于(D)A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加(C)A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的(A)A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加(C)A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是(C)A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使(B)尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是(D)A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用(A)A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P应选(A)A、85%B、87.7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有(ADE)A、总体各单位标志值的差异程度B、调查人员的素质C、样本各单位标志值的差异程度D、抽样组织方式E、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格。
应用统计学——假设检验书面作业和答案
假设检验作业1. 一种罐装饮料采用自动生产线生产,每罐的容量是255ml (总体的均值 ),标准差为5ml (总体的标准差)。
为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml (样本的均值)。
取显著性水平=0.05 ,检验该天生产的饮料容量是否符合标准要求? 解:正态,总体方差已经,大样本,Z 检验统计量,双侧检验 96.105.040/52558.255)1,0(~n /2552552010==-=-=≠=αασμμμZ N X Z H H :: 若计算的Z 值在(-1.96,1.96)之间,不能拒绝原假设,认为符合标准;反之,拒绝原假设,即产品不符合标准。
2. 某一小麦品种的平均产量为5200kg/hm2 。
一家研究机构对小麦品种进行了改良以期提高产量。
为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2 。
试检验改良后的新品种产量是否有显著提高? (a=0.05)解:不知是否正态总体,总体标准差未知,但因是大样本,可用Z 分布检验统计量,右侧检验(注意临界值或拒绝域的确定,用图形表示更清楚)645.105.036/12052005275)1,0(~n /52005200010==-=-=≤ααμμμZ N s X Z H H ::计算出的Z 值,若Z 值大于1.645则拒绝原假设;反之,不能拒绝原假设。
3. 一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。
为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。
分别取显著性水平 a=0.05和a=0.01 ,检验该杂志读者群中女性的比率是否为80%?注意:(1)有些书,用大写的π表示总体比例。
(2) 不同的显著性水平,可能得出不同的结论。
《统计学》第8章 假设检验
《统计学》第8章假设检验基本信息:[矩阵文本题] *1. 对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程称为()[单选题] *A.参数估计B.双侧检验C.单侧检验D.假设检验(正确答案)2.研究者想收集证据予以支持的假设通常称为() [单选题] *A.原假设B.备择假设(正确答案)C.合理假设D.正常假设3. 在假设检验中,原假设和备择假设() [单选题] *A.都有可能成立B.都有可能不成立C.只有一个成立而且必有一个成立(正确答案)D.原假设一定成立,备择假设不一定成立4. 在假设检验中,第Ⅰ类错误是指() [单选题] *A.当原假设正确时拒绝原假设(正确答案)B.当原假设错误时拒绝原假设C.当备择假设正确时未拒绝备择假设D.当备择假设不正确时拒绝备择假设5. 当备择假设为:μ<μ0,此时的假设检验称为() [单选题] *A.双侧检验B.右侧检验C.左侧检验(正确答案)D.显著性检验6. 某厂生产的化纤纤度服从正态分布,纤维纤度的标准均值为 1.40。
某天测得 25 根纤维的纤度的均值为 x =1.39,检验与原来设计的标准均值相比是否有所下降,要求的显著性水平为α=0.05,则下列正确的假设形式是( ) [单选题] *A. H0: μ=1.40, H1: μ≠1.40B. H0: μ≤ 1.40, H1: μ> 1.40C. H0: μ< 1.40, H1: μ≥ 1.40D. H 0: μ≥1.40, H 1: μ<1.40(正确答案)7.一项研究表明,司机驾车时因接打手机而发生事故的比例超过20%,为验证这一估计是否正确,该研究机构随机抽取了一个样本进行检验。
用来检验这一研究结论的原假设和备择假设应为() [单选题] *A.H 0:μ≤20%, H 1: μ>20%B.H 0:π=20% , H 1: π≠20%C.H 0:π≤ 20% , H 1: π>20%(正确答案)D.H 0:π≥20% , H 1: π<20%8. 在假设检验中,不拒绝原假设意味着()。
医学统计学假设检验
I类错误 (α)
推断正确
推断正确
II类错误 (β)
10
五、双侧检验与单侧检验 1. 同一组数据,采用单侧与双侧检验,可能导致不同的结论。 如下图
2.对于一个实际问题,究竟应采用双侧还是单侧检验,需要 根据问题本身的专业意义来确定,并且应在设计阶段就事 先确定。
11
样本均数的假设检验
一、一个样本均数的假设检验 设有两个正态总体N(μ0,σ2) 、N(μ,σ2) ,其总
的心率相同。 H1:μ≠μ0 即假设常年参加锻炼的中ห้องสมุดไป่ตู้男生与一般中学男
生的心率不同。 确定检验水准α=0.05。
2).选择统计量并计算其值:
uX0 6574 16.67 n 5.4 100
3).根据检验统计量的性质,选择适当的统计表,查出相应的 界值 u0.05/2 1.96。现经计算所得的
u16.671.96
,
2 2
已知时,用u (z)检验,其统计量为
: u X1 X2
X1X2
其中:
X1X2
12 22
n1 n2
15
2.总体方差
2 1
,
2 2
未知时,分大、小样本两种情况。
1)对于大样本,用u (z)检验,其统计量为:
其中:
u X1 X2 S X1X2
S X1X2
S12 S22 n1 n2
26
t X0 n1
Sn
例1 例2
13
二、两个样本均数的假设检验
设有两个正态总体 ,已知两个样本均数和样 本标准差
N
(
1
,
2 1
)
μ1未知
从中抽取一个 含量为n1的样本
统计学试题及答案
统计学试题及答案第一题:某大学统计学期末考试试题1. 假设你正在研究某种新药物对高血压患者的治疗效果。
你随机选取了50名高血压患者进行实验,其中25名患者接受新药物治疗,另外25名患者接受传统治疗。
你记录下每个患者治疗后的收缩压,并计算出两组的平均收缩压。
以下是你的数据:新药物组平均收缩压:130 mmHg传统治疗组平均收缩压:135 mmHg请你根据以上数据回答以下问题:a) 你能否得出结论,新药物组的治疗效果显著优于传统治疗组?b) 如果你想进一步验证这个结果,你会选择哪种统计检验方法?答案:a) 在这个问题中,我们无法确定新药物组的治疗效果是否显著优于传统治疗组。
虽然新药物组的平均收缩压低于传统治疗组,但我们需要进一步进行统计检验来确定这个差异是否真实存在。
b) 如果我们想进一步验证结果,可以选择使用t检验方法。
由于样本容量较小(每组25名患者),数据呈正态分布,且我们希望比较两组的平均值,t检验是一种合适的方法。
我们可以进行一个独立样本t 检验,以确定两组平均收缩压之间的显著差异。
第二题:某市民调机构调查问卷1. 在过去的十年里,您是否曾经种植过植物?a) 是b) 否2. 如果您曾经种植过植物,请问您最常种植的植物是什么?a) 玫瑰b) 蔬菜c) 果树d) 草坪e) 其他(请注明)3. 您在种植植物时,是否经常使用化肥?a) 经常使用b) 偶尔使用c) 从不使用4. 您认为种植植物对环境有何好处?(请填写您的观点)答案:根据问题的描述,这是一份市民调查问卷,没有具体要求统计学相关的分析。
第三题:统计学课堂小测验1. 根据以下数据集,请计算平均值、中位数、众数和标准差。
数据集: 23, 25, 27, 29, 29, 30, 32, 32, 32, 33, 34, 35, 36, 38答案:根据给定的数据集,我们可以计算以下统计指标:平均值 = (23 + 25 + 27 + 29 + 29 + 30 + 32 + 32 + 32 + 33 + 34 + 35 + 36 + 38) / 14 = 31.92中位数 = (30 + 32) / 2 = 31众数 = 32标准差 = 4.21在这个例子中,我们使用了给定数据集的数字来计算平均值、中位数、众数和标准差,这些统计指标可用于描述数据的集中趋势和离散程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H0: μ≥1.40, H1: μ<1.40
如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极 端的概率称为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
正确答的化纤纤度服从正态分布,纤维纤度的标准均值为 1.40。某天测得 25 根 纤维的纤度的均值为 =1.39,检验与原来设计的标准均值相比是否有所下降,要求 的显著性水平为 α=0.05,则下列正确的假设形式是( )
答案 所选答案: B.
H0: μ=1.40, H1: μ≠1.40
答案 所选答案: A.
当原假设错误时拒绝原假设
正确答案: C.
当原假设正确时拒绝原假设
在假设检验中,显著性水平 α 是( ) 答案
所选答案: 原假设为真时被拒绝的概率
正确答案: 原假设为真时被拒绝的概率
一项研究发现,2000 年新购买小汽车的人中有 40%是女性。在 2005 年 所做的一项调查中,随机抽取 120 个新车主中有 57 人为女性。在
α=0.05 的显著性水平下,检验 2005 年新车主中女性的比例是否有显著增加,建 立的假设 H0:π≤40% H1: π>40% ,检验的结论是:
答案 所选答案: A. 拒绝原假设 正确答案: A. 拒绝原假设
当样本统计量的取值未落入原假设的拒绝域时,表示( )
答案 所选答案: A.
没有充足的理由否定原假设
如果能够证明某一电视剧在播出的头 13 周其观众的收视率超过了 25%, 则可以断定它获得了成功。假定由 400 个家庭组成的一个随机样本中, 有 112 个家庭看过该电视剧,在 α=0.01 的显著性水平下,检验结果的 P 值
为
答案 所选答案: C. 0.0538 正确答案: A. 0.0838
在假设检验中,第Ⅰ类错误是指( )