整式的乘法同步练习题
(完整版)整式的乘法练习题
(完整版)整式的乘法练习题整式的乘法练习题(⼀) 填空1. a 8=(-a 5) ___ . 2. a 15=( )5.. 4. (x+a)(x+a)= _____ .5.a 3·(-a)5·(-3a)2·(-7ab 3)= ___ ____ . 7.(2x)2· x 4=( )2.的体积是 ____ .18.若 10m =a , 10n =b ,那么 10m+n= ____ . 19.3(a-b)2[9(a-b)n+2](b-a)5=__ (a-b)n+9.20.已知 3x · (x n +5)=3x n+1-8,那么 x=___________________________________________ . 21.若 a 2n-1· a 2n+1=a 12,则 n= ____ .22.(8a 3)m÷[(4a 2)n·2a]= ___ . 23.若 a <0,n 为奇数,8.24a 2b 3=6a 2· _____ .9. [(a m )n ]p= ___ . 10.(-mn)2(-m 2n)3= ____ .11.多项式的积 (3x 4-2x 3+x 2-8x+7)(2x 3+5x 2+6x-3)中 x 3项的系数是 _____ .12.m 是 x 的六次多项式, n 是 x 的四次多项式,则 2m-n是 x 的 _________________________________________________ 次多项式.14.(3x 2)3-7x 3[x 3-x(4x 2+1)]=____ . 15. { [(-1)4]m }n= ______ . 16. -{-[-(-a 2)3]4}2= ____ .17.⼀长⽅体的⾼是 (a+2)厘⽶,底⾯积是 (a 2+a-6)厘⽶ 2,则它则(a n )5____ 0.24.(x-x 2-1)(x 2-x+1)n(x-x 2-1)2n= __ .25.(4+2x-3y 2)·(5x+y 2-4xy)·(xy-3x 2+2y 4)的最⾼次项是 26.已知有理数 x ,y ,z 满⾜|x-z-2|+(3x-6y-7) 2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n 为⾃然数)等于.(⼆) 选择27.下列计算最后⼀步的依据是3. 3m 2· 2m 3= _____ 6.(-a 2b)3·(-ab 2)=5a2x4·(-4a3x)=[5×(-4)] ·a2·a3·x4·x (乘法交换律) =-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.A .乘法意义;B.乘⽅定义;C.同底数幂相乘法则;D.幂的乘⽅法则.28.下列计算正确的是[ ]A .9a3· 2a2=18a5;B .2x5· 3x4=5x9;C .3x3· 4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y 3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]B.(m-2)(m+3)=m 2+m-6 ;D.(x-3)(x-6)=x 2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是[ ] A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y) 2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y) m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A .(a3)n+1=a3n+1;B .(-a2)3a=a12;C .a8m· a8m=2a16m;D.(-m)(-m) 4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0 38.如果b2m0;B.b<0;C.0C .(-2a n)2·(3a2)3=-54a2n+6;A .(x+1)(x+4)=x2+5x+4 ;C.(y+4)(y-5)=y 2+9y-D .(3x n+1-2x n )·5x=15x n+2-10x n+1.B .(-x)(2x+x 2-1)=-x 3-2x 2+1;C .(-3x 2y)(-2xy+3yz-1)=6x 3y 2-9x 2y 2z 2-3x 2y47.把下列各题的计算结果写成 10的幂的形式,正确的是 [ ]C .1002n× 1000=104n+3; D .1005×10=10005=1015.44.下列计算正确的是 [ ]48.t 2-(t+1)(t-5) 的计算结果正确的是 [ ] A .-4t-5 ; B . 4t+5; C .t 2-4t+5; D .t 2+4t-5.49.使(x 2+px+8)(x 2-3x+q)的积中不含 x 2和 x 3的 p ,q 的值分别(1)b(x-y)=bx-by ,(4)2164=(64)3,正确;(2)b(xy)=bxby ,(5)x 2n-1y 2n-1=xy2n-2. (3)b x-y=b x-b y, A .只有 (1)与(2)B .只有 (1)与(3)正确;C .只有 (1)与(4)正确;D .只有 (2) 与(3)正确. 42.(-6x n y) 2· 3x n-1y 的计算结果是 [ ] A.18x 3n-1y 2;B .-36x 2n-1y 3;C .-108x 3n-1y ;D . 108x 3n-1y 3. 45.下列计算正确的是 [ ] A . (a+b)2=a 2+b 2; B .a m· a n=a mn; D .(a-b)3(b-a)2=(a-b)5.[ ]C . (-a 2)3=(-a 3)2;41.下列计算中, [ ]A .100×103=106;B .1000×10100=10;(6xy 2-4x 2y)3xy=18xy 2-12x 2yA. p=0, q=0;B. p=-3, q=-9;C. p=3, q=1;D. p=-3, q=1.50.设xy<0,要使X n y m? X n y m>0,那么[]A . m, n都应是偶数;B. m, n都应是奇数;C.不论m, n为奇数或偶数都可以;D.不论m, n为奇数或偶数都不⾏.51.若n为正整数,且x2n=7,贝J (3x3n)2-4(x2)2n的值为[]A. 833;B. 2891;C. 3283;D. 1225.(三)计算52.(6× 108)(7 ×109)(4× 104). 53. (-5x n+1 y) ?(-2x). 54.(-3ab) ?(-a2c) ?6atf. 55.(-4a) ?(2a2+3a-1).56. (3m-n)(m-2n).57. (x+2y)(5a+3b ).58. (-ab)3 ? (-a 2b) ? (-a 2b 4c)2. 59. [(-a)]3 ?a 3m+[(-a)5m ]2.60. x n+1(x n -x n ^1+x).6162. 5X (X 2+2X +1)-(2X +3)(X -5). ÷4)..(x+y)(x 2-xy+y 2).63. (2x-3)(X64(-2at^)365. -8(a-b)366. 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3) xy)+(-3xy 2)2.(3a 2b-2ab-4t?) 67. (-4xy 3) ?(-68.计算 [(-a)2m ] 3· a 3m +[(-a) 3m ]3(m 为⾃然数 ).1.(a+b)(a - b)= __ ,公式的条件是 __ ,结论是 ___ .1 2.(x - 1)(x+1)= ____ ,(2a+b)(2a - b)= _____ ,( 1x3 y)( 13x+y)= _ .3.(x+4)( - x+4)= ____ ,(x+3y)( __ )=9y 2- x 2,( - m69.先化简 (x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),再求其值,其n)( ___ )=m 2-n 2中 x=4.98×102=( ___ )( ____ )=( )2- ( )2= ____ . 5.-(2x 2+3y)(3y -2x 2)= __ . 6.(a -b)(a+b)(a 2+b 2)= __ .7.( ____ - 4b)( _ +4b)=9a 2 - 16b 2,(____ - 2x)( ___ 2x)=4x 2-25y 28.(xy -z)(z+xy)= _ ,( 5x - 0.7y)( 5x+0.7y)= .66 119.(1 x+y 2)( __ )=y 4- 1x 270.已知 ab 2=-6,求 -ab(a 2b 5-ab 3-b)的值4 1610.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1《乘法公式》练习题(⼀) (x -1)(x 3+x+1)=x 4-1、填空题15.a4+(1-a)(1+a)(1+a2)的计算结果是( )(x-1)(x n+x n 1+?+x+1)= .⼆、选择题11.下列多项式乘法,能⽤平⽅差公式进⾏计算的是()A.(x+y)(-x-y)B.(2x+3y)(2x -3z)C.(-a-b)(a -b)D.(m-n)(n-m)12.下列计算正确的是()A.(2x+3)(2x-3)=2x2-9B.(x+4)(x-4)=x2-4C.(5+x)(x-6)=x2-30D.(-1+4b)(-1-4b)=1-16b213.下列多项式乘法,不能⽤平⽅差公式计算的是()A.(-a-b)(-b+a)B.(xy+z)(xy-z)C.(-2a-b)(2a+b)D.(0.5x-y)(-y-0.5x)14.(4x2-5y)需乘以下列哪个式⼦,才能使⽤平⽅差公式进⾏计算()A. -4x2-5yB.-4x2+5yC.(4x2-5y)2A.-1B.1C.2a4- 1D.1-2a416.下列各式运算结果是x2-25y2的是( )A.(x+5y)(-x+5y)B.(-x-5y)( -x+5y)D.(x-5y)(5y-x)三、解答题17.1.03× 0.97 18.(-2x2+5)( -2x2-5)(a+6)(a-6) 20.(2x-3y)(3y+2x)-(4y-3x)(3x+4y)y)( 91x2+y2)22.(x+y)(x-y)-x(x+y) 23.3(2x+1)(2x-1)-2(3x+2)(2-3x) 24.9982-4 25.2003× 2001-20022 《乘法公式》练习题(⼆) 1.(a b)2 a2 b2--( )2.(x y) 2 x2 2xy y2---( )根据前⾯各式的规律可得C.(x-y)(x+25y)19.a(a -5)-1 21.( 311x-3.(a b)2 a2 2ab b 2- -() 4.(2x 3y)2 2x2 12xy 9y2()D.(4x+5y)25. (2x 3 y)( 2x 3y) 4 x 2 9 y 2( ) 6(2x 3y)(3x y) ______________ ; A ) ( a b)(a b) (B ) (x 2)(2 x)11C ) (3x y)(y 3x) (D ) (x 2)(x 1)337. (2 5y)28. (2 x3y)(3 x 2y) _____________ _9. (4x 6 y)(2x 3y) ______________1 10(1x 2y)22 11.(x 3)(x 3)( x 29) _________12.(2x1)(2x1) 1 ________________ 13。
整式的乘除同步练习
整式的乘法⑴ 你一定能完成一、精心选一选⒈计算)102)(105(38⨯⨯的结果正确的是 【 】 A .241010⨯ B .2510 C .111010⨯ D .1210⒉下列计算正确的是 【 】 A .6326)3(2a a a -=-⋅ B .4342936y x xy x =⋅ C .3228)4(2y x xy xy -=-⋅- D .2439)3(3b a ab b a =-⋅-⒊下列各题计算正确的是 【 】A .ab a a b a 186)6)(3(2--=--B .13)19)(31(232+=+--y x xy y xC .432224)4()21(b a ab b a =-⋅-D .x x x x x x 336)12(3232-+-=+--二、耐心填一填:⒈计算:______)2(32343=-c b b a ;. ⒉_______)4(2122=-⋅-xy xy ⒊ =-)2)(3(332b a b a = 三、用心做一做: ⒈计算:⑴)56(673abc b a ⋅- ⑵2223))(()(bc a b a ab ---⑶ )241(2342x x x x -+--⑷)2)(45(22mn n m mn --⒉先化简,再求值)3(2)158()96(x x x x x x -+-----,其中61-=x ; 相信你能完成(2)一、精心选一选 (xy 34-)2)3(xy -⋅计算结果正确的是【 】 A .224y x B.-224y x C.-3312y x D.3312y x 二、耐心填一填⒈计算:________)2()5.0(21222=-⋅-⋅bc ab c ab ; ⒉计算:2x 3y ·(-2x 2y )2= . ⒊计算: _______)21()4332(2=-⋅+-ab b ab ab三、用心做一做:⒈计算:⑴)4)(5.1(2332z y x y x -- ⑵232232)()2()5(y x y x -⋅-⋅⒉计算:⑴215(2)(12)36a a a --- ⑵23(241)x xx --+⒊有几个长方体模型,它的长为2×103cm ,宽为1.5×102cm ,高为1.2×102cm ,它的体积是多少cm 3?请你试一试 一天,小明想计算一个L 型的花坛的面积,在动手测量前,小明依花坛形状画了如图1-6-1示意图,并用字母表示了将要测量的边长。
整式的乘法100题专项训练(精心整理)
..整式的乘法 100 题专项训练同底数幂的乘法:底数不变,指(次)数相加。
公式:a m· a n =a m+n 1、填空:(1)x3x5; a a2 a3;x n x 2;(2)( a2) ( a)3; b2 b3 b x 2= x 6;(3)(x)2 x3;10410; 33233;(4)a a 4a 3=;2 2 3 2 5=;(5) a 2 a 5a3=;2a3=___________;(1)aa2( a) ( a)6;3452;(6)m m m m =(7)(b a) 3 (b a) 4; x n x2;1)216(8)(;10 610 4332、简单计算:(1)a4a6(2)b b5(3)m m2m3( 4)c c3c5c93. 计算:(1)b 3b2()( a)a32(3)( y)2( y)3(4)( a)3( a)4(5)3432(6)( 5)7( 5)6(7)( q)2n( q)3(8)( m)4( m)2(9) 23(10)( 2)4( 2)5 4.下面的计算对不对?如果不对,应怎样改正?(1)233265;(2)a3a3a6;(3)y n y n 2 y 2n;( 4)m m2m2;(5)(a)22)a4;()a3a4a12 ;( a6二、幂的乘方:幂的乘方,底数不变,指数相乘.即: ( a m )n =a mn 1、填空:(1)( 22) 4=___________ (2)( 33)2=___________(3)(22) 2=___________( 4)(22)2=___________753( 5)(m 7)= ___________( 6)m (m 3) = ___________2、计算 :(1)(22)2;(2)(y 2) 5(3)(x 4)3(4)3( b m)3 2 2 3 54 2 7(4)(y ) ? (y )(5)a ( a) ( a)(6)2 ( x 3) x x三、积的乘方:等于把积的每一个因式分别乘方, 再把所得的幂相乘. (ab) n =a n b n1、填空:( 1)( 2x )2=___________( ab )3 =_________(ac) 4. =__________2a 2) 22(2)(- 2x ) 3=___________(=_________ (a4) =_________32( 3)( 2a 2b ) =_______ ( 2a 2b 4) =_________(4)( xy 3) 2=_________( 5)(ab)n__________n21 a 2 b 3)3(6) (abc)__________ (n 为正整数 ) ( 7)(__________3332(8)( ab) a b__________ ( 9)( 3x 2y)__________3(9)(a nb 3n )3(10)( x 2y 3)________ (a2n 3=___________b )________( x 3y 2 2 ___________)2、计算:(1)( 3a )2 (2)(- 3a ) 3 (3)( ab 2)2 ( 4)(- 2× 103) 3(5)( 103) 3 (6)( a 3) 7( 7)( x 2) 4; (8)( a 2)? 3 ? a 53、选择题:(1)下列计算中,错误的是()A 2 3 2 4 6B2 2244(a b )a b(3x y ) 9x yC33D3 2 26 4( xy)x y(m nm n )(2)下面的计算正确的是()A235B235m m mm m m3 252mnmn(m n)2Cm nD22四、整式的乘法1、单项式乘单项式 1、 ( 3x 2 ) · 2x 32、3a 3 · 4a 43、 4m 5 ·3m 24、(5a 2b)3 ( 3a)25、 x 2 · x · x 56、 ( 3x) · 2xy7、 4a 2 · 3a 28、 ( 5a 2 b) · ( 3a)9、 3x · 3x510、 4b 3c · 1abc 11、 2x 3 · ( 3x) 212、 4 y · ( 2xy 2 )213、 ( 3x 2y) · ( 1xy 2 )14、 (2 104)· ( 4 105)15 、 7 x 4 · 2 x 3316、 3a 4 b 3 · ( 4a 2b 3c 2 )17、 19、 x 2 · y 2 ( xy 3 )2. .18、 (5a 2b)3 · ( ab 2c)319、 ( 2a)3 · ( 3a) 220 、5m · ( 10m 4 )221、 3m nm n22、(3x2323、 4ab21 2 c)x· 4xy) · ( 4x)· ( 8 a24、 ( 5ax) ·222 4 2252 3(3 x y)、( m a b ) ·( mab ) 26、4x y ·2x ( y) z2527、 ( 3a 3bc)3 · ( 2ab 2 ) 2 28 、(4 ab) · ( 3ab)2 29、 (2 x)3· ( 5xy 2 )330、 ( 2x 3 y 4 )3 ( x 2 yc)231 、 4xy 2· ( 3x 2 yz 3 )32、 ( 2ab 3c)2 · (2 x) 2833、( 3a 2b 3 ) 2 ·( 2ab 3 c)334、( 3a 3b 2)( 2 1a 3b 3c)35、( 4x 2 y) ·( x 2 y 2) ·( 1y 3 )7 3 236、 4xy 2 · ( 5x 3 y 2 ) · ( 2x 2 y)37、 ( 2x 2 y) 2 · (1 xyz) · 3 x 3 z 32 538、 ( 1 xyz) ·2x 2 y 2· (3yz 3 )39、 6m 2 n · ( x y)3 · ( y x) 22 3 540、 ( 1 ab 2c)2 · ( 1 a bc 2 )3· ( 1 a 3 )41、、 2xy · ( 1 x 2 y 2 z) · ( 3x 3 y 3)2 3 2242、 ( 1 ab 3 )3 · ( 1 ab) · ( 8a 2b 2 ) 243、 6a 2b · ( x y)3 · 1 ab 2 · ( y x)22 432221344、 ( 4x y) · ( x y ) · y二、单项式乘多项式: (利用乘法分配率,转变为单项式乘单项式,然后把结果相加减) 1、 2m(3 x 4 y)2 、 1 ab(ab1) 3 、 x(x 2x 1)4 、 2a(3a 22b 1)2 25、 3x( x 2 2x 1) 6 、 4x(3xy) 7 、 ab (a b)8、 6x(2 x 1)9、 x(x 1)10、 3a(5a 2b)11 、 3x(2 x 5)12、 2x 2 ( x1 )213、 3a 2 (a 3b 2 2a) 14 、 (x3y)( 6 x) 15、 x( x 2 y 2 xy) 16 、 (4 a b 2 )( 2b)17、 ( 3x 1)( 2x 2)18 、 ( 2a) · ( 1a 31)19 、 ( 3x 2 )(2 x 3 x 2 1)4 220、(2ab 22ab) ·1ab 21、 4m( 3m2 n 5mn2 )22 、( 3ab )(2a2b ab 2)3223、5ab·(2 a b 0.2)24 、(2 a22a4) · ( 9a) 25、 3x(2 x25x 1) 3926、2x( x2x 1)27、2x·(1x21)28、 3x(1x22)23329、4a(2 a23a 1)30、(3x2 )( x22x 1)31、xy( x2y51) 32、2x2y(13xy y)33 、3xy(3 x2y24xy2 )34、 3ab( a2 b ab2ab)235、ab2(2a23ab 2a)36 、1a2b ·(6 a23ab 9b2 ) 37、 (2 x 4 x38)(1 x2) 3238、2x3(3 x25x 6) 39、 (3a33b2c6ac2 ) ·1ab43 40、x( x1) 2x( x 1) 3x(2 x5)..41、a(b c) b(c a) c(a b)42 、(3x21y2y2 )(1xy)3 23243、(1x2 y 2xy y2 ) · ( 4xy)43 、(5a2b10a3b21)(1a b)233512244、、(x y 2xy y )( 4xy)三、多项式乘多项式:(转化为单项式乘多项式, 然后在转化为单项式乘单项式)1、(3x1)(x 2)2、( x8 y)( x y)3、(x1)(x 5)4、(2 x1)(x3)5、(m2n)(m 3n)6、 (a 3b)(a 3b)7、 (2 x21)(x 4)8 、(x23)(2 x5) 9、( x2)( x 3)10、( x4)( x 1)11、( y4)( y 2)12、( y5)( y3)13、(x p)( x q)14 、( x 6)( x 3)15 、(x 1)( x1) 16、 (3 x 2)( x 2) 2317、(4 y1)( y 5)18、( x2)( x24)19、(x4)( x 8)20、( x4)( x9)21、( x2)( x 18)22、( x3)( x p)23、( x6)( x p)24、( x7)( x5)25、( x 1)(x5)26 、1127、28 、3229、(4 x25xy)(2 x y)30、( y3)(3 y 4)31、(x3)( x 2) 32、(2 a b)(a 2b)33、(2 x3)( x 3)34、( x3)( x a)35、( x1)(x 3)36、(a2)(b2)37、(3 x 2 y)(2 x 3 y) 38、( x 6)( x 1)39、( x3y)(3 x 4 y) 40、( x 2)( x1)41、(2 x3y)(3 x 2 y)42 、(1x x2 )( x 1)43、(a b)(a2ab b2 )44、(3x22x 1)(2 x23x 1) 45、 (a b)( a2ab b2 ) 46、 ( x2xy y2 )( x y)47、(x a)( x2ax a 2 )48、(x y)( x2xy y2 ) 49、 (3x43x21)( x4x22)50、(x y)( x2xy y2 )四、平方差公式和完全平方公式1、( x1)( x 1)2、 (2 x1)(2 x1) 3 、( x5y)( x5y) 4 、(3 x2)(3 x2)5、(b2a)(2 a b) 6 、(x 2 y)( x 2 y)7、(a b)( b a) 8、( a b)(a b)9、(3a2b)(3a2b)10 、52)(a 5b2)11、(2 a5)(2 a5) 12、(1m)( 1m)(a b13、(1a b)(1a b) 14、 ( ab 2)(2ab) 15、10298 16、 97 103 2217、 4753 18 、 (a b)(a b)( a 2 b 2 ) 19 、 (3a 2b)(3a 2b)20、 ( 7m 11n)(11n 7m) 21 、 (2 y x)( x 2 y)22、 (4 a)( 4 a)23、 (2a 5)(2 a 5) 24 、 (3a b)(3 a b)25、 (2 x y)(2 x y)完全平方: 1、 ( p 1)2 2、 ( p1)2 3 、(a b)2 4、 (ab)2 5、( m2)26、 (m 2)27 、 (4 mn) 2 8 、 ( y1 )2 9 、 ( x 3y)2 10 、 ( a 2b)2211、 (a1 )2 12 、 (5 x 2 y)213 、 (2 ab)214 、 ( 1x y) 2 15 、 (2 a 3b)2a216、 (3 x 2 y)217 、 ( 2m n)218 、 (2a2c)219、(23a)220 、 (1x 3 y)2321、(3a 2b)2 22 、( a 2 b 2 )2 23 、( 2x 2 3 y) 224、(1 xy) 2 25 、(1 x 2 y 2 )2..五、同底数幂的除法:底数不变,指数相减。
(完整版)整式的乘法习题(含详细解析答案)
整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
整式的乘除测试题练习8套(含答案)
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
8年级数学人教版上册同步练习-整式的乘法(含答案解析)
第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
整式乘法计算50题(含解析)
整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。
华师大版数学八年级上册12.2整式的乘法同步练习
( 4)( x﹣ 3)( x﹣4)=x2﹣7x+12.
根据你发现的规律,若( x+a)( x+b)=x2﹣8x+15,则 a2+b2 的值为
.
14.x(y﹣ 1)﹣(
)=(y﹣1)( x+1)
三.解答题(共 6 小题)
15.计算:
( 1) a(a﹣b) +ab; ( 2) 2( a2﹣3)﹣( 2a2﹣ 1).
;
( 2)( 2x+a)( 3x+b)=(2x+3)( 3x﹣ 2) =6x2+5x﹣6. 20.解:( 1)( x﹣1)( x+1) =x2﹣ 1; ( x﹣1)( x2+x+1) =x3﹣ 1; ( x﹣1)( x3+x2+x+1)=x4﹣1; ( x﹣1)( x99+x98+…+x+1) =x100﹣ 1; ( 2) 299+298+…+2+1=( 2﹣1)×( 299+298+…+2+1)=2100﹣1. 故答案为:( 1)x2﹣1;x3﹣ 1; x4﹣1;x100﹣1
;
( x﹣1)( x3+x2+x+1)=
;
( x﹣1)( x99+x98+…+x+1) =
.
( 2)请你利用上面的结论计算: 299+298+…+2+1.
参考答案
一.选择题
1.D.
2.A.
3.C.
4.D.
5.A.
6.B.
7.A.
8.A.
二.填空题
完整版)整式的乘法练习题
完整版)整式的乘法练习题1.a8 = (-a)82.a15 = (a5)33.3m2·2m3 = 6m54.(x+a)(x+a) = x2 + 2ax + a25.a3·(-a)5·(-3a)2·(-7ab3) = 21a8b36.(-a2b)3·(-ab2) = a4b57.(2x)2·x4 = 4x68.24a2b3 = 6a2·4b39.[(am)n]p = amnp10.(-mn)2(-m2n)3 = m10n711.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是 -412.m是x的六次多项式,n是x的四次多项式,则2m-n 是x的十次多项式14.(3x2)3-7x3[x3-x(4x2+1)] = -28x915.{[(-1)4]m}n = 116.-{-[-(-a2)3]4}2 = -a9617.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是 (a+2)(a-2)(a+3)厘米318.若10m=a,10n=b,那么10m+n=ab19.3(a-b)2[9(a-b)n+2](b-a)5 = -3(a-b)n+1120.已知3x·(xn+5)=3xn+1-8,那么x=-321.若a2n-1·a2n+1=a12,则n=222.(8a3)m÷[(4a2)n·2a]=2ma3-2n23.若a<1,n为奇数,则(an)5<a524.(x-x2-1)(x2-x+1)n(x-x2-1)2n = (x-x2-1)2n+1(x2-x+1)n25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是 -15x3y626.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于 127.选项C28.选项B9a3·2a2可以化简为18a5,2x5·3x4可以化简为5x9,3x3·4x3可以化简为12x3,3y3·5y3可以化简为15y9.ym)3·yn可以化简为y3m+n。
整式的乘法专题训练
整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。
题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。
题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。
题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。
题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。
题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。
题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。
题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。
人教版八上数学《整式的乘法》练习及答案
《整式的乘法》同步测试一、选择题:1.下列各式中,正确的是()A.t2·t3 = t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t5·t5 = 2t52.下列计算错误的是()A.−a2·(−a)2 = −a4 B.(−a)2·(−a)4 = a6C.(−a3)·(−a)2 = a5 D.(−a)·(−a)2 = −a33.下列计算中,运算正确的个数是()①5x3−x3 = x3 ② 3m·2n = 6m+n③a m+a n = a m+n ④x m+1·x m+2 = x m·x m+3A.1 B. 2 C.3 D.44.计算a6(a2)3的结果等于()A.a11 B.a 12 C.a14 D.a365.下列各式计算中,正确的是()A.(a3)3 = a6 B.(−a5)4 = −a 20 C.[(−a)5]3 = a15 D.[(−a)2]3 = a6 6.下列各式计算中,错误的是()A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (−x n)2 D.x2n = (−x2)n 7.下列计算正确的是()A.(xy)3 = xy3 B.(2xy)3 = 6x3y3C.(−3x2)3 = 27x5 D.(a2b)n = a2n b n8.下列各式错误的是()A.(23)4 = 212 B.(− 2a)3 = − 8a3C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b29.下列计算中,错误的是()A.m n·m2n+1 = m3n+1 B.(−a m−1)2 = a 2m−2C.(a2b)n = a2n b n D.(−3x2)3 = −9x610.下列计算中,错误的是()A.(−2ab2)2·(− 3a2b)3 = − 108a8b7B.(2xy)3·(−2xy)2 = 32x5y5C.(m2n)(−mn2)2 =m4n4D.(−xy)2(x2y) = x4y311.下列计算结果正确的是()A.(6ab2− 4a2b)•3ab = 18ab2− 12a2bB.(−x)(2x+x2−1) = −x3−2x2+1C.(−3x2y)(−2xy+3yz−1) = 6x3y2−9x2y2z2+3x2yD.(34a3−12b)•2ab=32a4b−ab212.若(x−2)(x+3) = x2+a+b,则a、b的值为()A.a = 5,b = 6 B.a = 1,b = −6C.a = 1,b = 6 D.a = 5,b = −6二、解答题:1.计算(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b);(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2;(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a);(4)(3x2−5y)(x2+2x−3).2.当x = −3时,求8x2−(x−2)(x+1)−3(x−1)(x−2)的值.3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.4.(x+my−1)(nx−2y+3)的结果中x、y项的系数均为0,求3m+n之值.参考答案:一、选择题1.A说明:t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4 = t3+4 = t7≠t12,C错;t5•t5 = t5+5 = t10≠2t5,D错;t2•t3 = t2+3 = t5,A 正确;答案为A.2.C说明:−a2·(−a)2 = −a2·a2 = −a2+2 = −a4,A计算正确;(−a)2·(−a)4 = a2·a4 = a2+4 = a6,B计算正确;(−a3)·(−a)2 = −a3·a2 = −a5≠a5,C计算错误;(−a)·(−a)2 = −a·a2 = −a3,D计算正确;所以答案为C3.A说明:5x3−x3 = (5−1)x3 = 4x3≠x3,①错误;3m与2n不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m = 1,n = 2,则3m·2n = 31·22 = 3·4 = 12,而6m+n = 61+2 = 63= 216≠12,②错误;a m与a n只有在m = n时才是同类项,此时a m+a n = 2a m≠a m+n,而在m≠n时,a m与a n无法合并,③错;x m+1·x m+2 = x m+1+m+2 = x m+m+3 =x m·x m+3,④正确;所以答案为A.4.B说明:a6(a2)3 = a6·a2×3 = a6·a6 = a6+6 = a12,所以答案为B.5.D说明:(a3)3 = a3×3 = a9,A错;(−a5)4 = a5×4 = a20,B错;[(−a)5]3 = (−a)5×3 = (−a)15 = −a15,C错;[(−a)2]3 = (−a)2×3 = (−a)6 = a6,D正确,答案为D.6.D说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−x n)2 = x2n,C计算正确;当n为偶数时,(−x2)n = (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.7.D说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(−3x2)3 = (−3)3(x2)3 = −27x6,C错;(a2b)n = (a2)n b n = a2n b n,D正确,答案为D.8.C9.D 10.C 11.D 12.B二、解答题1.解:(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b) = [(−5)×(−3)×(−7)](a3·a·a2)(b2·b2·b)c = −105a6b 5c.(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2= (−2·13)·(a2·a)·(b3·b2)[(m−n)5·(m−n)2]+(13·6)(a2·a)(m−n)b2 = −23a3b5(m−n)7+2a3b2(m−n).(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a) = 3a2·13ab2− 3a2b+ 2a2b2· 3a−3ab· 3a= a3b2− 3a2b+ 6a3b2− 9a2b = 7a3b2− 12a2b.(4)(3x2−5y)(x2+2x−3) = 3x2·x2−5y·x2+3x2·2x−5y·2x+3x2·(−3)−5y·(−3)= 3x4−5x2y+6x3−10xy−9x2+15y= 3x4+6x3−5x2y−9x2−10xy+15y.2. 解:8x2−(x−2)(x+1)−3(x−1)(x−2) = 8x2−(x2−2x+x−2)−3(x2−x−2x+2)= 8x2−x2+x+2−3x2+9x−6 = 4x2+10x−4.当x = −3时,原式= 4·(−3)2+10·(−3)−4 = 36−30−4 = 2.3. 解:设长方形的长为x,宽为y,则由题意有即解得xy = 36.答:长方形的面积是36.4. 解:(x+my−1)(nx−2y+3) = nx2−2xy+3x+mnxy−2my2+3my−nx+2y−3= nx2−(2−mn)xy−2my2+(3−n)x+( 3m+2)y−3∵x、y项系数为0,∴得故3m+n = 3·(−23)+3 = 1.。
整式的乘法练习题练习题
整式的乘法练习题一、单项式乘单项式1. 计算:(3x)(4x)2. 计算:(2a)(5b)3. 计算:(7m^2)(3n^2)4. 计算:(4p^3q)(2pq^2)5. 计算:(9xyz)(3x^2y^2z^2)二、单项式乘多项式1. 计算:(3x)(x + 2y 3z)2. 计算:(4a)(2a^2 3ab + 4b^2)3. 计算:(5m^2n)(3mn^2 2m^2n + 4mn)4. 计算:(2p^3q)(4p^2q 3pq^2 + 5q^3)5. 计算:(7xyz^2)(2x^2y^2z 5xy^2z^2 + 3xyz^3)三、多项式乘多项式1. 计算:(x + 2y 3z)(2x 4y + 6z)2. 计算:(a 3b + 2c)(2a + 4b 5c)3. 计算:(m^2 + 2mn 3n^2)(3m^2 4mn + 5n^2)4. 计算:(p^2q 4pq^2 + 7q^3)(2p^2q 5pq^2 + 3q^3)5. 计算:(2x^2y 5xy^2 + 3y^3)(4x^2y 7xy^2 + 6y^3)四、乘法公式应用1. 计算:(a + b)^22. 计算:(m n)^33. 计算:(2x + 3y)(2x 3y)4. 计算:(4p 5q)(4p + 5q)5. 计算:(x^2 + 2xy + y^2)(x^2 2xy + y^2)五、平方差公式应用1. 计算:(x + 5)^2 (x 5)^22. 计算:(2a 3b)^2 (2a + 3b)^23. 计算:(4m + n)^2 (4m n)^24. 计算:(7p 2q)^2 (7p + 2q)^25. 计算:(3x^2 2y^2)^2 (3x^2 + 2y^2)^2六、完全平方公式应用1. 计算:(x + 6)^22. 计算:(3a 4b)^23. 计算:(2m + 5n)^24. 计算:(4p 3q)^25. 计算:(x^3 y^3)^2七、混合运算1. 计算:2(x^2 3x + 1) 3(x^2 + 2x 1)2. 计算:4(a^2 ab + b^2) + 5(a^2 + ab b^2)3. 计算:3(m^2 + 2mn n^2) 2(m^2 mn + n^2)4. 计算:5(p^2 4pq + 4q^2) + 2(p^2 + 4pq + 4q^2)5. 计算:2(x^3 3x^2y + 2xy^2) 4(x^3 + 2x^2y xy^2)八、特殊乘法1. 计算:(x + 1)(x 1)(x + 2)2. 计算:(2a 3)(2a + 3)(a 2)3. 计算:(m + n)(m n)(m + 2n)4. 计算:(p + q)(p q)(2p + q)5. 计算:(x^2 + y^2)(x^2 y^2)(x^2 + xy)答案一、单项式乘单项式1. 12x^22. 10ab3. 21m^2n^24. 8p^4q^35. 27x^2y^2z^3二、单项式乘多项式1. 3x^2 + 6xy 9xz2. 8a^3 + 12a^2b 16ab^23. 15m^3n^3 10m^4n^2 + 20m^2n^34. 8p^5q^2 + 12p^4q^3 14p^3q^45. 14x^3y^3z 35x^2y^4z^2 + 21xy^5z^3三、多项式乘多项式1. 2x^2 16xy + 18x^2 8y^2 + 24yz 27z^22. 2a^2 6ab + 4ac 6ab + 18b^2 12bc + 4ac 12bc + 20c^23. 3m^4n^2 10m^3n^3 + 15m^2n^4 6m^3n^3 + 16m^2n^424mn^5 + 9m^2n^4 24mn^5 + 36n^64. 8p^4q^2 31p^3q^3 + 47p^2q^4 20p^3q^3 + 75p^2q^4 111pq^5 + 28p^2q^4 111pq^5 + 153q^65. 8x^4y^3 44x^3y^4 + 62x^2y^5 35x^3y^4 + 189x^2y^5 273xy^6 + 105x^2y^5 273xy^6 + 405y^7四、乘法公式应用1. a^2 + 2ab + b^22. m^3 3m^2n + 3mn^2 n^33. 4x^2 9y^24. 16p^2 25q^25. x^4 4x^2y^2 + 4y^4 2x^2y^2 + 4y^4 y^4五、平方差公式应用1. 20x2. 72ab3. 48mn4. 280pq5. 16x^4 16y^4六、完全平方公式应用1. x^2 + 12x + 362. 9a^2 24ab + 16b^23. 4m^2 20mn + 25n^24. 16p^2 24pq + 9q^25. x^6 2x^3y^3 + y^6七、混合运算1. x^2 + 6x 12. 7a^2 2ab + 11b^23. m^2 + mn 3n^24. 7p^2 2pq + 13q^25. 2x^3 10x^2y + 6xy^2八、特殊乘法1. x^3 + 3x^2 2x 22. 4a^3 8a^2 5a + 63. m^3 + mn^2 2m^2n n^34. 2p^3 + pq^2 6p^2q q^35. x^6 x^4y^2 + x^2y^4 y^6。
八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)
八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)1、下列运算正确的是().A. x3⋅x3=x9B. x8÷x4=x2C. (ab3)2=ab6D. (2x)3=8x32、如果正方体的棱长是(1−2b)3,那么这个正方体的体积是().A. (1−2b)6B. (1−2b)9C. (1−2b)12D. 6(1−2b)63、计算:2(a5)2⋅(a2)2−(a2)4⋅(a3)2.4、若3x=15,3y=5,则3x−y等于().A. 5B. 3C. 15D. 105、已知2x+3y−4=0,则9x⋅27y=.6、已知:2m=a,2n=b,则22m+3n用a、b可以表示为().A. 6abB. a2+b3C. 2a+3bD. a2b37、若x,y均为正整数,且2x+1⋅4y=128,则x+y的值为().A. 3B. 5C. 4或5D. 3或4或58、如果a=355,b=444,c=533,那么a、b、c的大小关系是().A. a>b>cB. c>b>aC. b>a>cD. b>c>a9、根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明的多项式的乘法运算是().A. (a+3b)(a+b)=a2+4ab+3b2B. (a+3b)(a+b)=a2+3b2C. (b+3a)(b+a)=b2+4ab+3a2D. (a+3b)(a−b)=a2+2ab−3b210、已知a+b=m,ab=−4,化简(a−2)(b−2)的结果是().A. 6B. 2m−8C. 2mD. −2m11、已知(x−1)(x+3)=ax2+bx+c,求代数式9a−3b+c的值.12、要使(y2−ky+2y)(−y)的展开式中不含y2项,则k的值为().A. −2B. 0C. 2D. 313、计算:(−6x3+9x2−3x)÷(−3x)=().A. 2x2−3xB. 2x2−3x+1C. −2x2−3x+1D. 2x2+3x−114、下列计算正确的是().A. 10a4b3c2÷5a3bc=ab2cB. (a2bc)2÷abc=aC. (9x2y−6xy2)÷3xy=3x−2yD. (6a2b−5a2c)÷(−3a2)=−2b−53c15、下列等式错误的是().A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n516、若(2a m b n)3=8a9b15成立,则().A. m=6,n=12B. m=3,n=12C. m=3,n=5D. m=6,n=517、计算(−32)2018×(23)2019的结果为().A. 23B.32C. −23D. −3218、已知x+4y−3=0,则2x⋅16y的值为.19、若2x=5,2y=3,则22x+y=.20、若5x=16,5y=2,则5x−2y=.21、比较255、344、433的大小().A. 255<344<433B. 433<344<255C. 255<433<344D. 344<433<25522、观察等式(2a−1)a+2=1,其中a的取值可能是().A. −2B. 1或−2C. 0或1D. 1或−2或023、已知x2n=3,则(19x3n)2⋅4(x2)2n的值是().A. 12B. 13C. 27 D. 12724、已知ab=a+b+1,则(a−1)(b−1)=.25、先化简,再求值:3a(2a2−4a+3)−2a2(3a+4),其中a=−2.26、若多项式乘法(x+2y)(2x−ky−1)的结果中不含xy项,则k的值为().A. 4B. −4C. 2D. −227、下列运算正确的是().A. a3+a3=2a6B. (−2ab2)3=−6a3b6C. (28a3−14a2+7a)÷7a=4a2−2aD. a2⋅a3=a528、计算(12x3−8x2+16x)÷(−4x)的结果是().A. −3x2+2x−4B. −3x2−2x+4C. −3x2+2x+4D. 3x2−2x+41 、【答案】 D;【解析】 A选项 : x3⋅x3=x6,故选项A错误.B选项 : x8÷x4=x4,故选项B错误.C选项 : (ab3)2=a2b6,故选项C错误.D选项 : (2x)3=8x3,故选项D正确.2 、【答案】 B;【解析】[(1−2b)3]3=(1−2b)9.3 、【答案】a14.;【解析】4 、【答案】 B;【解析】3x−y=3x÷3y=15÷5=3.5 、【答案】81;【解析】9x⋅27y=32x⋅33y=32x+3y=81.6 、【答案】 D;【解析】∵2m=a,2n=b,∴22m+3n=(2m)2×(2n)3=a2b37 、【答案】 C;【解析】∵2x+1⋅4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴{x=2y=2或{x=4y=1,∴x+y=4或5.故选C.8 、【答案】 C;【解析】a=355=(35)11=24311b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.9 、【答案】 A;【解析】根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2.10 、【答案】 D;【解析】(a−2)(b−2)=ab−2a−2b+4=ab−2(a+b)+4,把ab=−4,a+b=m代入原式得原式=−4−2m+4=−2m.故选D.11 、【答案】0.;【解析】∵(x−1)(x+3)=x2+3x−x−3=x2+2x−3,∴a=1,b=2,c=−3,∴9a−3b+c=9×1−3×2−3=9−6−3=0.12 、【答案】 C;【解析】∵(y2−ky+2y)(−y)的展开式中不含y2项,∴−y3+ky2−2y2中不含y2项,∴k−2=0,解得:k=2.13 、【答案】 B;【解析】(−6x3+9x2−3x)÷(−3x)=2x2–3x+1.故选B.14 、【答案】 C;【解析】 A选项 : 10a4b3c2÷5a3bc=2ab2c,故A错误;B选项 : (a2bc)2÷abc=a4b2c2÷abc=a3bc,故B错误;C选项 : (9x2y−6xy2)÷3xy=9x2y÷3xy−6xy2÷3xy=3x−2y,故C正确;D选项 : (6a2b−5a2c)÷(−3a2)=−2b+53c,故D错误.15 、【答案】 D;【解析】(2mn)2=4m2n2,A项正确;(−2mn)2=4m2n2,B项正确;(2m2n2)3=8m6n6,C项正确;(−2m2n2)3=−8m6n6,D项错误.故选D.16 、【答案】 C;【解析】(2a m b n)3=8a9b15,m=3,n=5.17 、【答案】 A;【解析】(−32)2018×(23)2019=(−32)2018×(23)2018×23=23.故选:A.18 、【答案】8;【解析】∵x+4y−3=0,∴x+4y=3,∴2x⋅16y=2x⋅24y=2x+4y=23=8.19 、【答案】 75;【解析】 ∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75. 故答案为:75.20 、【答案】 4;【解析】 5x−2y =5x 52y =5x (5y )2=16(2)2=164=4. 21 、【答案】 C;【解析】 255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选C .22 、【答案】 D;【解析】 ∵(2a −1)a+2=1,∴①2a −1=1,a =1,13=1;②2a −1=−1,且a +2为偶数,即a =0,(−1)2=1; ③{2a −1≠0a +2=0,即a =−2,(−5)0=1; 综上,a 的值为:1,0,−2.23 、【答案】 A;【解析】 根据积的乘方法则,可将待求式化为: (19)2×(x 3n )2×4(x 2)2n , 根据幂的乘方法则,得481×x 6n ×x 4n ,根据同底数幂的乘法法则,得481x 10n , 即4×(x 2n )581,将x 2n =3代入,原式=4×35×181=4×3=12.故选A .24 、【答案】 2;【解析】 当ab =a +b +1时, 原式=ab −a −b +1=a +b +1−a −b +1 =2,故答案为:2.25 、【答案】 −98.;【解析】 3a (2a 2−4a +3)−2a 2(3a +4) =6a 3−12a 2+9a −6a 3−8a 2 =−20a 2+9a .当a =−2时,−20a 2+9a =−20×4−9×2=−98. 26 、【答案】 A;【解析】 (x +2y)(2x −ky −1), =2x 2−kxy −x +4xy −2ky 2−2y , =2x 2+(4−k)xy −x −2ky 2−2y , ∵ 结果中不含xy 项,∴ 4−k =0,解得k=4.27 、【答案】 D;【解析】 A选项 : a3+a3=2a3,故原题计算错误;B选项 : (−2ab2)3=−8a3b6,故原题计算错误;C选项 : (28a3−14a2+7a)÷7a=4a2−2a+1,故原题计算错误;D选项 : a2⋅a3=a5,故原题计算正确.28 、【答案】 A;【解析】解:(12x3−8x2+16x)÷(−4x)=−3x2+2x−4,故选:A.11。
人教版14.1整式的乘法-同步练习(含答案)
14.1 整式的乘法一.选择题(共30小题)1.(2015•连云港)下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3a C.a2•a3=a6 D.(a+b)2=a2+b2 2.(2015•包头)下列计算结果正确的是()A.2a3+a3=3a6 B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣13.(2015•营口)下列计算正确的是()A.|﹣2|=﹣2 B.a2•a3=a6 C.(﹣3)﹣2=D.=34.(2015•金华)计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a25.(2015•宿迁)计算(﹣a3)2的结果是()A.﹣a5 B.a5 C.﹣a6 D.a66.(2015•宁波)下列计算正确的是()A.(a2)3=a5 B.2a﹣a=2 C.(2a)2=4a D.a•a3=a47.(2015•泸州)计算(a2)3的结果为()A.a4 B.a5 C.a6 D.a98.(2015•丽水)计算(a2)3的正确结果是()A.3a2 B.a6 C.a5 D.6a9.(2015•德州)下列运算正确的是()A.﹣=B.b2•b3=b6 C.4a﹣9a=﹣5 D.(ab2)2=a2b410.(2015•潍坊)下列运算正确的是()A.+=B.3x2y﹣x2y=3C.=a+b D.(a2b)3=a6b311.(2015•泉州)计算:(ab2)3=()A.3ab2 B.ab6 C.a3b6 D.a3b212.(2015•哈尔滨)下列运算正确的是()A.(a2)5=a7 B.a2•a4=a6 C.3a2b﹣3ab2=0 D.()2=13.(2015•株洲)下列等式中,正确的是()A.3a﹣2a=1 B.a2•a3=a5 C.(﹣2a3)2=﹣4a6 D.(a﹣b)2=a2﹣b214.(2015•荆州)下列运算正确的是()A.=±2 B.x2•x3=x6 C.+=D.(x2)3=x615.(2015•潜江)计算(﹣2a2b)3的结果是()A.﹣6a6b3 B.﹣8a6b3 C.8a6b3 D.﹣8a5b316.(2015•长沙)下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b217.(2015•茂名)下列各式计算正确的是()A.5a+3a=8a2 B.(a﹣b)2=a2﹣b2 C.a3•a7=a10 D.(a3)2=a718.(2015•河池)下列计算,正确的是()A.x3•x4=x12 B.(x3)3=x6 C.(3x)2=9x2 D.2x2÷x=x19.(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8 B.(a5)2=a7 C.(a﹣b)2=a2﹣b2 D.(ab)2=a2b220.(2015•北海)下列运算正确的是()A.3a+4b=12a B.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab D.x12÷x6=x221.(2015•本溪)下列运算正确的是()A.5m+2m=7m2 B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a2 22.(2015•湘潭)下列计算正确的是()A.B.3﹣1=﹣3 C.(a4)2=a8 D.a6÷a2=a323.(2015•丹东)下列计算正确的是()A.2a+a=3a2 B.4﹣2=﹣C.=±3 D.(a3)2=a624.(2015•西宁)下列计算正确的是()A.a•a3=a3 B.a4+a3=a2 C.(a2)5=a7 D.(﹣ab)2=a2b225.(2015•巴彦淖尔)下列运算正确的是()A.x3•x2=x5 B.(x3)2=x5 C.(x+1)2=x2+1 D.(2x)2=2x226.(2015•张家界)下列运算正确的是()A.x2•x3=x6 B.5x﹣2x=3x C.(x2)3=x5 D.(﹣2x)2=﹣4x227.(2015•龙岩)下列运算正确的是()A.x2•x3=x6 B.(x2)3=x6 C.x3+x2=x5 D.x+x2=x328.(2015•宜昌)下列运算正确的是()A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x429.(2015•东莞)(﹣4x)2=()A.﹣8x2 B.8x2 C.﹣16x2 D.16x230.(2015•昆明)下列运算正确的是()A.=﹣3 B.a2•a4=a6 C.(2a2)3=2a6 D.(a+2)2=a2+414.1 整式的乘法11111参考答案与试题解析一.选择题(共30小题)1.(2015•连云港)下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3a C.a2•a3=a6 D.(a+b)2=a2+b2考点:同底数幂的乘法;合并同类项;完全平方公式.分析:根据同类项、同底数幂的乘法和完全平方公式计算即可.解答:解:A、2a与3b不能合并,错误;B、5a﹣2a=3a,正确;C、a2•a3=a5,错误;D、(a+b)2=a2+2ab+b2,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.2.(2015•包头)下列计算结果正确的是()A.2a3+a3=3a6 B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣1考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、2a3+a3=3a3,故错误;B、(﹣a)2•a3=a5,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.3.(2015•营口)下列计算正确的是()A.|﹣2|=﹣2 B.a2•a3=a6 C.(﹣3)﹣2=D.=3考点:同底数幂的乘法;绝对值;算术平方根;负整数指数幂.分析:分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.解答:解:A、原式=2≠﹣2,故本选项错误;B、原式=a5≠a6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.点评:本题考查的是同底数幂的乘法,熟知绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则是解答此题的关键.4.(2015•金华)计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a2考点:幂的乘方与积的乘方.分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选:B.点评:本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.5.(2015•宿迁)计算(﹣a3)2的结果是()A.﹣a5 B.a5 C.﹣a6 D.a6考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:(﹣a3)2=a6,故选D点评:此题考查幂的乘方问题,关键是根据法则进行计算.6.(2015•宁波)下列计算正确的是()A.(a2)3=a5 B.2a﹣a=2 C.(2a)2=4a D.a•a3=a4考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.7.(2015•泸州)计算(a2)3的结果为()A.a4 B.a5 C.a6 D.a9考点:幂的乘方与积的乘方.分析:根据幂的乘方,即可解答.解答:解:(a2)3=a6.故选:C.点评:本题考查了幂的乘方,理清指数的变化是解题的关键.8.(2015•丽水)计算(a2)3的正确结果是()A.3a2 B.a6 C.a5 D.6a考点:幂的乘方与积的乘方.分析:根据幂的乘方,即可解答.解答:解:(a2)3=a6,故选:B.点评:本题考查了幂的乘方,理清指数的变化是解题的关键.9.(2015•德州)下列运算正确的是()A.﹣=B.b2•b3=b6 C.4a﹣9a=﹣5 D.(ab2)2=a2b4考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可;B:根据同底数幂的乘法法则判断即可;C:根据合并同类项的方法判断即可;D:积的乘方法则:(ab)n=a n b n(n是正整数),据此判断即可.解答:解:∵,∴选项A错误;∵b2•b3=b5,∴选项B错误;∵4a﹣9a=﹣5a,∴选项C错误;∵(ab2)2=a2b4,∴选项D正确.故选:D.点评:(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了合并同类项问题,要熟练掌握,解答此题的关键是要明确合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(4)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.10.(2015•潍坊)下列运算正确的是()A.+=B.3x2y﹣x2y=3C.=a+b D.(a2b)3=a6b3考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵,∴选项A不正确;∵3x2y﹣x2y=2x2y,∴选项B不正确;∵,∴选项C不正确;∵(a2b)3=a6b3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.11.(2015•泉州)计算:(ab2)3=()A.3ab2 B.ab6 C.a3b6 D.a3b2考点:幂的乘方与积的乘方.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.解答:解:(ab2)3,=a3(b2)3,=a3b6故选C.点评:主要考查积的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号的运算.12.(2015•哈尔滨)下列运算正确的是()A.(a2)5=a7 B.a2•a4=a6 C.3a2b﹣3ab2=0 D.()2=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.点评:此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.13.(2015•株洲)下列等式中,正确的是()A.3a﹣2a=1 B.a2•a3=a5 C.(﹣2a3)2=﹣4a6 D.(a﹣b)2=a2﹣b2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.解答:解:A、3a﹣2a=a,原式计算错误,故本选项错误;B、a2•a3=a5,原式计算正确,故本选项正确;C、(﹣2a3)2=4a6,原式计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,原式计算错误,故本选项错误.故选B.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等知识,掌握运算法则是解答本题关键.14.(2015•荆州)下列运算正确的是()A.=±2 B.x2•x3=x6 C.+=D.(x2)3=x6考点:幂的乘方与积的乘方;实数的运算;同底数幂的乘法.分析:根据算术平方根的定义对A进行判断;根据同底数幂的乘法对B进行运算;根据同类二次根式的定义对C进行判断;根据幂的乘方对D进行运算.解答:解:A.=2,所以A错误;B.x2•x3=x5,所以B错误;C.+不是同类二次根式,不能合并;D.(x2)3=x6,所以D正确.故选D.点评:本题考查实数的综合运算能力,综合运用各种运算法则是解答此题的关键.15.(2015•潜江)计算(﹣2a2b)3的结果是()A.﹣6a6b3 B.﹣8a6b3 C.8a6b3 D.﹣8a5b3考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2a2b)3=﹣8a6b3.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.16.(2015•长沙)下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b2考点:幂的乘方与积的乘方;合并同类项;完全平方公式.分析:根据同类项、幂的乘方和完全平方公式计算即可.解答:解:A、x3与x不能合并,错误;B、(x2)3=x6,正确;C、3x﹣2x=x,错误;D、(a﹣b)2=a2﹣2ab+b2,错误;故选B点评:此题考查同类项、幂的乘方和完全平方公式,关键是根据法则进行计算.17.(2015•茂名)下列各式计算正确的是()A.5a+3a=8a2 B.(a﹣b)2=a2﹣b2 C.a3•a7=a10 D.(a3)2=a7考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:利用幂的运算性质、合并同类项及完全平方公式进行计算后即可确定正确的选项.解答:解:A、5a+3a=8a,故错误;B、(a﹣b)2=a2﹣2ab+b2,故错误;C、a3•a7=a10,正确;D、(a3)2=a6,故错误.故选C.点评:本题考查了幂的运算性质、合并同类项及完全平方公式,解题的关键是能够了解有关幂的运算性质,难度不大.18.(2015•河池)下列计算,正确的是()A.x3•x4=x12 B.(x3)3=x6 C.(3x)2=9x2 D.2x2÷x=x考点:幂的乘方与积的乘方;同底数幂的乘法;整式的除法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,整式的除法的法则,对各选项分析判断后利用排除法求解.解答:解:A、x3•x4=x7,故错误;B、(x3)3=x9,故错误;C、正确;D、2x2÷x=2x,故错误;故选:C.点评:本题考查了整式的除法,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.19.(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8 B.(a5)2=a7 C.(a﹣b)2=a2﹣b2 D.(ab)2=a2b2考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:运用同底数幂的乘法,幂的乘方,积的乘方,完全平方公式运算即可.解答:解:A.a4•a2=a6,故A错误;B.(a5)2=a10,故B错误;C.(a﹣b)2=a2﹣2ab+b2,故C错误;D.(ab)2=a2b2,故D正确,故选D.点评:本题考查了完全平方公式,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.20.(2015•北海)下列运算正确的是()A.3a+4b=12a B.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab D.x12÷x6=x2考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的除法.分析:根据同底数幂的除法的性质,整式的加减,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、3a与4b不是同类项,不能合并,故错误;B、(ab3)2=a2b6,故错误;C、正确;D、x12÷x6=x6,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的除法,幂的乘方,积的乘方,理清指数的变化是解题的关键.21.(2015•本溪)下列运算正确的是()A.5m+2m=7m2 B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a2考点:幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.分析:A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.解答:解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.点评:本题主要考查的是整式的计算,掌握合并同类项法则、单项式乘单项式法则、积的乘方法则以及平方差公式是解题的关键.22.(2015•湘潭)下列计算正确的是()A.B.3﹣1=﹣3 C.(a4)2=a8 D.a6÷a2=a3考点:幂的乘方与积的乘方;同底数幂的除法;负整数指数幂;二次根式的加减法.分析:A.不是同类二次根式,不能合并;B.依据负整数指数幂的运算法则计算即可;C.依据幂的乘方法则计算即可;D.依据同底数幂的除法法则计算即可.解答:解:A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.(a4)2=a4×2=a8,故C正确;D.a6÷a2=a6﹣2=a4,故D错误.故选:C.点评:本题主要考查的是数与式的运算,掌握同类二次根式的定义、负整数指数幂、积的乘方、幂的乘方的运算法则是解题的关键.23.(2015•丹东)下列计算正确的是()A.2a+a=3a2 B.4﹣2=﹣C.=±3 D.(a3)2=a6考点:幂的乘方与积的乘方;算术平方根;合并同类项;负整数指数幂.分析:A、依据合并同类项法则计算即可;B、根据负整数指数幂的法则计算即可;C、根据算术平方根的定义可做出判断;D、依据幂的乘方的运算法则进行计算即可.解答:解:A、2a+a=3a,故A错误;B、4﹣2==,故B错误;C、,故C错误;D、(a3)2=a3×2=a6,故D正确.故选:D.点评:本题主要考查的是数与式的计算,掌握合并同类项、负整数指数幂、算术平方根以及幂的乘方的运算法则是解题的关键.24.(2015•西宁)下列计算正确的是()A.a•a3=a3 B.a4+a3=a2 C.(a2)5=a7 D.(﹣ab)2=a2b2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:A:根据同底数幂的乘法法则判断即可.B:根据合并同类项的方法判断即可.C:根据幂的乘方的运算方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵a•a3=a4,∴选项A不正确;∵a4+a3≠a2,∴选项B不正确;∵(a2)5=a10,∴选项C不正确;∵(﹣ab)2=a2b2,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了合并同类项的方法,要熟练掌握.25.(2015•巴彦淖尔)下列运算正确的是()A.x3•x2=x5 B.(x3)2=x5 C.(x+1)2=x2+1 D.(2x)2=2x2考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:把原式各项计算得到结果,即可做出判断.解答:解:A、x3•x2=x5,此选项正确;B、(x3)2=x6,此选项错误;C、(x+1)2=x2+2x+1,此选项错误;D、(2x)2=4x2,此选项错误;故选A.点评:此题考查了幂的乘方,积的乘方,同底数幂的乘法,完全平方公式,熟练掌握运算法则是解本题的关键.26.(2015•张家界)下列运算正确的是()A.x2•x3=x6 B.5x﹣2x=3x C.(x2)3=x5 D.(﹣2x)2=﹣4x2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:利用幂的有关性质及合并同类项的知识分别判断后即可确定正确的选项.解答:解:A、x2•x3=x5,故错误;B、5x﹣2x=3x,故正确;C、(x2)3=x6,故错误;D、(﹣2x)2=4x2,故错误,故选B.点评:本题考查了幂的运算性质及合并同类项的知识,解题的关键是能够熟练掌握有关幂的运算性质,属于基本知识,比较简单.27.(2015•龙岩)下列运算正确的是()A.x2•x3=x6 B.(x2)3=x6 C.x3+x2=x5 D.x+x2=x3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法、同类项和幂的乘方判定即可.解答:解:A、x2•x3=x5,错误;B、(x2)3=x6,正确;C、x3与x2不是同类项,不能合并,错误;D、x与x2不是同类项,不能合并,错误;故选B点评:此题考查同底数幂的乘法、同类项和幂的乘方,关键是根据法则进行计算.28.(2015•宜昌)下列运算正确的是()A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:A:根据合并同类项的方法判断即可.B:根据幂的乘方的运算方法判断即可.C:根据完全平方公式的计算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵x4+x4=2x4,∴选项A不正确;∵(x2)3=x6,∴选项B不正确;∵(x﹣y)2=x2﹣2xy+y2,∴选项C不正确;∵x3•x=x4,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了完全平方公式,以及合并同类项的方法,要熟练掌握.29.(2015•东莞)(﹣4x)2=()A.﹣8x2 B.8x2 C.﹣16x2 D.16x2考点:幂的乘方与积的乘方.专题:计算题.分析:原式利用积的乘方运算法则计算即可得到结果.解答:解:原式=16x2,故选D.点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.30.(2015•昆明)下列运算正确的是()A.=﹣3 B.a2•a4=a6 C.(2a2)3=2a6 D.(a+2)2=a2+4考点:幂的乘方与积的乘方;算术平方根;同底数幂的乘法;完全平方公式.分析:根据同底数幂的乘法的性质,积的乘方的性质,二次根式的性质,完全平分公式,对各选项分析判断后利用排除法求解.解答:解:A、=3,故错误:B、正确;C、(2a2)3=8a6,故正确;D、(a+2)2=a2+4a+4,故错误;故选:B.点评:本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.14.1 整式的乘法2一.选择题(共19小题)1.(2015•岳阳)下列运算正确的是()A.a﹣2=﹣a2 B.a+a2=a3 C.+=D.(a2)3=a62.(2015•徐州)下列运算正确的是()A.3a2﹣2a2=1 B.(a2)3=a5 C.a2•a4=a6 D.(3a)2=6a23.(2015•长春)计算(a2)3的结果是()A.3a2 B.a5 C.a6 D.a34.(2015•大连)计算(﹣3x)2的结果是()A.6x2 B.﹣6x2 C.9x2 D.﹣9x25.(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a56.(2015•遂宁)下列运算正确的是()A.a•a3=a3 B.2(a﹣b)=2a﹣b C.(a3)2=a5 D.a2﹣2a2=﹣a27.(2015•日照)计算(﹣a3)2的结果是()A.a5 B.﹣a5 C.a6 D.﹣a68.(2015•重庆)计算(a2b)3的结果是()A.a6b3 B.a2b3 C.a5b3 D.a6b9.(2015•南京)计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6 C.x2y9 D.﹣x2y910.(2015•怀化)下列计算正确的是()A.x2+x3=x5 B.(x3)3=x6 C.x•x2=x2 D.x(2x)2=4x311.(2015•黄石)下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5 C.(﹣m3)2=m9 D.﹣(m+2n)=﹣m+2n12.(2015•吉林)下列计算正确的是()A.3a﹣2a=a B.2a•3a=6a C.a2•a3=a6 D.(3a)2=6a213.(2015•淮安)计算a×3a的结果是()A.a2 B.3a2 C.3a D.4a14.(2015•恩施州)下列计算正确的是()A.4x3•2x2=8x6 B.a4+a3=a7 C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣b215.(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4 B.2a2×a3=2a6 C.3a﹣2a=1 D.(a2)3=a616.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5 B.3a6 C.﹣3a6 D.3a517.(2015•聊城)下列运算正确的是()A.a2+a3=a5 B.(﹣a3)2=a6C.ab2•3a2b=3a2b2 D.﹣2a6÷a2=﹣2a318.(2015•黔东南州)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.19.(2015•佛山)若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D. 2二.填空题(共10小题)20.(2015•苏州)计算:a•a2=.21.(2015•黔西南州)a2•a3=.22.(2015•柳州)计算:a×a=.23.(2015•天津)计算;x2•x5的结果等于.24.(2015•大庆)若a2n=5,b2n=16,则(ab)n=.25.(2015•漳州)计算:2a2•a4=.26.(2015•福州)计算(x﹣1)(x+2)的结果是.27.(2014•西宁)计算:a2•a3=.28.(2014•滨州)写出一个运算结果是a6的算式.29.(2014•佛山)计算:(a3)2•a3=.三.解答题(共1小题)30.(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).14.1 整式的乘法222参考答案与试题解析一.选择题(共19小题)1.(2015•岳阳)下列运算正确的是()A.a﹣2=﹣a2 B.a+a2=a3 C.+=D.(a2)3=a6考点:幂的乘方与积的乘方;合并同类项;负整数指数幂;二次根式的加减法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能合并,错误;C、原式不能合并,错误;D、原式=a6,正确,故选D点评:此题考查了幂的乘方与积的乘方,合并同类项,负整数指数幂,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.2.(2015•徐州)下列运算正确的是()A.3a2﹣2a2=1 B.(a2)3=a5 C.a2•a4=a6 D.(3a)2=6a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同类项、幂的乘方、同底数幂的乘法计算即可.解答:解:A、3a2﹣2a2=a2,错误;B、(a2)3=a6,错误;C、a2•a4=a6,正确;D、(3a)2=9a2,错误;故选C.点评:此题考查同类项、幂的乘方、同底数幂的乘法,关键是根据法则进行计算.3.(2015•长春)计算(a2)3的结果是()A.3a2 B.a5 C.a6 D.a3考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:(a2)3=a6,故选C.点评:此题考查幂的乘方,关键是根据法则进行计算.4.(2015•大连)计算(﹣3x)2的结果是()A.6x2 B.﹣6x2 C.9x2 D.﹣9x2考点:幂的乘方与积的乘方.分析:根据积的乘方进行计算即可.解答:解:(﹣3x)2=9x2,故选C.点评:此题考查积的乘方,关键是根据法则进行计算.5.(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a5考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.分析:A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.6.(2015•遂宁)下列运算正确的是()A.a•a3=a3 B.2(a﹣b)=2a﹣b C.(a3)2=a5 D.a2﹣2a2=﹣a2考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法.分析:根据同底数幂的乘法、幂的乘方和同类项进行计算.解答:解:A、a•a3=a4,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a3)2=a6,错误;D、a2﹣2a2=﹣a2,正确;故选D点评:此题考查同底数幂的乘法、幂的乘方和同类项,关键是根据法则进行计算.7.(2015•日照)计算(﹣a3)2的结果是()A.a5 B.﹣a5 C.a6 D.﹣a6考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣a3)2=a6.故选C.点评:本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题关键.8.(2015•重庆)计算(a2b)3的结果是()A.a6b3 B.a2b3 C.a5b3 D.a6b考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出(a2b)3的结果是多少即可.解答:解:(a2b)3=(a2)3•b3=a6b3即计算(a2b)3的结果是a6b3.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).9.(2015•南京)计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6 C.x2y9 D.﹣x2y9考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.解答:解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).10.(2015•怀化)下列计算正确的是()A.x2+x3=x5 B.(x3)3=x6 C.x•x2=x2 D.x(2x)2=4x3考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=x9,错误;C、原式=x3,错误;D、原式=4x3,正确,故选D点评:此题考查了单项式乘以单项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.11.(2015•黄石)下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5 C.(﹣m3)2=m9 D.﹣(m+2n)=﹣m+2n考点:单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.解答:解:A、4m﹣m=3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)2=m6,故此选项错误;D、﹣(m+2n)=﹣m﹣2n,故此选项错误;故选:B.点评:此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则等知识,正确掌握运算法则是解题关键.12.(2015•吉林)下列计算正确的是()A.3a﹣2a=a B.2a•3a=6a C.a2•a3=a6 D.(3a)2=6a2考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,单项式乘以单项式,同底数幂的乘法,积的乘方,即可解答.解答:解:A、正确;B、2a•3a=6a2,故错误;C、a2•a3=a5,故错误;D、(3a)2=9a2,故错误;故选:A.点评:本题考查了合并同类项,单项式乘以单项式,同底数幂的乘法,积的乘方,解决本题的关键是熟记合并同类项,单项式乘以单项式,同底数幂的乘法,积的乘方的法则.13.(2015•淮安)计算a×3a的结果是()A.a2 B.3a2 C.3a D.4a考点:单项式乘单项式.分析:根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:a×3a=3a2,故选:B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.14.(2015•恩施州)下列计算正确的是()A.4x3•2x2=8x6 B.a4+a3=a7 C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣b2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:A、原式利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;D、原式利用完全平方公式化简得到结果,即可做出判断.解答:解:A、原式=8x5,错误;B、原式不能合并,错误;C、原式=﹣x10,正确;D、原式=a2﹣2ab+b2,错误,故选C点评:此题考查了单项式乘单项式,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.15.(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4 B.2a2×a3=2a6 C.3a﹣2a=1 D.(a2)3=a6考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=1,故本选项错误;D、(a2)3=a6,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.16.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5 B.3a6 C.﹣3a6 D.3a5考点:单项式乘单项式.分析:利用单项式相乘的运算性质计算即可得到答案.解答:解:﹣3a2×a3=﹣3a2+3=﹣3a5,故选A.。
整式的乘法练习题八年级
整式乘法练习题八年级一、单项式乘单项式1. 计算:3x × 4x2. 计算:2a × 5b3. 计算:(1/2)m × (4)n4. 计算:5xy × (3x^2)5. 计算:4ab^2 × 2a^2b二、单项式乘多项式1. 计算:3x(2x 5y + 4)2. 计算:2a(a^2 + 3a 2)3. 计算:4xy(3x^2y 2xy + 5)4. 计算:3m^2(2m^3 4m^2 + 5m)5. 计算:5ab(3a^2b 4ab + 2b^2)三、多项式乘多项式1. 计算:(x + 3)(x 4)2. 计算:(2a 5b)(3a + 4b)3. 计算:(3x 2y + 1)(x + y 1)4. 计算:(a^2 + 2ab 3b^2)(2a b)5. 计算:(4m^2 3mn + 2n^2)(2m^2 + 5mn 3n^2)四、平方差公式1. 计算:(x + 5)^22. 计算:(2a 3b)^23. 计算:(3x + 4y)^24. 计算:(m 2n)^25. 计算:(4ab + 5c)^2五、完全平方公式1. 计算:(x 3)(x + 3)2. 计算:(2a + 5b)(2a 5b)3. 计算:(3x 2y)(3x + 2y)4. 计算:(m + 4n)(m 4n)5. 计算:(ab 6c)(ab + 6c)六、综合运用1. 计算:(x + 2y)(x 2y + 3)2. 计算:(3a 4b)(2a + 3b 5)3. 计算:(4x^2 3y^2)(2x^2 + 5y^2)4. 计算:(a + 2b 3c)(a 2b + 3c)5. 计算:(5m^2 + 4mn 6n^2)(3m^2 2mn + 4n^2)七、分配律的应用1. 计算:2x(3x + 4y 5) + 3(2x y)2. 计算:4a(5a 2b + 3c) 2(3a b + 2c)3. 计算:3x(2x^2 4xy + 5y^2) + x(4x^2 3xy)4. 计算:5m(2m^2 3mn + 4n^2) 2m(3m^2 4mn)5. 计算:7ab(3a^2 2ab + 5b^2) 4a(2a^2 3b^2)八、因式分解与乘法结合1. 计算:(x + 2)(x 2)(x + 3)2. 计算:(2a + 3b)(2a 3b)(a + 4b)3. 计算:(3x 4)(3x + 4)(x 2)4. 计算:(m + n)(m n)(2m + n)5. 计算:(ab + 5)(ab 5)(2ab + 3)九、特殊乘法1. 计算:(x + 1)(x + 2)(x + 3)2. 计算:(2a 1)(2a + 1)(2a 3)3. 计算:(3x + 4)(3x 4)(x + 6)4. 计算:(m 2)(m + 2)(m 4)5. 计算:(ab 3)(ab + 3)(ab 5)十、实际应用题1. 一个长方形的长是x米,宽是y米,求它的面积。
2023-2024学年八年级数学上册《第十四章-整式的乘法》同步练习含答案(人教版)
2023-2024学年八年级数学上册《第十四章 整式的乘法》同步练习含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(﹣a 2)3D .a 8÷a 22.下列计算中,正确的是( )A .2x 2+3x 2=5x 4B .x 2⋅x 4=x 8C .(2a 2b)3=6a 6bD .a 4÷(−a)2=a 23.若2x+m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .﹣6B .0C .﹣2D .34.已知3x =y ,则3x+1=( )A .yB .1+yC .3+yD .3y5.计算(m 3)2⋅m 4的过程如下:(m 3)2⋅m 4=m 6︸①⋅m 4=m 10︸②.步骤①,②分别表示的运算是( )A .幂的乘方,同底数幂相乘B .积的乘方,同底数幂相乘C .幂的乘方,乘法结合律D .乘法交换律,合并同类项6.在边长为3a +1的正方形纸片中前下一个边长为a +1的正方形,将剩余部分剪拼成一个长方形,尺寸如图所示,则“?”表示的长度为( )A .2a +1B .2a +2C .2(a +2)D .4a7.若n 为正整数,则计算(−2)2n+1+2×(−2)2n 的结果是( )A .0B .1C .22n+1D .−22n+18.若多项式x 2+bx +c 因式分解的结果为(x −2)(x +3),则b +c 的值为( )A .−5B .−1C .5D .6二、填空题9.计算:x (x ﹣2)=10.已知2a ÷4b =8,则a −2b 的值是 .11.若x a =2,x b =3则x 3a−2b = .12.一个长方形,它的面积为6a 2﹣9ab+3a ,已知这个长方形的长为3a ,则宽为 .13.若多项式x2-mx+n(m、n是常数)分解因式后,有一个因式是x-2,则2m-n的值为.三、解答题14.计算:(1)(−2x5+3x3−12x2)÷(−12x)2(2)(3a−b)2(3a+b)215.已知多项式x2﹣mx+n与x﹣2的乘积中不含x2项和x项,试求m和n的值.16.某同学在计算一个多项式乘-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?17.已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?18.如图①,在边长为3a+2b的大正方形纸片中,剪掉边长2a+b的小正方形,得到图②,把图②阴影部分剪下,按照图③拼成一个长方形纸片.(1)求出拼成的长方形纸片的长和宽;(2)把这个拼成的长方形纸片的面积加上10a+6b后,就和另一个长方形的面积相等.已知另一长方形的长为5a+3b,求它的宽.19.如图所示,将一个饮料包装盒剪开、铺平,纸样如图所示,包装盒的高为15cm,设包装盒底面的长为xcm .(1)用x表示包装盒底面的宽.(2)用x表示包装盒的表面积,并化简.(3)若包装盒底面的长为10cm,求包装盒的表面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】D5.【答案】A6.【答案】A7.【答案】A8.【答案】A9.【答案】x2﹣2x10.【答案】311.【答案】8912.【答案】2a-3b+113.【答案】414.【答案】(1)解:(−2x5+3x3−12x2)÷(−12x)2=(−2x5+3x3−12x2)÷(14x2)=−2x5÷14x2+3x3÷14x2−12x2÷14x2=−8x3+12x−2;(2)解:(3a−b)2(3a+b)2=[(3a−b)(3a+b)]2=(9a2−b2)2=81a4−18a2b2+b4.15.【答案】解:(x2﹣mx+n)(x﹣2)=x3−2x2−mx2+2mx+nx−2n=x3+(−2−m)x2+(2m+n)x−2n 因为乘积中不含x2项和x项∴−2−m=0,2m+n=0.解得:m=-2,n=416.【答案】-12x4+12x3-3x217.【答案】(1)解:原式=3a2+6b2+6ab﹣12﹣3a2﹣6b2﹣4ab+4a+4=2ab+4a﹣8(2)解:∵a,b互为倒数∴ab=1∴2+4a﹣8=0解得:a=1.5∴b=23(3)解:由(1)得:原式=2ab+4a﹣8=(2b+4)a﹣8由结果与a的值无关,得到2b+4=0解得:b=﹣218.【答案】解:(1)长方形的长为:3a+2b+2a+b=5a+3b.长方形的宽为:(3a+2b)﹣(2a+b)=3a+2b﹣2a﹣b=a+b.(2)另一个长方形的宽:[(5a+3b)(a+b)+10a+6b]÷(5a+3b)=a+b+2.=15−x(cm)19.【答案】(1)解:包装盒底面的宽为:30−2x2(2)解:包装盒的表面积为:2×[(15−x)×15+15x+(15−x)×x]=−2x2+30x+450(cm2)(3)解:包装盒底面的长为10cm,包装盒的表面积为:2×[(15−10)×15+15×10+(15−10)×10]= 550(cm2)。
(完整版)整式乘法练习题(共14页)
32 .33 . 下列计算中错误的是 [(a+b)2]3=(a+b)6; B .(-2x 3y 4)3 的值是[] -6x 6y 7; B . -8x 27y 64;[] [(x+y) 2n ]5=(x+y) 2n+5 ; C . [(x+y)m ]n =(x+y)mn ; D . [(x+y) m+1]n =(x+y) mn+nC . -8x 9y 12;D . -6xy 10 .41. F 列计算中,[] (1)b(x-y)=bx-by , (2)b(xy)=bxby , (3)b x-y =b x -b y , (4)2164=(64)3, (5)x 2n-1y 2n-1=xy 2n-242 . 只有⑴与⑵正确;B .只有(1)与⑶正确;C .只有(1)与⑷正确;D .只有⑵与⑶正确.(-6x n y )2 • 3x n-1y 的计算结果是[]18x 3n-1y 2; B . -36x 2n-1y 3; C . -108x 3n-1y ; D . 108x 3n-1y 3 .44 .下列计算正确的是[] 2 2 2 2 (6xy 2-4x 2y) • 3xy=18xy 2-12x 2y ;(-x)(2x+x 2-1)=-x 3-2x 2+1 ;(-3x 2y)(-2xy+3yz-1)=6x 3y 2-9x 2y 2z 2-3x 2y ;討需J* 2ab = — - ab*.整式的乘法练习题(一)填空1. a 8=(-a 5) _______ .2. a 15=( )5.3. 3m 2 • 2m 3= _________ .4. (x+a)(x+a)= ______ .5. a 3 • (-a)5 • (-3a)2 ____________ • (-7ab 3)=. 6. _________ (-a 2b)3 • (-ab 2)= . 7 . (2x)2 • x 4=( )2 .8 . 24a 2b 3=6a 2 • ______ . 9 . [(a m )n ]p = _______ . 10 . (-mn)2(-m 2n)3= ________ .I 「I 1 j ' - 14 . (3X 2)3-7X 3[X 3-X (4X 2+1)]= _______ . 17 . 一长方体的高是(a+2)厘米,底面积是(a 2+a-6)厘米2,则它的体积是 _____________ .19 . 3(a-b)2[9(a-b)3](b-a) 5= _____ .21.若 a 2n-1 • a 2n+1=a 12,则 n= __________ .(二)选择28 .下列计算正确的是[]A . 9a 3 • 2a 2=18a 5;B . 2x 5 • 3x 4=5x 9;C . 3x 3 • 4x 3=12x 3;D . 3y 3 • 5y 3=15y 9 .29 . (y m )3 • y n 的运算结果是[]B y 3m+n ;C . y 3(m+n) ;D . y 3mn下列计算错误的是[](x+1)(x+4)=x 2+5x+4 ; B . (m-2)(m+3)=m 2+m-6 ; C . (y+4)(y-5)=y 2+9y-20 ; D . (x-3)(x-6)=x 2-9x+18 .计算-a 2b 2 • (-ab 3)2所得的结果是[]a 4b 8; B . -a 4b 8; C . a 4b 7; D . -a 3b 8 .30 . 31 .45.下列计算正确的是[]A . (a+b)2=a 2+b 2;B . a m • a n =a mn ;C . (-a 2)3=(-a 3)2;D . (a-b)3(b-a)2=(a-b)5. 47.把下列各题的计算结果写成 10的幕的形式,正确的是[] A . 100X 103=106;B . 1000 X 1O 1°°=io 3°°°; C. 1002n X 1000=104n +3; D . 1005X 10=10005=1015.48. t 2-(t+1)(t-5)的计算结果正确的是 []A . -4t-5 ;B . 4t+5 ;C . t 2-4t+5 ;D . t 2+4t-5 .(三)计算(6 X 108)(7 X 109)(4 X104). (-5x n+1y) • (-2x).(-3ab) • (-a 2c) • 6ab 2 .(-4a) • (2a 2+3a-1).52. 53. 54. 55. 56. (-3xy) * 5x 2y + fix 3 • 57. 2 r 4 —ab 2 -2ab + — bF7 、-xy -2y• iab..2 58. (3m-n)(m-2n).59. 60. 61. 62. 63. (x+2y)(5a+3b).(-ab)3 • (-a 2b) • (-a 2b 4c)2 . [(-a)2m ]3 •a 3m +[(-a)5m ]2 . x n+1(x n -x n-1+x).2 2(x+y)(x -xy+y ).3sy 6xy^Jxy-\3yjj. 65. : tn 2T-ij2) 3 \ L 4 J 67 . (2X -3)(X +4).C3.(宀疔)护〜]的.-2a a *-5ab • (a 2-1) 70 . (-2a m b n )(-a 2b n )(-3ab 2).25X (X 2+2X +1)-(2X +3)(X -5).-a a (4ab a i-Sa^b-a 1) * C-5a a b*J. (m_n)(m 5+m 4n+m 3n 2+m 2n 3+mn 4+n 5). (2a 2-1)(a-4)(a 2+3)(2a-5). 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3) (0.3a 3b 4)2 • (-0.2a 4b 3)3. (-4xy 3) • (-xy)+(-3xy 2)2.6X100-01 -6.(5a 3+2a-a 2-3)(2-a+4a 2).(3x 4-2x 2+x-3)(4x 3-x 2+5).1 , 工 _ —ab + b A + 5ab * 12 」(3a m+2b n+2)(2a m +2a m -2b n-2+3b n ).j ' 2ir?r?・ J (泅卄罷一(一隔十9怡. [(-a 2b)3]3 • (-ab 2). (-2ab 2)3 • (3a 2b-2ab-4b 2). 「护y +树训一制.2(x + y)3 • 5(n+y)t+3 • 4(x+j)n .iab a c(-0.5ab)a • ^-lbc 2j . (_2x m y n )3 • (-x 2y n ) • (-3xy 2)2. (0.2a-1.5b+1)(0.4a-4b-0.5). -8(a-b)3 • 3(b-a).(x+3y+4)(2x-y).I / 3 \ i -ab TQa 儿 -b -1-3.5a) * -b\ M 丿 x 5 J y[y-3(x-z)]+y[3z-(y-3x)]. 计算[(-a)2m ]3 • a 3m +[(-a) 3m ]3(m 为自然数).7L72.73.74.75.76.77. 78.79.80.81. 82.83.34.35. 86.87.S3.89. get91 .92.93.94. 95.96.97.(-2a 3(四)化简99.--少】b叫時*(-2 25严01尹1).L 3 丿I a :2100.\胡・(一站刖.■■10L •[(m-n)Cm-n)p]<1Q2.* 2ab -* 3abU 2 J 乜 6 J103. m-丄(m +1) + 丄(ni-l)+丄2 3 6(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3, n=2 .31 •105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),再求其值,其中x=-106.光的速度每秒约3X 105千米,太阳光射到地球上需要的时间约是5X 102秒. 约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1 , a(a2+2b)+b(-3a+b 2)=0.5,求ab 的值.109.己知签=5 y = *求藍—0•(严夕的值(n为自然数).110.已知(x-1)(x+1)(x-2)(x-4)三(x2-3x)2+a(x2-3x)+b,求a, b 的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6 = (x-1)(x 2+mx+ n),求m, n 的值.113.已知一个两位数的十位数字比个位数字小原数的乘积比原数的平方多405,求原数. 1,若把十位数字与个位数字互换,所得的新两位数与9& 2xy(0 75x nH-1问地球与太阳的距离114.试求(2-1)(2+1)(2 2+1)(24+1)…(232+1)+1 的个位数字.115.比较2100与375的大小.116 .解方程3x(x+2)+(x+1)(x-1)=4(x 2+8).】5组伫■驚舄•118.求不等式(3x+4)(3x-4) > 9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a, b, c 均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n, n(n+5)-(n-3) x (n+2)的值都能被6整除. 121.已知有理数x, y, z 满足|x-z-2|+(3x-6y-7) 2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0 .122.已知x=b+c , y=c+a, z=a+b,求证: (x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0123.证明(a-1)(a1 2-3)+a2(a+1)-2(a3 4-2a-4)-a 的值与 a 无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16 的值与x 的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m 2-3m)2-2(m2-3m)-8 .12若2x + 5y— 3 = 0 贝咛"=3已知 a = 355,b = 444,c = 533则有( )A . a < b < cB. c < b < aC. a < c < bD. c < a < b4已知2小+戶+严=4鳴,则x = 5、21990 X31991的个位数字是多少6、计算下列各题⑴⑵7、计算(—2x —5)(2x—5)8、 计算"■ -■1)仏 +2比-2)以-+2x4) 69、 计算 '人八 儿 丿,当a 6 = 64时,该式的值。
新人教版整式的乘法【整理版】
整式的乘法同步练习题第一课时一、选择题1.式子x4m+1可以写成()A.(x m+1)4B.x·x4m C.(x3m+1)m D.x4m+x2.下列计算的结果正确的是()A.(-x2)·(-x)2=x4 B.x2y3·x4y3z=x8y9zC.(-4×103)·(8×105)=-3.2×109 D.(-a-b)4·(a+b)3=-(a+b)7 3.计算(-5ax)·(3x2y)2的结果是()A.-45a x5y2 B.-15a x5y2 C.-45x5y2 D.45a x5y2二、填空题4.计算:(2xy2)·(13x2y)=_________;(-5a3bc)·(3ac2)=________.5.已知a m=2,a n=3,则a3m+n=_________;a2m+3n=_________.6.一种电子计算机每秒可以做6×108次运算,它工作8×102秒可做_______次运算.三、解答题7.计算:①(-5a b2x)·(-310a2bx3y)②(-3a3bc)3·(-2ab2)2③(-13x2)·(yz)3·(x3y2z2)+43x3y2·(xyz)2·(yz3)④(-2×103)3×(-4×108)2 8.先化简,再求值:-10(-a3b2c)2·15a·(bc)3-(2abc)3·(-a2b2c)2,其中a=-5,b=0.2,c=2。
9.若单项式-3a2m-n b2与4a3m+n b5m+8n同类项,那么这两个单项式的积是多少?四、探究题10.若2a=3,2b=5,2c=30,试用含a、b的式子表示c.第二课时一、选择题1.计算(-3x)·(2x2-5x-1)的结果是()A.-6x2-15x2-3x B.-6x3+15x2+3xC.-6x3+15x2 D.-6x3+15x2-12.下列各题计算正确的是()A.(ab-1)(-4a b2)=-4a2b3-4a b2 B.(3x2+xy-y2)·3x2=9x4+3x3y-y2C.(-3a)(a2-2a+1)=-3a3+6a2 D.(-2x)(3x2-4x-2)=-6x3+8x2+4x3.如果一个三角形的底边长为2x2y+xy-y2,高为6xy,则这个三角形的面积是()• A.6x3y2+3x2y2-3xy3 B.6x3y2+3xy-3x y3C.6x3y2+3x2y2-y2 D.6x3y+3x2y24.计算x(y-z)-y(z-x)+z(x-y),结果正确的是()A.2xy-2yz B.-2yz C.xy-2yz D.2xy-xz二、填空题5.方程2x(x-1)=12+x(2x-5)的解是__________.6.计算:-2ab·(a2b+3ab2-1)=_____________.7.已知a+2b=0,则式子a3+2ab(a+b)+4b3的值是___________.三、解答题8.计算:①(12x2y-2xy+y2)·(-4xy)②-ab2·(3a2b-abc-1)③(3a n+2b-2a n b n-1+3b n)·5a n b n+3(n为正整数,n>1)④-4x2·(12xy-y2)-3x·(xy2-2x2y)9.化简求值:-ab·(a2b5-ab3-b),其中ab2=-2。
(完整版)整式乘法计算专题训练(含答案)
整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a8 7、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2?(﹣a)5?(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2?(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2?a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2?a5?a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2?(xy)3=4x2y4?x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x2+7x+12﹣x2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)=3a2﹣ab+6ab﹣2b2﹣2a2﹣12ab+ab+6b2=a2﹣6ab+4b219、原式=3x2﹣3xy﹣2x2﹣xy+y2=x2﹣4xy+y2;20、(﹣a2)3﹣6a2?a4=﹣a6﹣6a6=﹣7a6;21、(y﹣2)(y+2)﹣(y+3)(y﹣1)=y2﹣4﹣y2﹣2y+3=﹣2y﹣1;22、==2a6b5c5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y]=(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。
14.1整式的乘法同步练习+++2024—2025学年人教版数学八年级上册
14.1整式的乘法学校:___________姓名:___________班级:___________考号:___________一、单选题1.若()()2221x mx x -++的积中x 的二次项系数和一次项系数相等,则m 的值为( )A .0B .1-C .2-D .3-2.已知(m ﹣n )2=15,(m +n )2=5,则m 2+n 2的值为( ) A .10B .6C .5D .33.若(﹣2x +a )(x ﹣1)的结果中不含x 的一次项,则a 的值为( ) A .1B .﹣1C .2D .﹣24.若( )•(﹣xy )2=4x 2y 3,则括号里应填的单项式是( ) A .﹣4yB .4yC .4xyD .﹣2xy5.2x (﹣3xy )2的计算结果是( ) A .﹣18x 3y 2B .18x 3y 2C .18xy 2D .6x 3y 26.下列运算正确的是( ) A .()239a a -=B .()235a a a -⋅= C .()2222a a b a a +=+D .5510a a a +=7.下列计算正确的是( ) A .326a a a ⋅= B .()325a a =C .236(2)6a a =D .222()ab a b -=8.下列运算:①x 2•x 3=x 6;①x 2+x 2=2x 2;①(x 2)3=x 6;①(﹣3x )2=9x 2中,正确的是( )A .①①①B .①①①C .①①①D .①①①9.若(x+a)(x+b)的积中不含x 的一次项,那么a 与b 一定是( ) A .互为相反数B .互为倒数C .相等D .a 比b 大10.下列计算正确的是( )A .5510a a a +=B .()5210a a =C .66a a a ÷=D .()33ab ab =11.下列运算中,正确的是( )A .339m m m ⋅=B .()3326m m -=- C .()235m m -=D .3233m m m ÷=12.()()2+2x a x -的结果中不含x 的一次项,则a 为( )A .2B .2-C .4D .4-二、填空题13.计算:32(1893)3a a a a --÷= .14.定义a *b =a (b +1),例如2*3=2×(3+1)=2×4=8.则(x ﹣1)*(x +1)的结果为 .15.已知:()()222a b a b a mab nb +-=++,那么mn 的值为 .16.某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座边长是(a +b )米的正方形雕像.请用含a ,b 的代数式表示绿化面积 .17.若10m =2,10n =3,则10m +2n = .三、解答题18.计算:2322242353ab a b ab ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭.19.图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图①的形状拼成一个正方形.(1)图①中的阴影部分的正方形边长为 ; (2)观察图①,三个代数式之间的等量关系是;(3)观察图①,你能得到怎样的代数恒等式呢?; (4)试画出一个几何图形,使它的面积能表示.(画在虚线框内)20.某市有一块长 ()3m a b +,宽 ()2m a b +的长方形地块,如图所示,城市规划部门计划在中间正方形地上修建泳池,其余部分(阴影)进行绿化,已知中间正方形的边长为()m.a b +(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示) (2)求出当 20,12a b ==时的绿化面积.21.如图,在某一禁毒基地的建设中,准备在一个长为6a 米,宽为5b 米的长方形草坪上修建两条宽分别为a 和b 米的通道.(1)剩余草坪的面积是多少平方米?(2)若13a b ==,,则剩余草坪的面积是多少平方米?22.如图,某市有一块长为()3a b +,宽为()2a b +的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)长方形地块的面积是多少?(用代数式表示) (2)绿化的面积是多少?(用代数式表示) (3)求出当5a =,3b =时的绿化面积.23.若2510a b ==.(1)猜想a b +与ab 的大小关系; (2)证明你的猜想.24.观察下列图形与等式:⇒22212111-=⨯+⨯⇒22323121-=⨯+⨯;⇒22434131-=⨯+⨯;⇒……根据图形面积与等式的关系找出规律,并结合其中的规律解决下列问题:(1)根据规律,图(4)对应的等式为________;(2)请你猜想图()n对应的等式(用含n的等式表示),并证明.参考答案:1.D 2.A 3.D 4.B 5.B 6.B 7.D 8.A 9.A 10.B 11.D 12.C13.2631a a -- 14.22x x +- 15.2- 16.5a 2+3ab 17.18 18.275ab -19.(1)、m -n ;(2) 略(3) 略(4)略20.(1)()253a ab +平方米(2)2720平方米21.(1)剩余草坪的面积是20ab 平方米;(2)若13a b ==,,则剩余草坪的面积是60平方米. 22.(1)2265a ab b ++ (2)253a ab +(3)17023.(1)a b ab += (2)略24.(1)22545141-=⨯+⨯;(2)22(1)(1)11n n n n +-==+⨯+⨯.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法同步练习 (满分100分,45分钟完卷)
一、填空题(每题3分,共36分) 1.计算2x 3·(-2xy)(-
1
2
xy) 3的结果是
2.(3×10 8)×(-4×10 4)=
3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是
5.-[-a 2(2a 3-a)]=
6.(-4x 2+6x -8)·(-12
x 2
)=
7.2n(-1+3mn 2)=
8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=
10.在(ax 2+bx -3)(x 2-
1
2
x +8)的结果中不含x 3和x 项,则a = ,b =
11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为
,体积为。
12.一个长方形的长是10cm ,宽比长少6cm ,则它的面积是
,若将长方形的长
和都扩大了2cm ,则面积增大了。
二、选择题(每题3分,共18分)
1.以下计算正确的是( )
A .3a 2·4ab =7a 3b
B .(2ab 3)·( -4ab)=-2a 2b 4
C .(xy) 3·(-x 2y)=-x 3y 3
D .-3a 2b(-3ab)=9a 3b 2
2.以下计算不正确的是( )
A .(3x 2y 4)·(2xy 2)=6x 3y 6
B .(-a 2b) 2·(-ab 3) 3·(-ab) 4=-a 11b 15
C .(-x)(-x 2)+x 3+2x 2(-x)=0
D .(0.125) 2·(0.25) 3·(0.5) 6=
161
2
3.若3x ·(x n +5)=3x n +
1-8,则x =( )
A .-
815
B .-
158
C .815
D .
158
4.(-3x +1)(-2x) 2等于(
)
A .-6x 3-2x 2
B .6x 3-2x 2
C .6x 3+2x 2
D .-12x 3+4x 2
5.若a 1
5
=-,则代数式(5a -4)(6a -7)-(3a -2)(10a -8)的值为(
)
A .15
B .22
C .-15
D .9 6.若(-3x +a)(x -1)的结果中不含x 的一次项,则( ) A .a =-2
B .a =1
C .a =-3
D .a =3
三、计算下列各题(每题5分,共30分) 1.(3×10 5) 2·(
1
3
×10 3) 2.(-2x 2y)·(x 3y 2)·(x 2y) 2
3.-2a 2(1
2
ab+b 2) -5ab(
2
5
a 2-ab) 4.(2x+5y)(3x-2y)
5.(2x+5)(-3x+1) 6.(x n+1+2)(x n+x 2) 四、化简求值(每题5分,共10分)
1.8a(3a 2-b)-a(5b+4a 2),其中a=2,b=1 26
2.若a 2=10,b 4=8,求(ab 2) 4的值
五(6分)阅读下列式子,再归纳总结。
(x+2)(x+3)=x 2+5x+6;(x+2)(x+4)=x 2+6x+8;(x-2)(x-3)=x 2-5x+6;(x-2)(x-4)=x 2-6x+8;(x+2)(x-3)=x 2-x-6;(x+2)(x-4)=x 2-2x-8;如果a、b是常数,那么(x+a)(x+b)的结果是关于x的次项式,其中二次项系数是,一次项第数是,常数项是。
整式的乘法同步练习参考答案
一、1.1
2
x6y4 2.-12×1012 3.243 4.8 5.2a 5-a 3 6.2x 4-3x 3+4x
2
7.-2n+6mn3 8.-32
3
9.x 2-28xy+30y 2 10.-
3
8
,-
3
16
11.6a 2+24a-14cm2,a3+6a2-7a-60cm312.40cm2,32cm2
二、1.D2.D3.A4.D5.A6.C
三、1.3×1013 2.-2x 9y 5 3.-3a 3b+3a 2b 2 4.6x 2+11xy-10y 2 5.-6x 2-13x+5 6.x 2n+1+x n+3+2x n+2x 2
四、1.20a3-13ab 159 2.6400
五、二、三、1、a+b、ab。