假设检验完整版PPT课件

合集下载

第8 假设检验(共80张PPT)

第8 假设检验(共80张PPT)
第 8 章 假设检验
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。

假设检验PPT课件

假设检验PPT课件

60 62.5 65 67.5 70 72.5 75
b
H0 不真
67.5 70 72.5 75 77.5 80 82.5
两类错误是互相关联的, 当样本容 量固定时,一类错误概率的减少导致另 一类错误概率的增加.
b a
要同时降低两类错误的概率a b,或 者要在 a 不变的条件下降低 b,需要增
加样本容量.
(二)备择假设(alternative hypothesis),与原假设相对立(相反)的假设。 一般为研究者想收集数据予以证实自己观点的假设。 用H1表示。 表示形式:H1:总体参数≠某值 (<) (>)
例:H1: 0
(三)两类假设建立原则 1、H0与H1必须成对出现 2、通常先确定备择假设,再确定原假设 3、假设中的等号“=”总是放在原假设中

P>α时,H0成立
多重检验及校正
在同一研究中,有时我们会用到二次或多次显著 性检验,从上表可以看出,如果我们将显著性水平确 定为α=0.05水平,做一次显著性检验后我们只能保证 有95%的研究结果与真值是一致的;如果做两次显著 性检验后,研究结果与真值的符合程度就会降至 95%*95%=90.25,当我们进行5次显著性检验后,就 会降至77.4%,即在5次显著性检验后,由α水平所得 到的显著性检验结果的可靠性只有3/4的可靠性。
用于处理生物学研究中比较不同处理效应 的差异显著性。
数据资料中,两个样本的各个变量从各自 总体中抽取,两个样本之间变量没有任何关 联,即两个抽样样本彼此独立,不论两个样 本容量是否相同。
方法1:两个总体方差都已知(或方差未知大样本)
• 假定条件
– 两个样本是独立的随机样本
– 两个总体都是正态分布 – 若不是正态分布, 可以用正态分布来近似(n130和

《假设检验》PPT课件

《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计


客观



现象



数量


表现


描 述

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

《假设检验检验》课件

《假设检验检验》课件
《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设

接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。

《假设检验》PPT课件-(2)

《假设检验》PPT课件-(2)
t检验的正确应用
资料的代表性与可比性 所谓代表性是指该样本从相应总体中经随机抽样获得,能够代表总体的特征; 所谓可比性是指各对比组间除了要比较的主要因素外,其它影响结果的因素应尽可能相同或相近 为了保证资料的可比性,必须要有严密的实验设计,保证样本随机抽取于同质总体,这是假设检验得以正确应用的前提 。
在两个样本均数比较时,若两组样本含量都很大,可用u检验,其计算公式为:
u为标准正态离差,按正态和1993抽查部分12岁男童对其发育情况进行评估,其中身高的有关资料如下,试比较这两个年度12岁男童身高均数有无差别。
1973 年:n1=120 =139.9cm s1=7.5cm; 1993 年:n2=153 =143.7cm s2=6.3cm。 H0 :1=2,即该市两个年度12岁男童平均身高相等; H1 :1≠2,即该市两个年度12岁男童平均身高不等。 双侧 =0.05。
-t
t
0
-2.064
2.064
0
=24
0.025
0.025
t0.05,24=2.064 P =P ( |t| ≥2.064 )=0.05
P=P(|t|≥5.4545)<0.05
结论(根据小概率原理作出推断)
在H0成立的前提下出现现有差别或更大差别的可能性P(| t | ≥5.4545)小于0.05,是小概率事件,即现有样本信息不支持H0。 抉择的标准为: 当P≤ 时,拒绝H0,接受H1 当P> 时,不拒绝H0 本例P<0.05,按 =0.05的水准,拒绝H0,接受H1,差别有统计学意义。认为该病女性患者的Hb含量高于正常女性的Hb含量。
根据抽样误差理论,在H0假设前提下,统计量t服从自由度为n-1的t分布,即t值在0的附近的可能性大,远离0的可能性小,离0越远可能性越小。 t值越小,越利于H0假设 t值越大,越不利于H0假设

统计学 第7章 假设检验ppt课件

统计学 第7章 假设检验ppt课件
在对客观事物及其现象进行观测和实验中,随着观测或实验的次数增 多,事件发生的频率和均值逐渐地趋于某个常数。
(1)贝努利定理(Bernoulli Theorem)
ln i mPnnA
PA
1
(6.1)
贝努利定理表明事件发生的频率依概率收敛于事件发生的概率。从而 以严格的数学形式表述了频率的稳定性特征,即n当很大时,事件发生 的频率与概率之间出现较大的偏差的可能性很小。由此,在n充分大的 场合,可以用事件发生的频率来替代事件的概率。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
完整版PPT课件
《统计学教程》
第6章 抽样分布与参数估计
6.1 抽样分布
3.抽样分布
抽样分布(Sampling Distribution)是指从同分布总体中,独立抽 取的相同样本容量的样本统计量的概率分布。所以,抽样分布是样本分 布的概率分布,抽样分布是抽样理论的研究对象。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
★ 讨论题 为什么说抽样分布是抽样理论研究的对象,解释三种分布之 间的联系。
完整版PPT课件
《统计学教程》
独立同分布的中心极限定理是应用最多的一种中心极限定理。设随机
变量相互独立,服从同一分布,且具有相同的有限的数学期望和方差,

ln i m Fn
x
n lim k1Xk
nx
x
n n
1
t2
e 2dt
(6.3)
2பைடு நூலகம்

第七章-假设检验PPT

第七章-假设检验PPT

(Xi X )2
i 1

n
[例7-5]某制药厂试制某种安定神经的新药,给10个病人 试服,结果各病人增加睡眠量如表7-2所示。
表7-1 病人服用新药增加睡眠量表
病人号码
1
2
34
5 6 7 8 9 10
增加睡眠(小时) 0.7 -1.1 -0.2 1.2 0.1 3.4 3.7 0.8 1.8 2.0
n N 1
其中, 是假设的总体比例,p 是样本比例
7.3.1 单个总体比例检验
❖ 这个检验统计量近似服从标准正态分布。如果抽样比例n/N 很小时,也可以使用下列形式:
Z p (1 )
n
[例7-7]某企业的产品畅销国内市场。据以往调查,购买该 产品的顾客有50%是30岁以上的男子。该企业负责人关心这 个比例是否发生了变化,而无论是增加还是减少。于是,该企 业委托了一家咨询机构进行调查,这家咨询机构从众多的购买 者中随机抽选了400名进行调查,结果有210名为30岁以上的 男子。该厂负责人希望在显著性水平0.05下检验“50%的顾客 是30岁以上的男子”这个假设。
解:从题意可知,X =1.36米,0=1. 32米, =0.12米。 (1)建立假设:H0: =1.32,H1: 1.32
(2)确定统计量:
Z X 1.36 1.32 1.67 / n 0.12 / 25
(3)Z的分布:Z~N(0,1)
(4)对给定的 =0.05确定临界值。因为是双侧备择假设所以
动生产率的标准差相等.问:在显著性水平0.05下,改革前、 后平均劳动生产率有无显著差异? 解:(1)建立假设H0:1 2 (没有差别)。
H1:1 2 (有差别)(左单侧备择假设) (2)计算统计量:

假设检验完整版PPT课件

假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0

1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 那么如何检验这位女士的说法?为此Fisher进行 了研究,从而提出了假设检验的思想。
假设检验的应用
1、推广素质教育以后,教学效果是不是有所提高?
(教育统计)
2、某种新胃药是否比以前更有效?(卫生统计)
3、醉酒驾车认定为刑事犯罪后是否交通事故会减少? (司法统计)
4、如何检测某批种子的发芽率?(农业统计) 5、海关工作人员如何判定某批产品能够通关?(海
的假设。表示为H0
• 备择假设(alternative hypothesis):一般研究者想收集证据
予以支持的假设。表示为H1
• 由于假设检验中只有在小概率事件发生的情况下才拒绝原 假设,因此在假设检验过程中是保护原假设的。
有三种形式: (1)双侧检验 H0:µ= µ0,H1: µ≠µ0( : µ<µ0(降低,减少); (3)右侧检验 H0:µ≤ µ0,H1: µ>µ0 (提高,增加) 采用哪种形式要根据实际问题。
他在抽样分布理论、相关回 归分析、多元统计分析、最大 似然估计理论,方差分析和假 设检验有很多的建树。
女士品茶
• 20世纪20年代后期在英国剑桥一个夏日的下午, 一群大学的绅士和他们的夫人以及来访者,正围 坐在户外的桌旁享用下午的奶茶。
• 奶茶一般是由牛奶和茶混合而成的,调制时候可 以先倒茶后倒牛奶,也可以先倒牛奶后倒茶。这 时候,一名女士说她能区分这两种不同做法的调 制出来的奶茶。
H0 : ≤ 30% H1 : 30%
2、设计检验统计量
1. 根据样本观测结果计算得到的,并据以对原假设 和备择假设作出决策的某个样本统计量
2、 标准化的检验统计量
• 4、根据样本的值计算统计量的数值并作出决策。
• 如果统计量的值落在拒绝域中,那么就没有通过检验, 说明有显著差异,拒绝原假设。
• 如果统计量的值落在接受域中,通过了假设检验,说明 这种差异是由于抽样造成,这个样本不能拒绝原假设。
1、原假设与备择假设
• 原假设(null hypothesis) :一般研究者想收集证据予以反对
属于µ0 。
检验如下假设:
原假设:高山成年人脉搏与一般人的脉搏没有差异:μ= µ0 备择假设:高山成年人脉搏与一般人的脉搏有差异: µ≠µ0
假设检验的基本概念
1. 概念 – 事先对总体参数或分布形式作出某种假设 – 然后利用样本信息来以一定的概率判断原假设是否成 立 – 参数检验和非参数检验(第8章的内容)
关统计)
6、《红楼梦》后40回作者的鉴定(文学统计)。 7、民间借贷的利率为多少?(金融统计) 8、兴奋剂检测(体育统计)
1、假设检验的基本思想
为研究某山区的成年男子的脉搏均数是否高于一般 成年男子脉搏均数,某医生在一山区随机抽查了25名 健康成年男子,得其脉搏均数x为74.2次/分,标准差 为6.0次/分。根据大量调查已知一般健康成年男子脉 搏均数为72次/分,能否据此认为该山区成年的脉搏 均数μ高于一般成年男子的脉搏均数μ0?
二、假设检验的步骤
• 1、根据具体的问题,建立原假设和备择假设 • 2、构造一个合适的统计量,计算其抽样分布
x
x

Z
/ n
t(n1) s / n (均值检验)
• 3、给定显著水平和确定临界值 。 • 显著水平通常取0.1、0.05或0.01。在确定了显著水平
后,根据统计量的分布就可以确定找出接受区域和拒绝 区域的临界值。
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
H0 : ≥ 250ml H1 : <250ml
• 【例】一家研究机构估计,某城市中家庭购买 有价证券的比率超过30%。为验证这一估计是 否正确,该研究机构随机抽取了一个50户组成 的样本进行检验,试陈述此问题中的原假设和备 择假设。
解:研究者想收集证据予以支持的假设是“ 城市中家庭购买有价证券的比率超过30% ”。 建立的原假设和备择假设为
• 某种饮料的易拉罐瓶的标准容量为335毫升,为对生 产过程进行控制,质量监测人员定期对某个分厂进 行检查,确定这个分厂生产的易拉罐是否符合标准 要求。如果易拉罐的平均容量大于或小于335毫升, 则表明生产过程不正常。试陈述用来检验生产过程 是否正常的原假设和备择假设
解:研究者想收集证据予以证明的假设应该是“ 生产过程不正常”。建立的原假设和备择假设为
问题1:造成这25名男子脉搏均数高于一般男子的原因 是什么?
由资料已知样本均数与总体均数不等,原因有二: (1)两者非同一总体,即两者差异由地理气候等因素造成
,也就是可以说高山成年人的脉搏比一般人的要高; (2)两者为同一总体,即两者差异由抽样误差造成。
问题2、怎样判断以上哪个原因是成立的? 若x与µ0接近,其差别可用抽样误差解释,x来自于µ0 ; 若x与µ0相差甚远,其差别不宜用抽样误差解释,则怀疑x不
统计假设检验
假设检验
第一节、假设检验概述 第二节、总体平均数的假设检验(Z 、 T) 第三节、总体比率的假设检验(P) 第四节、总体方差的假设检验(卡方、F)
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
Ronald Aylmer Fisher,英 国著名的统计学家,遗传学家, 现代数理统计的奠基人之一。
2. 作用 – 一般是对有差异的数据进行检验,判断差异是否显著 (概率) – 如果通过了检验,不能拒绝原假设,说明没有显著差异, 那么这种差异是由抽样造成的 – 如果不能通过检验,则拒绝原假设,说明有显著差异, 这种差异是由系统误差造成的. – 证伪不能存真.
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
相关文档
最新文档