(完整版)人教版实数测试题A

合集下载

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。

14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。

第6章 实数 人教版数学七年级下册单元测试(含答案)

第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。

人教版初中数学实数经典测试题附答案解析

人教版初中数学实数经典测试题附答案解析

人教版初中数学实数经典测试题附答案解析一、选择题1.如图所示,数轴上表示3、13的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是 ( )A .13B .13C .13D 13 【答案】C【解析】点C 是AB 的中点,设A 表示的数是c 1333c =-,解得:13C . 点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.2.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定10+1]的值为( )A .3B .4C .5D .6 【答案】B【解析】【分析】【详解】解:根据91016<<,则3104<<,即41015<<,根据题意可得:1014⎤=⎦. 考点:无理数的估算3.已知一个正方体的表面积为218dm ,则这个正方体的棱长为( )A .1dmB 3dmC 6dmD .3dm【答案】B【解析】【分析】设正方体的棱长为xdm ,然后依据表面积为218dm 列方程求解即可.【详解】 设正方体的棱长为xdm .根据题意得:2618(0)x x =>,解得:3x3dm .故选:B .【点睛】此题考查算术平方根的定义,依据题意列出方程是解题的关键.4.已知,x y 为实数且110x y ++-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1, 故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.5.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-. 故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.6.估计624的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间【答案】C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】=,∵49<54<64,∴,∴7和8之间,故选C .【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.7.下列各式中,正确的是( )A 3=-B 2=±C 4=D 3=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.【详解】3=,原选项错误,不符合题意;2=,原选项错误,不符合题意;4=,原选项正确,符合题意;D. 3≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.8.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.9.下列各数中最小的数是( )A.1-B.0 C.D.2-【答案】D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-2<-1<0,∴各数中,最小的数是-2.故选D.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10的算术平方根为()A.B C.2±D.2【答案】B【解析】的值,再继续求所求数的算术平方根即可.=2,而2,,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.11.的值是在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】B【解析】解:由于16<19<25,所以4<5,因此6<7.故选B.点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.13.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.14.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.16.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.17.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .①②B .②③C .③④D .②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;故选:B .【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.18.实数 )A 3<<B .3<C 3<< D 3<< 【答案】D【解析】先把3化成二次根式和三次根式的形式,再把3和310,25做比较即可得到答案. 【详解】 解:∵33792== ∴3910=<,3327532=>, 故325310<<,故D 为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.实数a 、b 满足1a ++4a 2+4ab+b 2=0,则b a 的值为( )A .2B .12C .﹣2D .﹣12 【答案】B【解析】【分析】【详解】解:化简得1a ++(2a+b )2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2, 所以,b a =2﹣1=12. 故选:B .【点睛】本题考查非负数的性质.20.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .3B 7C 11D .无法确定【答案】B【解析】【分析】【详解】解:根据二次根式的估算可知-2<3-1,27<3,311<4,7.。

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。

真命题的逆命题都是真命题B。

无限小数都是无理数C。

0.720精确到了百分位D。

16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。

3B。

7C。

3或7D。

1或73.3(-1)²的立方根是()A。

-1B。

1C。

-4D。

44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。

-1B。

-1/2C。

3/2D。

25.若a=2,则a的值为()A。

2B。

±2C。

4D。

±46.下列计算中,错误的是()A。

30.125=0.5B。

3-273=-644C。

33/31=1/82D。

-3/8²=-125/577.下列说法正确的是()A。

实数分为正实数和负实数B。

3/2是有理数C。

0.9是有理数D。

30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有() A。

2个B。

3个C。

4个D。

5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。

4 cm~5 cm之间B。

5 cm~6 cm之间C。

6 cm~7 cm之间D。

7 cm~8 cm之间10.计算-4-|-3|的结果是()A。

-1B。

-5C。

1D。

5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。

15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。

实数单元测试(人教版)含答案-6页精选文档

实数单元测试(人教版)含答案-6页精选文档

实数单元测试(人教版)一、单选题(共10道,每道10分)1.的平方根是( )A.9B.±9C.±3D.3答案:C解题思路:试题难度:三颗星知识点:算术平方根2.的平方根是( )A. B.2C. D.±2答案:C解题思路:试题难度:三颗星知识点:算术平方根3.下列实数:,,0.1414,,.其中无理数有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:无理数的定义4.下列说法正确的是( )A.无限小数是无理数B.有理数只是有限小数C.无理数的相反数还是无理数D.两个无理数的和还是无理数答案:C解题思路:试题难度:三颗星知识点:无理数的概念5.一个正方体的水晶砖,体积为100cm3,它的棱长大约在( )A.4cm与5cm之间B.5cm与6cm之间C.6m与7cm之间D.7cm与8cm之间答案:A解题思路:试题难度:三颗星知识点:比较大小6.已知一个正数的两个平方根分别是和,则这个正数是( )A.4B.2C.-2D.36答案:A解题思路:试题难度:三颗星知识点:平方根的性质7.若实数在数轴上的对应点的位置如图所示,则化简的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二次根式的化简8.若有意义,则的取值范围为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二次根式的非负性9.当x=______时,有最_____值,最值是______.( )A.3,大,4B.-3,大,4C.3,小,4D.-3,小,4答案:A解题思路:试题难度:三颗星知识点:二次根式的非负性10.计算:=( )A. B.C. D.0答案:B解题思路:试题难度:三颗星知识点:实数的混合运算希望以上资料对你有所帮助,附励志名3条:1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。

不如积阴德于冥冥之中,此乃万世传家之宝训也。

2、积德为产业,强胜于美宅良田。

实数测试题及答案解析

实数测试题及答案解析

↗(人教版.第6章.实数.2分)1.8的平方根是()A.4B.±4C.2D.考点:平方根.专题:计算题.分析:直接根据平方根的定义进行解答即可解决问题.解答:,∴8的平方根是.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.↗(人教版.第6章.实数.2分)2.的平方根是()A.±3B.3C.±9D.9考点:平方根;算术平方根.专题:计算题.分析:根据平方运算,可得平方根、算术平方根.解答:解:∴,9的平方根是±3,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.↗(人教版.第6章.实数.2分)3.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.专题:数与式分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是无理数,a是方程x2﹣8=0的一个解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选:D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.↗(人教版.第6章.实数.2分)4.化简得()A.100B.10C.D.±10考点:算术平方根.专题:数与式分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.↗(人教版.第6章.实数.2分)5.若实数x、y满足=0,则x+y的值等于()A.1B.C.2D.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:分类讨论.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以,x+y=+1=.故选:B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.↗↗(人教版.第6章.实数.2分)6.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°考点:无理数.专题:常规题型.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.↗↗(人教版.第6章.实数.2分)7.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.专题:数与式分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.↗(人教版.第6章.实数.2分)8.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∴(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.↗(人教版.第6章.实数.2分)9.计算:=3.考点:算术平方根.专题:计算题.分析:根据算术平方根的定义计算即可.解答:解:∴32=9,∴=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力(人教版.第6章.实数.2分)10.的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∴=2,∴的算术平方根为.故答案为:.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.。

人教版七年级下册数学:第六章《实数》达标检测卷(含答案)

人教版七年级下册数学:第六章《实数》达标检测卷(含答案)

人教版七年级下册数学达标检测卷 【检测内容:第六章 实数 满分:120分】一、选择题(每小题3分,共30分)1. 数4的算术平方根是( )A .2B .-2C .±2D .22. 下列各数中,属于无理数的是( )A .13B .1.414C .2D .4 3. 面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 4. 在实数|-3.14|,-3,-3,π中,最小的数是( )A .-3B .-3C .|-3.14|D .π5. 如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的是( )A.点AB.点BC.点CD.点D6. 23(1)-的立方根是( )A .-1B .0C .1D .±17. 实数10( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间8. 下列计算正确的是( )A 2(3)- 3B 35-35C 36 6D .0.360.69. 若8x m y 与6x 3y n 的和是单项式,则(m +n )3的平方根为( )A.±8B.8C.±4D.410. 已知x 是整数,当|x 30取最小值时,x 的值是( )A .5B .6C .7D .8二、填空题(每小题3分,共24分)11. .(填“>”“<”或“=”)12. 0.50.5.(填“>”“=”或“<”)13. 1的值在两个整数a与a+1之间,则a=.14. 自由落体的公式为h=12gt2(g为重力加速度,g≈9.8 m/s2).若物体下落的高度h为78.4 m,则下落的时间t是s.15. 观察下列各式:;=;…,请用你发现的规律写出第8个式子.16. 若实数a+b的平方根是±4,实数13a的立方根是-2,则16a+b的平方根为.17. 一般地,如果x4=a(a≥0),则称x为a的四次方根.一个正数a的四次方根有两个,它们互为相反数,.10,则m=.18. 对于两个不相等的实数a,b,定义一种新的运算:a*b(a+b>0),如3*2那么15*(6*3)=.三、解答题(共66分)19. (8分)计算:(-2)2+-1|20. (8分)已知实数2a-3的平方根是±5,求2a-b的平方根.21. (9分)如图,一只蚂蚁从点A沿数轴向右爬2个单位长度到点B,点A,设点B表示的数为m.(1)求m 的值;(2)求|m -1|+|m +2022|的值.22. (9分)有一个长、宽之比为5∶2的长方形小路,其面积为20 m 2.(1)求这个长方形小路的长和宽;(2)用10块大小相同的正方形地板砖刚好把这个小路铺满,求这种地板砖的边长.(结果保留根号)23. (10分)已知M =43n m -+m +3的算术平方根,N =2432m n n -+-n -2的立方根,试求M -N 的值.24. (10分)阅读下面的文字,2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部写出来.而2<2,2-12的小数部分.请解答下列问题:29的整数部分是 ,小数部分是 ;(2)10a 15的整数部分为b ,求a +b 10.25. (12分)如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162 cm2.(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343 cm3的正方体,求剩余纸板的面积.参考答案1. A2. C3. B4. B5. D6. C7. C8. D9. A 10. A11. <12. >13. 514. 415.1810=11016. ±617. ±1018.2719. 解:原式=41-3.20. 解:∵2a-3的平方根是±3,∴2a-3=9,则a=6.5,∴2b+3=25,则b=11,∴2a-b =1,∴2a-b的平方根是±1.21. 解:(1)m=2.(2)|m-1|+|m+2022|=|2-1|+|2+2022|=|1|+|2024|-1+2024=2023.22. 解:(1)设长方形小路的长为5x m,则宽为2x m.根据题意,得5x·2x=20,即x2=2,∴x或x=-舍去). 答:长方形小路的长为m,宽为m.(2)(m).23. 解:由已知得n-4=2,2m-4n+3=3,解得m=12,n=6,∴M N,∴M-N.24. 解:(1)5 5(2)∴∴a=3.<<∴∴b=3,∴a+b-3+30.25. 解:(1)根据题意,=18(cm),即正方形纸板的边长为18 cm.(2)根据题意,拼成的正方体的边长为=7(cm),则拼成正方体需要纸板的面积为7×7×6=294(cm2),剩余纸板的面积为162×2-294=30(cm2).。

实数综合测试(人教版)(含答案) (2)

实数综合测试(人教版)(含答案) (2)

实数综合测试(人教版)一、单选题(共10道,每道10分)1.下列实数,,0.1414,,中,是无理数的有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:无理数的概念2.下列运算中,错误的有( )①;②;③;④A.1个B.2个C.3个D.4个答案:D解题思路:试题难度:三颗星知识点:二次根式的运算3.的平方根是( )A.25B.5C.±5D.±25答案:C解题思路:试题难度:三颗星知识点:平方根的概念4.若一个数的平方根是a+6和2a-15,则这个数为( )A. B.3C.9D.81答案:D解题思路:试题难度:三颗星知识点:平方根5.计算的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:实数混合运算6.计算的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数混合运算7.若,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次根式的化简8.若实数a,b满足,则2b-a+1的值为( )A.0B.C. D.1答案:A解题思路:试题难度:三颗星知识点:二次根式的双重非负性9.若,则化简的结果是( )A. B.C.-1D.1答案:D解题思路:试题难度:三颗星知识点:二次根式的化简10.已知的整数部分是a,小数部分是b,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:无理数的整数部分、小数部分。

《实数》测试卷及答案

《实数》测试卷及答案

人教版七年级数学第六章《实数》测试卷一、选择题(每小题3分,共30分)1、若x 是9的算术平方根,则x 是( )A 、3B 、-3C 、9D 、81 2、下列说法不正确的是( ) A 、251的平方根是15± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 3、若a 的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数4、在下列各式中正确的是( )A 、2)2(-=-2 B 、9±=3 C 、16=8 D 、22=25、估计76的值在哪两个整数之间( )A 、75和77B 、6和7C 、7和8D 、8和9 6、下列各组数中,互为相反数的组是( )A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和2 7、在-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A 、4个 B 、3个 C 、2个 D 、1个 8、下列说法正确的是( )A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应 9.8-的立方根与4的算术平方根的和是 ( )A.0B.4C.2±D.4± 10、 -27的立方根为 ( )A.±3B. 3C.-3D.没有立方根二、填空题(每小题3分,共18分)11、81的平方根是__________,1.44的算术平方根是__________。

12、一个数的算术平方根等于它本身,则这个数应是__________。

13、38-的绝对值是__________。

14、比较大小:27____42。

15、若36.25=5.036,6.253=15.906,则253600=__________。

16、若10的整数部分为a ,小数部分为b ,则a =________,b =_______。

人教新版 七年级(下)第二学期 第6章 实数章节 单元测试A卷 含答案

人教新版 七年级(下)第二学期 第6章 实数章节 单元测试A卷 含答案

七年级(下)第二学期 第6章 实数章节 单元测试卷一.选择题(共10小题)1.下列四个实数中,最小的是( )A .2B .2-C .0D .1-2.立方根是3-的数是( )A .9B .27-C .9-D .273.下列各数:3.1415926,117-,327,12π,4.217,2,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个4.下列四个式子:9,327-,|3|-,(3)--,化简后结果为3-的是( )A .9B .327-C .|3|-D .(3)--5.若x 的算术平方根有意义,则x 的取值范围是( )A .一切数B .正数C .非负数D .非零数6.在数轴上,表示实数52-的点落在( )A .①B .②C .③D .④7.估计5624-( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有( )A .1个B .2个C .3个D .4个 9.在数轴上,点A 表示实数3,以点A 为圆心,25+的长为半径画弧,交数轴于点C ,则点C 表示的实数是( )A .5B .1C 1-或5+D .1-或5+10( )A .3和4B .4和5C .5和6D .6和7二.填空题11的算术平方根是 .12.如果某数的一个平方根是2-,那么这个数是 .13;-.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 .15与b a = .16.已知a 的整数部分,b 22(4)b a +-的值是 .17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 .18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 .三.解答题19|.20.计算:2019311|(2)10|(0.5)3-+--⨯+ 21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数)(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](1的小数部分是 ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 .26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=→=,这时候结果为1.31(3)对120连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.参考答案一.选择题1.下列四个实数中,最小的是( )A .2B .C .0D .1- 解:根据实数大小比较的方法,可得102<-<<,所以四个实数中,最小的数是.故选:B .2.立方根是3-的数是( )A .9B .27-C .9-D .27解:Q 3=-, ∴立方根是3-的数是27-.故选:B .3.下列各数:3.1415926,117-12π,4.217,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个解:无理数有12π 2.1010010001⋯(相邻两个1之间依次增加1个0),共3个, 故选:B .4|3|-,(3)--,化简后结果为3-的是( )AB C .|3|- D .(3)--解:Q3=,3=-,|3|3-=,(3)3--=,-,∴化简后结果为3-的是327故选:B.5.若x的算术平方根有意义,则x的取值范围是()A.一切数B.正数C.非负数D.非零数解:xQ的算术平方根有意义,∴的取值范围是:0xx….故选:C.6.在数轴上,表示实数52-的点落在()A.①B.②C.③D.④解:Q459<<<<,∴253<-<,∴0521-的点落在②处.∴52故选:B.7.估计5624-()A.8和9之间B.7和8之间C.6和7之间D.5和6之间解:562456263654===,Q495464<<∴-7和8之间.624故选:B.8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个解:①一个数的平方根等于它本身,这个数是0,错误;②实数包括无理数和有理数,正确;③2,正确;④故选:B.9.在数轴上,点A表示实数3,以点A为圆心,2+的长为半径画弧,交数轴于点C,则点C表示的实数是()A.5B.1C1-或5+D.1-或5+解:根据题意得:325-+=-,++=+3(21则点C表示的实数是5+1-,故选:D.10() A.3和4B.4和5C.5和6D.6和7解:Q<<∴的值在两个连续整数之间,这两个连续整数是:4和5.故选:B.二.填空题(共8小题)11的算术平方根是2.解:Q4=,=.∴2故答案为:2.12.如果某数的一个平方根是2-,那么这个数是4.解:Q某数的一个平方根是2-,∴这个数为4.故答案为:4.13 2;-.解:2=Q <∴2<;-=Q -=,∴->-,故答案为:<;>.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 3- . 解:6a b -+Q 的算术平方根是2,21a b +-的平方根是4±, 64a b ∴-+=,2116a b +-=,解得5a =,7b =,53535327a b ∴-+=-+=-,53a b ∴-+的立方根3-.故答案为:3-15与b a 2 .解:Q 互为相反数,(31)(12)0a b ∴-+-=,32a b ∴=,∴32b a =. 故答案为:32.16.已知a 的整数部分,b 22(4)b a +-的值是 1 .解:a Q 的整数部分,b4a ∴=,4b -,22(4)b a ∴+-2244)4=-+-1716=-1=,故答案为:1.17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 33.5 .3.32=a =b =,则0.33233.233.53233.5a b +=+=≈, 故答案为:33.5.18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 ③④ .解:a Q 、b 有一个小于0或都小于0,但是它们的绝对值相等时,||||a b =不一定有意义,∴若||||a b ==不一定成立,∴选项①不符合题意;Q 若||||a b <,0a <,0b <时,a b >,∴选项②不符合题意;Q 若a b =-,则22()a b -=,∴选项③符合题意;Q 若33()a b -=-,则a b =,∴选项④符合题意,∴其中正确的判断的序号是③④.故答案为:③④.三.解答题(共8小题)19|.|22=+-=.20.计算:2019311|(2)10|(0.5)3-+--⨯+解:2019311|(2)10|(0.5)3-+--⨯+-511856=-+⨯- 1155=-+-9=21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.解:(1)2(1)64x -=,18x -==±,解得9x =或7-;(2)3(8)270x ++=,3(8)27x +=-,83x +==-,解得11x =-.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.解:21a -Q 的算术平方根是3,219a ∴-=,5a ∴=,39a b +-Q 的立方根是2,398a b ∴+-=,2b ∴=,c Q 的整数部分,34<<,3c ∴=,722354625a b c ∴--=--=,722a b c ∴--的平方根是5±.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数) 2(21)(21)(2)1n n n -+=-(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由解:(1)21321⨯=-Q ;2351541⨯==-;2573561⨯==-;2796381⨯==- ∴第n 个等式(n 为正整数)应为:2(21)(21)(2)1n n n -+=-.(2)2(2)12499n -=,解得:25n =.故答案为:2(21)(21)(2)1n n n -+=-.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= 1 ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).解:(1)1*(1*1)1*111=+=,2*(2*2)2*222=+=,3*03*(3*3)3*333==+=故答案为:1,2,3;(2)*0(*)*a a a a a a a a ==+=,故答案为a ;(3)*(*)*a b b a b b =+,即*0*a a b b =+,而*0a a =,故*a b a b =-.25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](12- ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 . 解:(1)479<<Q ,∴的整数部分是2,∴2-;(2)a Q b 的小数部分,91016<<,3a ∴=,3b -,∴1(9a b --=,9的平方根为3±.2;3±.26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= 2 ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次31=→=,这时候结果为1.(3)对120连续求根整数, 次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 . 解:(1)224=Q ,2636=,2749=,67∴<<,2∴=;6=,故答案为:2,6;(2)211=Q ,224=,且1=,1x ∴=,2,3,故答案为:1,2,3;(3)第一次:10=,第二次:3=,第三次:1=,故答案为:3;(4)最大的正整数是255,理由是:15=Q ,3=,1=,∴对255只需进行3次操作后变为1,=,1=,=,2Q,416=∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.。

《实数》综合测试题(A)

《实数》综合测试题(A)

_ 、 、 _ 姒_ , , : I -
1 . 考试 时 间 4 5分. 2 . 本套 测试题 共 四道 大题 , 满分 1 0 0分.
题 号

K … I -
_ L 一 一

总 分


Wh e n t wo me n i n b u s i n e s s a l wa y s a g ue . o n e o f t l l e n l i s u n n e c e s s a r y .
说 法 吗?小 华 能用 这块 纸
( 答 案在 参 考 答 案 第 4页 )
、 、 、

、 、
一 一 一 一 一 一 一
G o c o n id f e n t l y i n t h e d i r e c t i o n o f y o u r d r e a ms . L i v e t h e l i f e y o u’ v e i ma g i n e d .
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
g 0 、ຫໍສະໝຸດ 、、 一 、 朝着理想的方 向 自信地 勇往直前 , 过你想过的生活 。——亨利 ・ 梭罗
/ / ,
如果 一 一 一 一 业 一 务 一 一 上 一 两个 一 一 一 一 人 一 的意 一 一 一 见 一 一 始 一 一 终 一 一致 一 一 一 , ~ 其 一 一 中 一 的一 一 一 一 个 一 一 人 一 就 一 一 是 一 一 多余 一 一 一 的 一 。—— 一 一 一 一 一 小 一 一 威 一 廉 一 一 . 一 雷格 一 一 一 利 一 一 一 一 一 一 一 一 , , /

实数单元测试题(A)及答案

实数单元测试题(A)及答案

实数单元测试题(A)及答案一、选择题(每题3分,共30分)1. 实数集用符号表示为:A. NB. ZC. QD. R2. 下列哪个数是有理数?A. πB. √2C. √3D. 0.333...(无限循环小数)3. 以下哪个表达式的结果不是实数?A. √4B. √(-1)C. -√4D. √94. 无理数是:A. 可以表示为两个整数的比B. 不能表示为两个整数的比C. 整数D. 有理数5. 以下哪个数是实数但不是有理数?A. 1/3C. 2D. 1/26. 实数的加法满足:A. 交换律B. 结合律C. 分配律D. 所有以上7. 如果a和b是任意两个实数,那么a + b = b + a表示的是:A. 加法的交换律B. 加法的结合律C. 加法的分配律D. 减法的性质8. 以下哪个数是实数的平方根?A. √4B. √(-4)C. -√4D. √169. 两个相反数的和是:A. 0B. 1C. -1D. 不确定10. 以下哪个数是实数的倒数?A. 1/2B. -1/2D. 1二、填空题(每题2分,共20分)11. 实数包括有理数和________。

12. π是一个________数。

13. 一个数的相反数是它本身的数是________。

14. 两个数相除,如果除数是0,则结果________。

15. 一个数的绝对值是它与0的距离,即|-3|=________。

16. 如果a > 0,那么1/a是一个________数。

17. 一个数的平方根是________的数。

18. 实数的加法满足________律和________律。

19. 两个数的乘积为0,那么至少有一个数是________。

20. 一个数的倒数是1/该数,但0没有倒数,因为0不能做________。

三、解答题(每题10分,共50分)21. 计算下列表达式的值:√(-1) × √(-1)。

22. 解释为什么0既不是正数也不是负数。

八年级数学《实数》综合测试题及参考答案(人教版)

八年级数学《实数》综合测试题及参考答案(人教版)

八年级数学《实数》综合测试题一、选择题:22 、(相邻两个 5 之间 7 的个数逐次加 1)、327、0、1. 在实数5、7 0.5757757775( )0、2 、 3 中,无理数的个数是 ( )2(A ) 3个( B )4 个(C ) 5个(D ) 6个2. 以下语句或式子:① - 3 是 81 的平方根; ②- 7 是 ( 7) 2的算术平方根;③ 25 的平方根是± 5;④ - 9 的平方3没有算术平方根 . 此中正确的个数是[ ]根是± ;⑤(A )0 个(B )1 个(C )2个(D )3 个3. 若 32 b 是 2 b 的立方根,则()A b 2B b 2C b 2D b 能够为随意实数4.|- 64| 的立方根是[]( A )4(B )4( C ) 8(D )85. 当 4a 1 的值为最小值时, a 的值为()A 1B1C 0D 146.预计3124与26的大小关系是[ ](A ) 3 124 > 26 (B ) 3 124 = 26(C ) 3 124 <26( D )没法判断7. 若一个自然数的算术平方根是m ,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是[ ]( A ) m 21( B ) m 2 1( C ) m 1( D ) m 18. 若 3 a3b = 0,则 a 与 b 的关系是[]( A ) a b 0(B ) a b( C ) a b 01( D ) ab9. 若 m 是 n 的算术平方根,则 n 的平方根是()A mB mCmD m10. 若 a 2a ,则实数 a 在数轴上的对应点必定在[]( A )原点左边 ( B )原点右边( C )原点或原点左边(D )原点或原点右边二、填空题:11. 比较大小:515 ”,“ ”或“ =” )2(填“812. 已知 0a1, 化简 a1 a1 _____.22aa13. 已知 x3 2, y3 2, 则代数式 x 2 2xy y 2 的值为 _____.323214. 计算: ( 52) 2007( 52) 2008_______ . 15.已知 (x 2y 2 1) 2 4 0, 则 x 2y 2 ______.16. 1,34,39, 232 , 切合这个规律的第五个数是_____.17. 有四个实数分别是 |3|, , 9 , 4,请你计算此中有理数的和与无理数的积的差,其计算结果是 _____.218. 实数 a , b 在数轴上的地点如图 1 所示,则化简a b(b a)2 _____.三、解答题: aOb19. 计算:图 1(1) 2 (3)120169(2)9 45 3 13 2 265 2 336(3) ( 2)2| 5 5 | 2 4 (3) 48( 3 ) 1 3( 3 1) 30| 32 |323320. 已知13 的整数部分为 a ,小数部分为 b ,试求 1b( 13 a) 的值 .421. (1) 已知实数 x 、y 、z 知足 4x 4y1 12y z z 2 z1 0 ,求 ( y z)2x 2 的值;34(2) 已知 x1, y2 1 , 求 2x 2 2 y 2 xy 的值 .23322. 阅读以下运算过程:①133 3,②12 ( 55 2 2)5 2 5 233352)( 55 23数学上把这类将分母中的根号去掉的过程称作“分母有理化” 。

人教版数学七年级下册:第六章《实数》测试题及答案(期末考好题精选)

人教版数学七年级下册:第六章《实数》测试题及答案(期末考好题精选)

第6章实数期末一、选择题1. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个2.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段②C.段③D.段④3.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±204.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b5.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是16.下列结论正确的是()A.B.C.D.①无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④8.比较2,,的大小,正确的是()A.B.2C.2D.<29.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④10.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤的立方根是±;⑥的平方根是9,其中正确的说法是()A.1个B.2个C.3个D.4个二、填空题11.若a=b2﹣3,且a的算术平方根为1,则b的值是.12.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.13.已知实数m满足+=,则m=.14.已知≈2.078,≈20.78,则y=.15.若的值在两个整数a与a+1之间,则a=.16.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.17.若一个实数的算术平方根等于它的立方根,则这个数是.18.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题19.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.20.计算:(1)+×﹣÷(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)21.请用下表中的数据填空:x2525.125.225.325.425.525.625.725.825.926x 2625630.01635.04640.09645.16650.25655.36660.49665.64670.81676(1)655.36的平方根是.(2)=.22.设的小数部分为a,的倒数为b,求a+b2的值.23.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.24.小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?25.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.参考答案及解析一、选择题1. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个【解答】解:∵负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0个,故选A.2.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段②C.段③D.段④【解答】解:∵≈1.414,∴2≈2.828,∴2.8<2<2.9,故选:C.3.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±20【解答】解:根据题意,可知x20=2,能得出.故选B.A.a>b>c B.c>b>a C.b>a>c D.a>c>b【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.5.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.6.下列结论正确的是()A.B.C.D.【解答】解:A.因为,故本选项正确;B.因为=3,故本选项错误;C.因为,故本选项错误;D.因为,故本选项错误;故选A.7.有下列说法②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④【解答】解:①无理数一定是无限不循环小数,正确;②算术平方根最小的数是零,正确;③﹣6是(﹣6)2的一个平方根,故错误;④﹣=,正确;其中正确的是:①②④.故选:C.8.比较2,,的大小,正确的是()A.B.2C.2D.<2【解答】解:∵2=,∴2;∵,∴,∴<.故选:A.9.下列命题中:①有理数是有限小数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④【解答】解:①有理数不一定是有限小数,整数也是有理数,故说法错误,②有限小数是有理数,故说法正确;③无理数都是无限小数,故说法正确;④无限小数都不一定是无理数,其中无限循环小数为有理数,故说法错误.故选C.10.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤的立方根是±;⑥的平方根是9,其中正确的说法是()A.1个B.2个C.3个D.4个【解答】解:①﹣2是4的平方根,正确;②16的平方根是±4,故错误;③﹣125的平方根是﹣5,故错误;④0.25的算术平方根是0.5,正确;⑤的立方根是,故错误;⑥=9,9的平方根是±3,故错误;其中正确的说法是:①④,共2个,故选:B.二、填空题11.若a=b2﹣3,且a的算术平方根为1,则b的值是.【解答】解:∵1的算术平方根是1,∴a=1.∴b2﹣3=1,即b2=4.∴b=±2.故答案为:±2.12.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).13.已知实数m满足+=,则m=.【解答】解:因为实数m满足+=,可得:m﹣2+=m,可得:m﹣3=4,解得:m=7,故答案为:714.已知≈2.078,≈20.78,则y=.【解答】解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.15.若的值在两个整数a与a+1之间,则a=.【解答】解:∵的值在两个整数a与a+1之间,4<<5,∴5<<6,∴a=5.故答案为:5.16.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.【解答】解:∵两个小正方形的面积分别是6cm2和2cm2,∴两个正方形的边长分别为和,∴两个矩形的长是,宽是,∴两个长方形的面积和=2××=4cm2.故答案为:4.17.若一个实数的算术平方根等于它的立方根,则这个数是.【解答】解:1的算术平方根是1,1额立方根是1,0的算术平方根是0,0的立方根是0,即算术平方根等于立方根的数只有1和0,故答案为:0和1.18.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.三、解答题19.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.20.计算:(1)+×﹣÷(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)【解答】解:(1)+×﹣÷=9+4﹣×(﹣)=13+=14;(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)=3+3﹣﹣18﹣2+=3﹣17.21.请用下表中的数据填空:x2525.125.225.325.425.525.625.725.825.926x 2625630.01635.04640.09645.16650.25655.36660.49665.64670.81676(1)655.36的平方根是.(2)=.(3)<<.【解答】解:(1)∵由表可知,=25.6,∴655.36的平方根是±25.6.故答案为:±25.6;(2)∵=25.9,∴=25.9.故答案为:25.9;(3)∵=25.2,=25.3,∴25.2<<25.3.故答案为:25.2;25.3.22.设的小数部分为a,的倒数为b,求a+b2的值.【解答】解:∵的小数部分为a,∴a=﹣1,∵的倒数为b,∴b=,∴a+b2=﹣1+()2=﹣.23.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.【解答】解:∵+|y﹣2|=0,∴x+1=0,y﹣2=0,∴x=﹣1,y=2.∵且与互为相反数,∴1﹣2z+3z﹣5=0,解得z=4.∴yz﹣x=2×4﹣(﹣1)=9,∴yz﹣x的平方根是±3.24.小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?【解答】解:(1)小明抽到卡片的计算结果:﹣﹣+=3﹣﹣2+=;小华抽到卡片的计算结果:﹣3+﹣=2﹣+3﹣=,(2)∵<,∴小华获胜.25.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.【解答】解:(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣1.。

人教新版 七年级(下)第二学期 第6章 实数章节 单元测试A卷 含答案

人教新版 七年级(下)第二学期 第6章 实数章节 单元测试A卷 含答案

七年级(下)第二学期 第6章 实数章节 单元测试卷一.选择题(共10小题)1.下列四个实数中,最小的是( )A .2B .2-C .0D .1-2.立方根是3-的数是( )A .9B .27-C .9-D .273.下列各数:3.1415926,117-,327,12π,4.217,2,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个4.下列四个式子:9,327-,|3|-,(3)--,化简后结果为3-的是( )A .9B .327-C .|3|-D .(3)--5.若x 的算术平方根有意义,则x 的取值范围是( )A .一切数B .正数C .非负数D .非零数6.在数轴上,表示实数52-的点落在( )A .①B .②C .③D .④7.估计5624-( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有( )A .1个B .2个C .3个D .4个 9.在数轴上,点A 表示实数3,以点A 为圆心,25+的长为半径画弧,交数轴于点C ,则点C 表示的实数是( )A .5B .1C 1-或5+D .1-或5+10( )A .3和4B .4和5C .5和6D .6和7二.填空题11的算术平方根是 .12.如果某数的一个平方根是2-,那么这个数是 .13;-.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 .15与b a = .16.已知a 的整数部分,b 22(4)b a +-的值是 .17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 .18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 .三.解答题19|.20.计算:2019311|(2)10|(0.5)3-+--⨯+ 21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数)(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](1的小数部分是 ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 .26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=→=,这时候结果为1.31(3)对120连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.参考答案一.选择题1.下列四个实数中,最小的是( )A .2B .C .0D .1- 解:根据实数大小比较的方法,可得102<-<<,所以四个实数中,最小的数是.故选:B .2.立方根是3-的数是( )A .9B .27-C .9-D .27解:Q 3=-, ∴立方根是3-的数是27-.故选:B .3.下列各数:3.1415926,117-12π,4.217,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个解:无理数有12π 2.1010010001⋯(相邻两个1之间依次增加1个0),共3个, 故选:B .4|3|-,(3)--,化简后结果为3-的是( )AB C .|3|- D .(3)--解:Q3=,3=-,|3|3-=,(3)3--=,-,∴化简后结果为3-的是327故选:B.5.若x的算术平方根有意义,则x的取值范围是()A.一切数B.正数C.非负数D.非零数解:xQ的算术平方根有意义,∴的取值范围是:0xx….故选:C.6.在数轴上,表示实数52-的点落在()A.①B.②C.③D.④解:Q459<<<<,∴253<-<,∴0521-的点落在②处.∴52故选:B.7.估计5624-()A.8和9之间B.7和8之间C.6和7之间D.5和6之间解:562456263654===,Q495464<<∴-7和8之间.624故选:B.8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个解:①一个数的平方根等于它本身,这个数是0,错误;②实数包括无理数和有理数,正确;③2,正确;④故选:B.9.在数轴上,点A表示实数3,以点A为圆心,2+的长为半径画弧,交数轴于点C,则点C表示的实数是()A.5B.1C1-或5+D.1-或5+解:根据题意得:325-+=-,++=+3(21则点C表示的实数是5+1-,故选:D.10() A.3和4B.4和5C.5和6D.6和7解:Q<<∴的值在两个连续整数之间,这两个连续整数是:4和5.故选:B.二.填空题(共8小题)11的算术平方根是2.解:Q4=,=.∴2故答案为:2.12.如果某数的一个平方根是2-,那么这个数是4.解:Q某数的一个平方根是2-,∴这个数为4.故答案为:4.13 2;-.解:2=Q <∴2<;-=Q -=,∴->-,故答案为:<;>.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 3- . 解:6a b -+Q 的算术平方根是2,21a b +-的平方根是4±, 64a b ∴-+=,2116a b +-=,解得5a =,7b =,53535327a b ∴-+=-+=-,53a b ∴-+的立方根3-.故答案为:3-15与b a 2 .解:Q 互为相反数,(31)(12)0a b ∴-+-=,32a b ∴=,∴32b a =. 故答案为:32.16.已知a 的整数部分,b 22(4)b a +-的值是 1 .解:a Q 的整数部分,b4a ∴=,4b -,22(4)b a ∴+-2244)4=-+-1716=-1=,故答案为:1.17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 33.5 .3.32=a =b =,则0.33233.233.53233.5a b +=+=≈, 故答案为:33.5.18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 ③④ .解:a Q 、b 有一个小于0或都小于0,但是它们的绝对值相等时,||||a b =不一定有意义,∴若||||a b ==不一定成立,∴选项①不符合题意;Q 若||||a b <,0a <,0b <时,a b >,∴选项②不符合题意;Q 若a b =-,则22()a b -=,∴选项③符合题意;Q 若33()a b -=-,则a b =,∴选项④符合题意,∴其中正确的判断的序号是③④.故答案为:③④.三.解答题(共8小题)19|.|22=+-=.20.计算:2019311|(2)10|(0.5)3-+--⨯+解:2019311|(2)10|(0.5)3-+--⨯+-511856=-+⨯- 1155=-+-9=21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.解:(1)2(1)64x -=,18x -==±,解得9x =或7-;(2)3(8)270x ++=,3(8)27x +=-,83x +==-,解得11x =-.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.解:21a -Q 的算术平方根是3,219a ∴-=,5a ∴=,39a b +-Q 的立方根是2,398a b ∴+-=,2b ∴=,c Q 的整数部分,34<<,3c ∴=,722354625a b c ∴--=--=,722a b c ∴--的平方根是5±.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数) 2(21)(21)(2)1n n n -+=-(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由解:(1)21321⨯=-Q ;2351541⨯==-;2573561⨯==-;2796381⨯==- ∴第n 个等式(n 为正整数)应为:2(21)(21)(2)1n n n -+=-.(2)2(2)12499n -=,解得:25n =.故答案为:2(21)(21)(2)1n n n -+=-.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= 1 ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).解:(1)1*(1*1)1*111=+=,2*(2*2)2*222=+=,3*03*(3*3)3*333==+=故答案为:1,2,3;(2)*0(*)*a a a a a a a a ==+=,故答案为a ;(3)*(*)*a b b a b b =+,即*0*a a b b =+,而*0a a =,故*a b a b =-.25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](12- ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 . 解:(1)479<<Q ,∴的整数部分是2,∴2-;(2)a Q b 的小数部分,91016<<,3a ∴=,3b -,∴1(9a b --=,9的平方根为3±.2;3±.26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= 2 ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次31=→=,这时候结果为1.(3)对120连续求根整数, 次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 . 解:(1)224=Q ,2636=,2749=,67∴<<,2∴=;6=,故答案为:2,6;(2)211=Q ,224=,且1=,1x ∴=,2,3,故答案为:1,2,3;(3)第一次:10=,第二次:3=,第三次:1=,故答案为:3;(4)最大的正整数是255,理由是:15=Q ,3=,1=,∴对255只需进行3次操作后变为1,=,1=,=,2Q,416=∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.。

人教版第六章实数测试卷1(含答案)

人教版第六章实数测试卷1(含答案)

第六章实数测试卷一、单选题1 ( )A .B .C .±3D .32.下列实数中的无理数是( )A B C D .2273.下列各组数中,两个数相等的是 ( )A .-2B .-2与-12C .-2D .|-2|与-2 4.8的相反数的立方根是( )A .2B .12C .﹣2D .12-5.比较2的大小,正确的是( )A .2<B .2<C 2<D 26.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <07.有一个数值转换器原理如下:当输入x =16时,输出的数是 ( )A .8B .2C D8是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间9 ( )A .4至5之间B .5至6之间C .6至7之间D .4至6之间10.计算:12-的结果是( ) A .1B .2C .0D .-1 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.____.12122-+-=______.132(1)-=_______.14.______,|1=_______________.15a ,小数部分为b ,则a -b =____.16.观察分析下列数据,寻找规律:0,3…,那么第13个数据是______.三、解答题17.已知数-34,-1.••42,π,3.1416,23,0,42,(-1)2,-1.424224222…. (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.18.求下列各式的值.15(3)|a -π|+-a a <π).(精确到0.01)19.如图所示,在△ABC 中,∠B =90°,AB ,BC 边足够长,点P 从点B 开始沿BA 边向点A 以1厘米/秒的速度移动,同时,点Q 也从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,几秒后,△BPQ 的面积为36平方厘米?20.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.21.求下列各式中x的值:(1)2x2-32=0;(2)(x+4)3+64=0.22.(1)已知2a-1的平方根是±3,2是3a+b-1的立方根,求a+2b的值.(2)设x,y,试求x,y的值与x-1的算术平方根.23.已知实数a,b|2b+1|=0,求的值.24.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?参考答案:1.D【解析】【详解】∠33=27,3=.故选D.2.C【解析】【详解】分析: 分别根据无理数、有理数的定义即可判定选择项.详解:,,227是有理数,是无理数,故选C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3.C【解析】【分析】根据算术平方根的定义,立方根的定义以及绝对值的性质对各选项分析后利用排除法求解.【详解】解:A、,∠-2B、-2与-12不相等,故本选项错误;C、,∠-2D、∠|-2|=2,∠|-2|与-2不相等,故本选项错误.故选C.【点睛】本题主要考查了算术平方根,立方根的定义,对各选项正确化简是解题的关键.4.C【解析】【详解】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C .【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键. 5.C【解析】【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∠26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∠6662<<2<故选C .【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.6.B【解析】【详解】试题分析:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、a 的绝对值>2,故本选项正确,不符合题意;D 、2a <0,故本选项正确,不符合题意.故选B .考点:实数与数轴.7.D【解析】【分析】把16代入数值转换器,根据要求进行计算,得到输出的数值.【详解】解:,4是有理数,∠继续转换,=2,2是有理数,∠继续转换,∠2,是无理数,∠符合题意,故选D.【点睛】本题考查的是算术平方根的概念和性质,掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数和无理数的区别.8.B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∠4.84<5<5.29,,,故选B.【点睛】是解题关键.9.B【解析】【分析】【详解】解:∠5 ²=25,6 ²=36,25<32<36,∠56,故选B.【点睛】关键.10.C【解析】【分析】根据有理数的运算性质,先化简再求值.【详解】解:原式=12-12=0.【点睛】掌握有理数的相关运算性质是解答本题的关键. 11.3,【解析】【详解】-(∠乘积为1的数互为倒数,∠3得倒数为.12..【解析】【详解】原式=13222-+-=52,故答案为52.13.4【解析】【分析】按顺序先分别进行算术平方根和平方运算,然后再进行减法运算即可.【详解】2(1)514-=-=,故答案为:4.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.14. 1 ±3【解析】【分析】直接利用相反数的定义得出答案;结合绝对值的定义得出答案;,再根据绝对值的性质即可求出.【详解】解:(2) |1|1;(3)∠绝对值为3的数为±3.1; ±3.【点睛】本题主要考查相反数,绝对值的定义以及立方根,关键在于熟练掌握运用相关的性质定理,认真的进行计算.15.【解析】【分析】a,b的值,进而得出答案.【详解】解:∠45,a=4,小数部分为.∠a-b=4-)故答案为【点睛】16.6【解析】【详解】被开方数依次为0,3,6,9,12,15,18,…,每两数相差3,所以第13 6.故答案为6.点睛:本题是数字规律探究题,观察题目找出规律被开方数依次增加3是解题的关键..17.(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222…;(3)见解析.【解析】【分析】(1)按照有理数的定义解答,特别要注意无限循环小数是有理数;(2)根据无理数的定义解答,即无限不循环小数是无理数;(3)根据实数比较大小的法则把各数进行比较,并用“<”连接起来.【详解】解:(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222….(3)-1.··42<-1.424224222…<-34<0<23<(-1)2<π<3.1416<42.【点睛】本题考查的是有理数、无理数的定义及实数的大小比较,熟知有理数、无理数的定义及实数的大小比较法则是解答此题的关键.18.(1)35;(2)-1.7;(3)1.73.【解析】【分析】(1)先把计算根号的加减运算,然后利用二次根式的性质化简后进行乘法运算;(2)首先进行二次根式的化简,然后合并即可;(3)先根据实数a的取值范围,判断出a-πa的符号,根据绝对值的性质进行解答即可.【详解】解:(1)=7×5=35.(2)13×0.6-15×30=92-0.2-6=-1.7.a<π,∠a-π<0-a<0,∠|a-π|+a|=(π-a)+(a)=π-a+a=π≈3.142-1.414=1.728≈1.73.【点睛】本题考查了二次根式的计算,实数的运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,属于基础题.19.6秒【解析】【分析】设x秒钟后,△PBQ的面积等于36cm2,根据直角三角形的面积公式和路程=速度×时间进行求解即可.【详解】解:设x秒后,△BPQ的面积是36平方厘米,根据题意得PB=x厘米,QB=2x厘米,因此12x×2x=36,所以x2=36,解得x=6(x=-6舍去),所以6秒后,△BPQ的面积是36平方厘米.【点睛】此题考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于36cm2”,找到等量关系是解决问题的关键.20.3a+b的平方根为±2.【解析】【详解】试题分析:先按照题意求出a、b的值,然后再代入即可得解.试题解析:∠2a-1的算术平方根是3,∠2a-1=9 ,∠a=5 ,又∠3a+b+4的立方根是2,∠3a+b+4=8,∠3×5+b+4=8,∠b=-11,∠3a+b=4,∠3a+b的平方根为±2.21.(1)x﹦±4,(2)x﹦﹣8.【解析】【分析】(1)通过求平方根解方程;(2)通过求立方根解方程.【详解】解:(1)2x2﹣32=02x2﹦32x2﹦16x﹦±4,∠x1=4,x2=﹣4;(2)(x+4)3+64=0(x+4)3﹦﹣64x+4﹦﹣4x﹦﹣8.【点睛】本题考核知识点:运用开方知识解方程. 解题关键点:熟练进行开方运算.22.(1)-7;(2【解析】【分析】(1)根据平方根、算术平方根、立方根的定义进行运算即可;(2介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【详解】解:(1)依题意得2a-1=9,3a+b-1=8,解得a=5,b=-6.所以a+2b=-7.(2)即所以的整数部分是4.由题意知x=4,y-2,则x-1=3,所以x-1【点睛】本题考查了实数的运算,涉及了平方根、立方根、倒数及相反数的知识,无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.23.1 4 -【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:根据题意,得10,4 210, ab⎧-=⎪⎨⎪+=⎩解得1412ab⎧=⎪⎪⎨⎪=-⎪⎩,,则=1-2⎛⎫⎪⎝⎭14.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.(1)0.9h(2)9.7km【解析】【分析】(1)根据t2=3900d,其中d=9(km)是雷雨区域的直径,开立方,可得答案;(2)根据t2=3900d,其中t=1h是雷雨的时间,开立方,可得答案.【详解】(1)当d=9时,则t2=3900d,因此t0.9.答:如果雷雨区域的直径为9km,那么这场雷雨大约能持续0.9h.(2)当t=1时,则3900d=12,因此d答:如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.。

人教版七年级下册数学第六章实数-测试题含答案

人教版七年级下册数学第六章实数-测试题含答案

人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。

12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。

人教版七年级(下)第6章实数单元测试A卷

人教版七年级(下)第6章实数单元测试A卷

人教版七年级(下)第6章实数单元测试A卷第六章实数A卷满分100分,考试时间100分钟一﹨选择题(每小题3分,共24分)1.(2016•大连模拟)分别取正整数5的绝对值﹨倒数﹨相反数﹨算术平方根,得到的数值仍为正整数的是()A.绝对值B.倒数C.相反数D.算术平方根2.(2016•思明区模拟)若,则下列式子正确的是()A.3x=﹣8 B.x3=﹣8 C.(﹣x)3=﹣8 D.x=(﹣8)33.(2016•江西模拟)下列叙述中,不正确的是()A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零4.(2016春•赵县期末)若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣55.(2016春•天津期末)下列结论正确的是()A.B.C.D.6.(2016春•马山县期末)下列说法正确的是()A.4的平方根是2 B.是无理数C.无限小数都是无理数D.实数和数轴上的点一一对应7.(2016春•芜湖期中)估计的大小应在()A.7与8之间B.8.0与8.5之间C.8.5与9.0之间D.9与10之间8.(2016•蜀山区二模)若a﹨b均为正整数,且a>,b>,则a+b 的最小值是()A.6 B.7 C.8 D.9二.填空题(每小题3分,共24分)9.(2016•安徽三模)的平方根为.10.(2016•东台市模拟)写出一个大于﹣1而小于3的无理数.11.(2017春•大丰市月考)实数a﹨b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为.12.(2016•罗庄区模拟)比较大小:1(填“<”或“>”或“=”).13.(2016•南江县校级模拟)对于两个不相等的实数a﹨b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)=.14.(2016春•当涂县期末)如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积是.15.(2016春•固镇县期末)某数学组织规定“平方根节”如下,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年3月3日,2016年4月4日,请你写出本世纪内你喜欢的一个平方根(题中所举例子除外);年月日.16.(2016•天桥区一模)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)三.解答题(共52分)17.(2016春•赵县期末)求下列式子中的x。

人教版初中数学七年级数学下册第二单元《实数》测试题(包含答案解析)

人教版初中数学七年级数学下册第二单元《实数》测试题(包含答案解析)

一、选择题1.在实数,-3.14,0,π中,无理数有( )A .1个B .2个C .3个D .4个2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A .0个B .1个C .2个D .3个3.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数4.0215中,是无理数的是( )A B .0 C D .2155.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是16 )A .3B .﹣3C .±3D .67.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .108.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a bb ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .① B .② C .①② D .①②③9.在下列各数中是无理数的有( )0.111-43π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732 A .3个 B .4个 C .5个 D .6个10.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68 11.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 12.511的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题13.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.14.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 15.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.16.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.17.﹣816_____.18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.3331.5115.10.1510.5325===31510的值是______________________.20.已知实数,x y 满足()2380x y -+=,求xy -的平方根.三、解答题21.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 22.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.23.求满足条件的x 值:(1)()23112x -=(2)235x -=24.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=25.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 26.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.2.D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D .【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.3.C解析:C【分析】根据实数的概念和分类即可判断.【详解】A 、无理数包括正无理数和负无理数,则此项错误;B 、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C 、无理数都是无限不循环小数,则此项正确;D (0=,则此项错误; 故选:C .【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键. 4.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】,0215, 故选:A .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 5.A解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A 、正数的算术平方根一定是正数,故选项正确;B 、如果a 表示一个实数,那么-a 不一定是负数,例如a=0,故选项错误;C 、和数轴上的点一一对应的数是实数,故选项错误;D 、1的平方根是±1,故选项错误;故选:A .【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质. 6.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】 ∵9,∴3,故选:A .【点睛】. 7.C解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】8.A解析:A【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★,∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b a a a bb b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b b b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b>, ∴1ab≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.9.B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】 解:5,3π,76.01020304050607,32是无理数, 故选:B .【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数. 10.C解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.【详解】当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.11.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意;B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题13.1【分析】根据新运算的运算法则计算即可【详解】解:【点睛】本题考查新定义下的有理数运算通过阅读材料掌握新运算的运算法则是解题关键 解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 14.【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 15.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.16.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 17.0或﹣4【分析】根据算术平方根和立方根的定义求解得到答案即可【详解】解:∵﹣8的立方根为﹣2的平方根为2或﹣2∴﹣8的立方根与的平方根之和是﹣2+2=0或﹣2﹣2=﹣4故答案为:0或﹣4【点睛】本题解析:0或﹣4【分析】根据算术平方根和立方根的定义求解,得到答案即可.【详解】解:∵﹣8的立方根为﹣22或﹣2,∴﹣82+2=0或﹣2﹣2=﹣4,故答案为:0或﹣4.【点睛】本题主要考查了实数的运算,熟练掌握运算法则是解本题的关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.20.±【分析】根据当几个非负数之和为零则这几个非负数都为了0求得xy 的值再代入到所求代数式中求解即可【详解】解:∵且∴x ﹣3=0y+8=0解得:x=3y=﹣8∴﹣xy=﹣3×(﹣8)=24∴﹣xy 的平方解析:±【分析】根据当几个非负数之和为零,则这几个非负数都为了0求得x 、y 的值,再代入到所求代数式中求解即可.【详解】解:∵()230x -=,且()230x -≥≥, ∴x ﹣3=0,y+8=0,解得:x=3,y=﹣8,∴﹣xy=﹣3×(﹣8)=24,∴﹣xy 的平方根是±【点睛】本题考查了非负数的性质、解一元一次方程、代数式求值、有理数的乘法、平方根,理解非负数的性质,正确求出一个数的平方根是解答的关键.三、解答题21.7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.22.5±【分析】3=求出a 的值,根据3a +b -1的平方根是±4求出b 的值,根据c 数部分求出c 的值,把求得的值代入a +b +3c ,然后求出入a +b +3c 的平方根即可.【详解】 ∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.23.(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.24.(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.25.10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 26.(1)①1189-,②111n n -+;(2)20152016【分析】 (1)仔细观察所给式子的结构,发现规律111=(1)1n n n n -⨯++,即可解答; (2)根据发现的规律变形原式,进行合并化简即可解答.【详解】(1)仔细观察,发现111=(1)1n n n n -⨯++,则1118989=-⨯, 故答案为:①1189-,②111n n -+; (2)根据111=(1)1n n n n -⨯++, 则112⨯+123⨯+134⨯+............+120152016⨯ =1111111(1)()()()2233420152016-+-+-++- =112016-=20152016. 【点睛】 本题考查数字规律的探索、有理数的混合运算,解答的关键是发现式子的变化规律,根据规律变形原式,从而使计算简单化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数考试题
总分:120分 时间:90分钟
一、选择题 (每题3分,共24分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)
1. 下列运算正确的是( )
A.
39±= B.33-=- C.39-=- D.932=-
2. 下列各组数中互为相反数的是( A.-2 2
(2)--2 3
8- C.-2 与1
2
-
D.2与2-
3. 下列实数317
,π-,14159.3,8327-21中无理数有
( ) A.2个 B.3个 C.4个 D.5个
4. 实数a,b 在数轴上的位置如图所示,则下列结论正确的是( )
A. 0a b +>
B.
a b ->
C. 0>ab D .0>b
a
5. 有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。

其中错误的是( )
A .①②③
B .①②④
C .②③④
D .①
③④
6. 若a 为实数,则下列式子中一定是负数的是( )
A .2
a -
B .2
)1(+-a
C .2
a -
D .)1(+--a
7. a =-,则实数a 在数轴上的对应点一定在(

A .原点左侧
B .原点右侧
C .原点或原点左侧
D .原点或原点右侧
8. 请你观察、思考下列计算过程: 因为112=121,所以
121
=11 ; 因为1112=12321,所以
11112321=;……,由此猜想
7654321
1234567898= ( )
A .111111
B .1111111
C .11111111
D .111111111 二、填空题(每题3分,共30) 9.
81的平方根是_________。

10. _________。

11. 化简:332
-=_________。

12. 写出1到2之间的一个无理数___________。

13. 计算:
3
200989)1(+-- =____________。

14. 当x ≤0时,化简
1x - 。

15. 若10<<x ,则x
x x x 、、、1
2中,最小的数是 。

16.若1.1001.102=,则=±0201.1_________。

17.如果一个数的平方根是6+a 和152-a ,则这个数为 。

18. 若x x y -+-=
11,则20092009+x = 。

三、解答题(共66分)
19. (8分)将下列各数填入相应的集合内。

-11124
π,..0.23, 3.14 ①有理数集合{ … }
②无理数集合{ … } ③负实数集合{ … } 20. 计算:(12分)
(1) 2+32—52 (2) 6(6
1
-6)
(3) |23- | + |23-| + 2)2(-
21. (8分)解方程:
(1)036252
=-x (2) 27)3(3
=+x
22. (6分)已知a 、b 互为相反数,c 、d 互为倒数,求2
2
22b
a b a +--cd 的值.
23. (6分)已知a 、b 满足05102=-++b a ,解关于x 的方程()142
-=++a b x a
24. (8分)阅读下列解题过程:
45)
45)(45()45(14
51-=-+-⨯=
+,
56)
56)(56()56(15
61-=-+-⨯=
+,请回答下列回题:
(1)观察上面的解答过程,请写出n
n ++11 = ;
(2)利用上面的解法,请化简:
100
99199
9814
313
212
11++
++
+++
++

25. (8
分)24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,
人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”
如图所示,不妨设原祭坛边长为a,想一想:
(1)做出来的新祭坛是原来体积的多少倍?
(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?
26. (10分)如图,在平行四边形OABC中,已知点A、C 两点的坐标为A (3,3),C (23,0). (1)求点B的坐标. (2)将平行四边形OABC向左平移3个单位长度,求所得四边形A′B′C′O′四个顶点的坐标 .(3)求平行四边形OABC的面积.。

相关文档
最新文档