高中函数经典例题

合集下载

人教版高中数学必修一函数及其性质典型例题

人教版高中数学必修一函数及其性质典型例题

(每日一练)人教版高中数学必修一函数及其性质典型例题单选题1、已知函数f(x)=x2−|x2−a2x−4|在区间(−∞,−2),(√3,+∞)上都单调递增,则实数a的取值范围是()A.0<a≤2√3B.0<a≤4C.0<a≤4√3D.0<a≤8√3答案:D解析:设g(x)=x2−a2x−4的零点为x1,x2且x1<x2,讨论区间范围写出f(x)的分段函数形式,讨论参数a结合f(x)各区间的函数性质判断单调性,根据已知区间的单调性求参数范围即可.设g(x)=x2−a2x−4,其判别式Δ=a24+16>0,∴函数g(x)一定有两个零点,设g(x)的两个零点为x1,x2且x1<x2,由x2−a2x−4=0,得x1=a2−√a24+162,x2=a2+√a24+162,∴f(x)={a2x+4,x<x12x2−a2x−4,x1≤x≤x2a 2x+4,x>x2,①当a≤0时,f(x)在(−∞,x1)上单调递减或为常函数,从而f(x)在(−∞,−2)不可能单调递增,故a>0;②当a>0时,g(−2)=a>0,故x1>−2,则−2<x1<0,∵f(x)在(−∞,x1)上单调递增,∴f(x)在(−∞,−2)上也单调递增,g(√3)=−√32a −1<0,√3<x 2, 由f(x)在[a 8,x 2]和(x 2,+∞)上都单调递增,且函数的图象是连续的,∴f(x)在[a 8,+∞)上单调递增,欲使f(x)在(√3,+∞)上单调递增,只需a 8≤√3,得a ≤8√3,综上:实数a 的范围是0<a ≤8√3.故选:D.小提示:关键点点睛:先研究绝对值部分的零点,进而写出f(x)的分段函数表达式,再讨论参数a ,根据函数性质及已知区间单调性求参数的范围.2、对于函数f (x )=x|x|+x +1,下列结论中正确的是( )A .f (x )为奇函数B .f (x )在定义域上是单调递减函数C .f (x )的图象关于点(0,1)对称D .f (x )在区间(0,+∞)上存在零点答案:C解析:把f (x )=x|x|+x +1转化为分段函数f (x )={−x 2+x +1,x ⩽0x 2+x +1,x >0 ,画出图像,即可得解.如图,f(x)={−x 2+x+1,x⩽0x2+x+1,x>0由图象可知,图象关于点(0,1)对称,因此不是奇函数,在定义域内函数为增函数,在(−∞,0)上有零点,故选:C.小提示:本题考查了利用函数解析式求函数相关性质,考查了分类讨论思想和数形结合思想,本题主要是数形结合,根据函数图像,直观的看出函数相关性质,属于简单题.3、若f(x)=|sinx|⋅e|x|,x,y∈[−π2,π2]且f(x)>f(y),则下列不等式一定成立的是()A.|x|>|y|B.|x|<|y| C.x<y D.x>y答案:A解析:利用奇偶性定义可证f(x)在x∈[−π2,π2]上是偶函数,应用导数研究f(x)在x∈(0,π2]上的单调性,进而可得x∈[−π2,0)上的单调性,根据题设条件即可得结论.∵f(−x)=|sin(−x)|⋅e|(−x)|=|sinx|⋅e|x|=f(x),∴在x∈[−π2,π2]上f(x)是偶函数.当x∈(0,π2]时,f(x)=e x sinx,则f′(x)=e x(sinx+cosx)>0,故f(x)单调递增;∴当x∈[−π2,0)时,f(x)单调递减;由x,y∈[−π2,π2]且f(x)>f(y),则必有|x|>|y|.故选:A填空题4、函数f(x)是定义域为R的奇函数,满足f(π2−x)=f(π2+x),且当x∈[0,π)时,f(x)=sinxx2−πx+π,给出下列四个结论:① f(π)=0;② π是函数f(x)的周期;③ 函数f(x)在区间(−1,1)上单调递增;④ 函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π. 其中,正确结论的序号是___________.答案:① ③ ④解析:由f(π2−x)=f(π2+x)可得f(π)=f(0)直接计算f(0)即可判断① ;根据函数f(x)的奇偶性和对称性即可求得周期,从而可判断② ;先判断f(x)在(0,1)的单调性,再根据奇函数关于原点对称的区间单调性相同即可判断③ ;根据对称性以及函数图象交点的个数即可判断④.对于①:由f(π2−x)=f(π2+x)可得f(π)=f(0)=sin0π=0,故①正确;对于② :由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,因为f(x)是定义域为R的奇函数,所以f(π+x)=f(−x)=−f(x)所以f(2π+x)=−f(x+π)=f(x),所以函数f(x)的周期为2π,故② 不正确;对于③ :当0<x<1时,y=sinx单调递增,且y=sinx>0,y=x2−πx+π=(x−π2)2+π−π24在0<x<1单调递减,且y>1−π+π=1,所以f(x)=sinxx2−πx+π在0<x<1单调递增,因为f(x)是奇函数,所以函数f(x)在区间(−1,1)上单调递增;故③ 正确;对于④ :由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,作出示意图函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和即为函数y=f(x)与y=sin1两个函数图象交点的横坐标之和,当x∈[−π2,3π2]时,两图象交点关于x=π2对称,此时两根之和等于π,当x∈(3π2,10]时两图象交点关于x=5π2对称,此时两根之和等于5π,当x∈[−5π2,−π2)时两图象交点关于x=−3π2对称,此时两根之和等于−3π,x∈[−10,−5π2)时两图象无交点,所以函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π.故④ 正确;所以答案是:① ③ ④小提示:求函数零点的方法:画出函数f(x)的图象,函数f(x)的图象与x轴交点的个数就是函数f(x)的零点个数;将函数f(x)拆成两个函数,ℎ(x)和g(x)的形式,根据f(x)=0⇔ℎ(x)=g(x),则函数f(x)的零点个数就是函数y=ℎ(x)和y=g(x)的图象交点个数;零点之和即为两个函数图象交点的横坐标之和.5、已知定义域为R的偶函数f(x)在(−∞,0]上是减函数,且f(1)=2,则不等式f(log2x)>2的解集为__________.答案:(0,12)∪(2,+∞)解析:根据函数奇偶性,以及已知区间的单调性,先确定f(x)在(0,+∞)上单调递增,将所求不等式化为log2x>1或log2x<−1,求解,即可得出结果.因为定义域为R的偶函数f(x)在(−∞,0]上是减函数,且f(1)=2,所以f(x)在(0,+∞)上单调递增,且f(−1)=f(1)=2,因此不等式f(log2x)>2可化为f(log2x)>f(1),,所以log2x>1或log2x<−1,解得x>2或0<x<12)∪(2,+∞).即不等式f(log2x)>2的解集为(0,12)∪(2,+∞).所以答案是:(0,12。

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。

高中三角函数经典例题50道

高中三角函数经典例题50道

高中三角函数经典例题50道1.求解三角形中角度的相关问题是高中数学学习中的重要内容。

例如,考虑正三角形ABC,已知∠A=60°,求∠B和∠C的大小。

2.在三角形ABC中,已知∠A=30°,∠C=60°,求∠B的大小。

3.若在直角三角形ABC中,∠A=30°,求∠C的大小。

4.在锐角三角形ABC中,已知边b=5,c=10,∠A=30°,求边a的长度。

5.在钝角三角形ABC中,边a=6,b=10,∠A=120°,求边c的长度。

6.若在任意三角形ABC中,边a=8,b=6,∠A=45°,求∠B的大小。

7.在直角三角形ABC中,边a=1,b=√3,求∠A和∠B 的大小。

8.若在锐角三角形ABC中,已知边a=5,b=7,求∠A 和∠B的大小。

9.在任意三角形ABC中,边a=10,b=15,∠A=30°,求∠B的大小。

10.若在直角三角形ABC中,边b=4,c=5,求∠A和∠C的大小。

11.在锐角三角形ABC中,已知边b=8,c=10,∠A=60°,求∠C的大小。

12.若在任意三角形ABC中,边a=7,c=9,∠A=45°,求边b的长度。

的长度。

14.在锐角三角形ABC中,已知∠A=45°,∠B=60°,求∠C的大小。

15.若在任意三角形ABC中,边a=12,b=16,求∠A和∠B的大小。

16.在直角三角形ABC中,已知边b=8,c=10,求∠A和∠C的大小。

17.在锐角三角形ABC中,边a=5,b=8,∠C=60°,求边c的长度。

18.若在任意三角形ABC中,边a=7,b=10,∠B=30°,求边c的长度。

19.在直角三角形ABC中,边a=2,c=√5,求∠A和∠B的大小。

20.在锐角三角形ABC中,已知边b=3,c=4,∠A=45°,求∠C的大小。

21.若在任意三角形ABC中,边a=9,c=12,∠C=45°,求边b的长度。

高中三角函数经典例题

高中三角函数经典例题

高中数学三角函数经典例题(解析在后面)一、单选题(共20题;共40分)1.已知函数f(x)=cosx ,下列结论不正确的是( ) A. 函数y=f(x)的最小正周期为2π B. 函数y=f(x)在区间(0,π)内单调递减 C. 函数y=f(x)的图象关于y 轴对称D. 把函数y=f(x)的图象向左平移 π2 个单位长度可得到y=sinx 的图象2.如图,A 、B 两点为山脚下两处水平地面上的观测点,在A 、B 两处观察点观察山顶点P 的仰角分别为 α ,β。

若tanα = 13 ,β=45°,且观察点A 、B 之间的距离比山的高度多100米。

则山的高度为( )A. 100米B. 110米C. 120米D. 130米 3.已知 sinα=√55,则 cos2α= ( )A. −35B. 35 C. −3√55 D. 3√554.将函数 f(x)=sin2x 的图象向右平移 π6 个单位长度得到 g(x) 图象,则函数的解析式是( )A. g(x)=sin (2x +π3) B. g(x)=sin (2x +π6) C. g(x)=sin (2x −π3) D. g(x)=sin (2x −π6)5.若 α,β 均为第二象限角,满足 sinα=35 , cosβ=−513,则 cos(α+β)= ( )A. −3365B. −1665C. 6365D. 33656.已知 tanα=1 ,则1+2cos 2αsin2α= ( )A. 2B. -2C. 3D. -3 7.要得到 y =sin x2 的图象,只要将函数 y =sin(12x +π4) 的图象( )A. 向左平移 π4 单位B. 向右平移 π4 单位 C. 向左平移 π2 单位 D. 向右平移 π2 单位8.要得到函数 y =2sin(2x +π6) 的图像,只需将函数 y =2sin2x 的图像( ) A. 向左平移 π6 个单位 B. 向右平移 π6 个单位 C. 向左平移 π12 个单位 D. 向右平移 π12 个单位9.函数 f(x)=Asin(ωx+φ) (ω>0,|φ|<π2) 的部分图象如图所示,则 f(π)= ( )A. 4B. 2√3C. 2D. √3 10.已知角 α 的顶点与坐标原点重合,始边与 x 轴的非法半轴重合,终边经过点 P(1,−2) ,则 sin 2α= ( )A. −2√55B. −4√55C. 45 D. −4511.数 f(x)=sin(4x +ϕ)(0<ϕ<π2) ,若将 f(x) 的图象向左平移 π12 个单位后所得函数的图象关于 y 轴对称,则 φ= ( )A. π12 B. π6 C. π4 D. π3 12.sin140°cos10°+cos40°sin350°= ( ) A. 12 B. −12 C. √32D. −√3213.已知 α,β∈(0,π2) , cosα=17 , cos(α+β)=−1114 ,则 β= ( ) A. π6 B. 5π12C. π4 D. π314.要得到函数 y =2√3cos 2x +sin2x −√3 的图象,只需将函数 y =2sin2x 的图象( )A. 向左平移 π3 个单位 B. 向右平移 π3 个单位 C. 向左平移 π6 个单位 D. 向右平移 π6 个单位 15.若 sin(π6−α)=13,则 cos(2π3+2α)= ( )A. 13B. −13C. 79D. −7916.函数 y =sin(2x +φ)(0<φ<π2) 图象的一条对称轴在 (π6,π3) 内,则满足此条件的一个 φ 值为( )A. π12 B. π6 C. π3 D. 5π617.关于 x 的三角方程 sinx =13 在 [0,2π) 的解集为( ) A. {arcsin 13} B. {π−arcsin 13}C. {arcsin 13,π−arcsin 13} D. {arcsin 13,−arcsin 13}18.已知 α 满足 tan(α+π4)=13 ,则 tanα= ( ) A. −12B. 12C. 2D. −219.已知 α、β 均为锐角,满足 sinα=√55  , cosβ=3√1010,则 α+β= ( )A. π6B. π4C. π3D. 3π420.计算 sin95°cos50°−cos95°sin50° 的结果为( ) A. −√22B. 12C. √22D. √32二、填空题(共20题;共21分)21.函数f(x)=Asin( ωx+ φ)的部分图象如图,其中A>0,ω>0,0< φ< π2.则ω=________ ; tan φ= ________ .22.若角α满足sinα+2cosα=0,则tan2α=________;23.计算sin47°cos17°−cos47°sin17°的结果为________.24.角α的终边经过点P(−3,4),则cos(π2−α)=________.25.函数y=sin(x+φ),φ∈[0,π]为偶函数,则φ=________.26.若扇形圆心角为120∘,扇形面积为43π,则扇形半径为________.27.已知f(x)=2sin(ωx−π6)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,则x∈[0,π]时,方程f(x)=1的解是________.28.已知sin(π−α)=35,α∈(π2,π),则sin2α=________.29.已知函数y=sinx的定义域是[a,b],值域是[−1,12],则b−a的最大值是________30.如果tanα=2,则tan(α+π4)=________31.若函数f(x)=sin(x+φ),φ∈(0,π)是偶函数,则φ等于________32.函数f(x)=2−sinxcosx的值域是________33.函数y=arccos(x−1)的定义域是________34.求f(x)=sinx−cos2x+2,x∈[−π6,2π3]的值域________.35.已知函数y=2sin(2x+φ)(0<φ<π2)的一条对称轴为x=π6,则φ的值为________.36.在ΔABC中,tanA+tanB+√3=√3tanA⋅tanB,则C等于________.37.方程cosx=sinπ6的解为x=________.38.弧长等于直径的圆弧所对的圆心角的大小为________弧度.(只写正值)39.若sinα−cosα=12,则sin2α=________.40.若tanθ=−3,则cos2θ=________.三、解答题(共10题;共85分)41.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP= π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b)(1)当θ= π6时,求ab的值(2)设θ∈[ π4,π2],求b-a的取值范围42.在ΔABC中,内角A,B,C所对的边分别为a,b,c,且b2=a2+c2−ac. (1)求角B的大小;(2)求sinA+sinC的取值范围.43.已知函数f(x)=√3sin2x+cos2x.(1)求y=f(x)的单调递增区间;(2)当x∈[−π6,π3]时,求f(x)的最大值和最小值.44.已知f(x)=acos2x+√3asin2x+2a−5(a∈R,a>0).]上的最大值为3时,求a的值;(1)当函数f(x)在[0,π2(2)在(1)的条件下,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图像与直线y=−1有且仅有两个不同的交点,试确定b的值.并求函数y=f(x)在(0,b]上的单调递减区间.) ,b⃗⃗=(√3 sinx , cos2x) ,x∈R,设函数f(x)=a⃗⋅b⃗⃗.45.向量a⃗=(cosx ,−12(Ⅰ)求f(x)的表达式并化简;(Ⅱ)写出f(x)的最小正周期并在右边直角坐标中画出函数f(x)在区间[0,π]内的草图;(Ⅲ)若方程f(x)−m=0在[0,π]上有两个根α、β,求m的取值范围及α+β的值.46.已知在ΔABC中,内角A,B,C的对边分别为a,b,c,A为锐角,且满足3b=5asinB.的值;(1)求sin2A+cos2B+C2,求b,c.(2)若a=√2, ΔABC的面积为3247.如图所示,在平面直角坐标系中,角α与β( 0<β<α<π)的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边分别与单位圆交于P、Q两点,点P的横坐标为−4.5(I )求sin2α+cos2α1+cos 2α;(Ⅱ)若 OP ⃗⃗⃗⃗⃗⃗⋅OQ⃗⃗⃗⃗⃗⃗⃗=√33,求 sinβ . 48.已知函数 f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2) 的部分图象如图所示:(I )求 f(x) 的解析式及对称中心坐标;(Ⅱ)将 f(x) 的图象向右平移 π6 个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数 g(x) 的图象,求函数 y =g(x) 在 x ∈[0,7π6]上的单调区间及最值. 49.(1)请直接运用任意角的三角比定义证明: cos(α−π)=−cosα ; (2)求证: 2cos 2(π4−α)=1+sin2α . 50.设函数 f(x)=1sinx .(1)请指出函数 y =f(x) 的定义域、周期性和奇偶性;(不必证明)(2)请以正弦函数 y =sinx 的性质为依据,并运用函数的单调性定义证明: y =f(x))上单调递减.在区间(0,π2答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:∵函数f (x )=cosx 其最小正周期为2π,故选项A 正确;函数f (x )=cosx 在(0,π)上为减函数,故选项B 正确;函数f (x )=cosx 为偶函数,关于y 轴对称,故选项C 正确;把函数f (x )=cosx 的图象向左平移 π2个单位长度可得cos (x +π2)=−sinx , 故选项D 不正确。

函数的图像经典例题

函数的图像经典例题

函数的图象一、典型例题例1 设函数2()45f x x x =-- (1)在区间[2,6]-上画出函数()f x 的图像;(2)设集合{}()5,(,2][0,4][6,)A x f x B =≥=-∞-+∞ ,试判断集合A 和B 之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方。

例2(1)若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点()2,2Q ,则函数()y f x =的图像经此变换后所得图像对应的函数为 ( )A .(1)2y f x =-+ B.(1)2y f x =--C . (1)2y f x =++D . (1)2y f x =+-(2)己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是__________(3)作出下列函数的大致图象: ①()21y x x =-+;② 21x y x -=+; ③ lg 1y x =-④ 11xy x -=-例3 (1)设函数()x f 的定义域为R ,它的图像关于直线1x =对称,且当1≥x 时()13-=x x f 则( ) ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331A.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332B.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132C.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223D.f f f (2)已知()f x 是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增, ()f x 的图象如图所示,若[]()()0x f x f x --<,则x 的取值范围是__________________例3 已知函数()()()()1212()211xx f x x x x ⎧⎛⎫-≤-⎪ ⎪=⎝⎭⎨⎪-->-⎩,如果方程()f x a =有四个不同的实根,求实数a 的取值范围。

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

高中导数经典例题精选全文完整版

高中导数经典例题精选全文完整版

可编辑修改精选全文完整版高中导数经典例题问题一 函数的单调性和导数的关系 例1、求下列函数的单调区间 (1)x x x f ln 23)(2-= (2)x e x x f -⋅=2)((3)xx x f 1)(+=变式1、已知31292)(23-+-=x x x x f ,试确定)(x f 的单调区间.变式2、设函数)0(19)(23<--+=a x ax x x f ,若曲线)(x f y =的斜率最小的切线与直线612=+y x 平行,求:(1)a 的值;(2)求函数)(x f 的单调区间.例2、设函数aax x e x f ++=22)(,其中a 为实数.(1)若)(x f 的定义域为R ,求a 的取值范围. (2)当)(x f 的定义域为R ,求)(x f 的单调递减区间.例3、已知函数R a x ax x x f ∈+++=,1)(23(1)讨论函数)(x f 的单调区间; (2)设函数)(x f 在区间)31,32(--内是减函数,求a 的取值范围.变式1、若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,求函数a 的取值范围.问题二 函数的单调性与导数的关系的应用例4、(1)函数),0()0,(,sin ππ⋃-∈=x xxy 的图像可能是( )(2)设函数)(x f 在定义域内可导,)(x f y =的图像如图所示,则导函数)('x f y =的图像可能为( )变式1、设)('x f 是函数)(x f 的导函数,将)(x f y =与)('x f y =的图像画在同一个直角坐标系中,其中不可能正确的是( )例5、当20π<<x ,求证:x x x 2tan sin >+.变式1、已知1>x ,证明不等式:)1ln(x x +>。

高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。

高中数学例题:函数的概念

高中数学例题:函数的概念

高中数学例题:函数的概念例 1.已知集合{}1,2,3A =,{}4,5B =,则从A 到B 的函数()f x 有 个.【答案】8【解析】抓住函数的“取元的任意性,取值的唯一性”,利用列表方法确定函数的个数.由表可知,这样的函数有8个,故填8.【总结升华】函数的定义(特别是它的“取元任意性,取值唯一性”)是解决某些问题的关键.举一反三:【变式1】下列各问的对应关系是否是给出的实数集R 上的一个函数?为什么?(1):f x →2,0,x x R x≠∈; (2):g x →y ,2,,y x x N y R =∈∈;(3):h *A B N ==,对任意的,x A ∈|3|x x →-.【解析】(1)对于任意一个非零实数2,x x被x 唯一确定,所以当0x ≠时,x →2x 是函数,可表示为2()(0)f x x x=≠. (2)当4x =时,24y =,得2y =或2y =-,不是有唯一值和x 对应,所以x →y (2y x =)不是函数.(3)不是,因为当3x =时,在集合B 中不存在数值与之对应.例2.下列函数f (x )与g (x )是否表示同一个函数,为什么?(1)0)1x ()x (f -=;1)x (g =(2)x )x (f =;2x )x (g =(3)2x )x (f =;2)1x ()x (g +=(4)|x |)x (f =;2x )x (g =【思路点拨】对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.【答案】(1)不是(2)不是(3)不是(4)是【解析】(1) ()()f x g x 与的定义域不同,前者是{}|1,x x x R ≠∈,后者是{}|0,x x x R ≠∈,因此是不同的函数;(2)()||g x x =,因此()()f x g x 与的对应关系不同,是不同的函数;(3) ()()f x g x 与的对应关系不同,因此是不相同的函数;(4) ()()f x g x 与的定义域相同,对应关系相同,是同一函数.【总结升华】函数概念含有三个要素,即定义域,值域和对应法则f ,其中核心是对应法则f ,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.举一反三:【变式1】判断下列命题的真假(1)y=x-1与1x 1x y 2+-=是同一函数; (2)2x y =与y=|x|是同一函数; (3)233)x (y )x (y ==与是同一函数;(4)⎪⎩⎪⎨⎧<+≥-=)0x (x x )0x (x x )x (f 22与g(x)=x 2-|x|是同一函数. 【解析】从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.。

高中函数数学典型例题

高中函数数学典型例题

高中《函数》典型例题例1下面变量之间的关系是不是函数关系?为什么?(1)矩形的面积一定,它的长与宽;(2)任意三角形的高与底;(3)矩形的周长与面积;(4)正方形的周长与面积.例2下面的表分别给出了变量x与y之间的对应关系,判断y是x的函数吗?如果不是,说明出理由.x12345y3691215x12345y71181215x12321y2510-5-2x12345y99999例3判断下列关系是不是函数关系?(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高;(4)关系式|y|=x中的y与x.例4汽车由北京驶往相距850千米的沈阳,它的平均速度为80千米/小时,求汽车距沈阳的路程S(千米)与行驶时间t(小时)的函数关系式,写出自变量的取值范围.例5如图,是某个篮球运动员在五场比赛中的得分情况,依据图回答:(1)该运动员第一场球得多少分;(2)哪场球得分比前一场得分少?(3)在五场比赛中最高得分是多少?最低得分是多少?(4)从这五场比赛中的得分情况分析,该运动员的竞技状态怎么样?参考答案例1解:(1)矩形的面积确定时,它的宽取一个值,就有惟一确定的y的值与宽对应,因此这是一个函数关系.(2)当一个三角形的底取一个值时,它的高并不能确定,因此“三角形的高与底”不是函数关系.(3)当矩形的周长是一个确定的值时,由于长、度不能确定,它的面积也不确定,这也不是函数关系.(4)当正方形的周长确定了,它的边长也确定,因此面积也确定,这是函数关系.例2解:(1)y是x的函数;(2)y是x的函数;(3)y不是x的函数,因为对于变量x=1,变量y有1与-1两个值与它对应;(4)y是x的函数说明:对于x的每一个值,y都有唯一的值与它对应.第四个是常数函数它符合函数的定义.例3分析:判断一个关系是不是函数关系,第一要看是不是一个变化过程;第二要看在这个变化过程中,是不是有两个变量;第三要看自变量每取一个确定值,函数是不是都有唯一确定的值与它对应.解:(1)长方形的宽一定时,其长所取的每一个确定的值,面积都有唯一确定的值与它对应,所以长与面积是函数关系.(2)因为三角形的面积受底和高两个因素的影响,当等腰三角形的底取一个定值时,它的面积又受高的影响,不能有唯一确定的值和底相对应,所以底边长与面积不是函数关系.(3)人的任意一个确定的年龄,都有唯一确定的身高与之相对应,所以某人的年龄与身高是函数关系.(4)x每取一个正值,y都有两个值与它对应,所以|y|=x不是函数关系.说明:年龄与身高的变化不按某种规律,但某人每一个确定的年龄,必有唯一确定的身高和它相对应,因此函数关系是一定的,所以不要以为存在一定比例关系或一定规律,能用解析式表示的才是函数关系.例4分析:北京距沈阳850千米,汽车距沈阳的路程等于全程减去已行驶的路程,已行驶的路程等于速度乘以时间.解:85080S t=-00S t ≥⎧⎨≥⎩ 得850800t t -⎧⎨≥⎩850.8t ∴≤≤于是汽车距沈阳的路程S 与时间t 的函数关系式为85080S t =-,自变量t 的取值范围是850.8t ≤≤例5解:(1)这个运动员在第一场比赛中得21分.(在场次栏中找到“1”,然后在得分栏中找到相应的得分)(2)第二场球比第一场球得分少,竞技状态趋下.(图形向下)(3)第五场比赛得分最高为36分,第一场比赛得分最低21分.(4)从这五场的比赛得分情况看,该运动员目前的竞技状态是向前发展,其趋势是良好的.(从第二场球之后图形全部向上.)说明:本题考查学生的识图能力。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

(精选试题附答案)高中数学第五章三角函数经典大题例题

(精选试题附答案)高中数学第五章三角函数经典大题例题

(名师选题)(精选试题附答案)高中数学第五章三角函数经典大题例题单选题1、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3 答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解. 由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A2、已知角α的终边与单位圆交于点P (−12,√32),则sinα的值为( ) A .−√32B .−12C .√32D .12答案:C分析:根据三角函数的定义即可求出. 因为角α的终边与单位圆交于点P (−12,√32), 所以根据三角函数的定义可知,sinα=y =√32. 故选:C .3、已知函数f(x)=sin (x +π3).给出下列结论: ①f(x)的最小正周期为2π; ②f (π2)是f(x)的最大值;③把函数y =sinx 的图象上所有点向左平移π3个单位长度,可得到函数y =f(x)的图象.其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③ 答案:B分析:对所给选项结合正弦型函数的性质逐一判断即可. 因为f(x)=sin(x +π3),所以周期T =2πω=2π,故①正确;f(π2)=sin(π2+π3)=sin5π6=12≠1,故②不正确;将函数y =sinx 的图象上所有点向左平移π3个单位长度,得到y =sin(x +π3)的图象, 故③正确. 故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.4、已知sinαcosα=12,则tanα+1tanα的值为( ) A .12B .−12C .−2D .2答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果. ∵sinαcosα=12, ∴tanα+1tanα=sinαcosα+cosαsinα=sin 2α+cos 2αsinαcosα=112=2,故选:D.5、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1 答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r的等式,由此求解出r的值.设扇形的半径为R,圆心角为α,面积为S,因为2R+αR=20,所以S=12αR2=(10−R)R≤(10−R+R2)2=25,取等号时10−R=R,即R=5,所以面积取最大值时R=5,α=2,如下图所示:设内切圆圆心为O,扇形过点O的半径为AP,B为圆与半径的切点,因为AO+OP=R=5,所以r+rsin∠BPO =5,所以r+rsin1=5,所以r=5sin11+sin1,故选:C.6、已知函数f(x)=2sin(ωx−π6)(ω>12,x∈R),若f(x)的图像的任何一条对称轴与x轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A.(12,23]∪[89,76]B.(12,1724]∪[1718,2924]C.[59,23]∪[89,1112]D.[1118,1724]∪[1718,2324]答案:C分析:由已知得12×2πω≥4π−3π,kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解之讨论k,可得选项.因为f(x)的图像的任何一条对称轴与x轴交点的横坐标均不属于区间(3π,4π),所以12×2πω≥4π−3π,所以12<ω≤1,故排除A ,B ;又kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解得3k +29≤ω≤3k +512,k ∈Z ,当k =0时,29≤ω≤512,不满足12<ω≤1, 当k =1时,59≤ω≤23,符合题意, 当k =2时,89≤ω≤1112,符合题意,当k =3时,119≤ω≤149,不满足12<ω≤1,故C 正确,D 不正确,故选:C.小提示:关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于ω的不等式组,解之讨论可得选项. 7、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( )A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题.8、已知某摩天轮的旋转半径为60米,最高点距地面135米,运行一周大约30分钟,某游客在最低点的位置坐上摩天轮,则第10分钟时他距地面大约为( )A.95米B.100米C.105米D.110米答案:C分析:设函数关系式为f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),根据题意求得各参数得解析式,然后计算f(10)可得.设该游客在摩天轮上离地面高度f(t)(米)与时间t(分钟)的函数关系为f(t)=Asin(ωt+φ)+B(A>0,ω> 0,φ∈[0,2π)),由题意可知A=60,B=135−60=75,T=2πω=30,所以ω=π15,即f(t)=60sin(π15t+φ)+75.又f(0)=135−120=15,得sinφ=−1,故φ=3π2,所以f(t)=60sin(π15t+3π2)+75=−60cosπ15t+75,所以f(10)=−60×cos2π3+75=105.故选:C.9、已知函数f(x)=|cos2x|+cos x,下列四个结论中正确的是()A.函数f(x)在(0,π)上恰有一个零点B.函数f(x)在[0,π2]上单调递减C.f(π)=2D.函数f(x)的图象关于点(π2,0)对称答案:A分析:对x的范围进行分类讨论,由此判断A的正确性.利用赋值法判断BC选项的正确性.由f(π2+x)+f(π2−x)是否为0来判断D选项的正确性.x∈(0,π4),2x∈(0,π2),f(x)=cos2x+cosx=2cos2x+cosx−1=0,cosx=−1(舍去)或cosx=12,x=π3(舍去).x∈[π4,3π4],2x∈[π2,3π2],f(x)=−cos2x+cosx=−2cos2x+cosx+1=0,cosx =1(舍去)或cosx =−12,x =2π3.x ∈(3π4,π),2x ∈(3π2,2π),f (x )=cos2x +cosx =2cos 2x +cosx −1=0, cosx =−1(舍去)或cosx =12(舍去).综上所述,函数f (x )在(0,π)上恰有一个零点,A 选项正确. f (0)=2,f (π4)=√22,f (π2)=1,B 选项错误.f (π)=1−1=0,C 选项错误.f (π2+x)+f (π2−x)=|cos (π+2x )|+cos (π2+x)+|cos (π−2x )|+cos (π2−x) =2|cos2x |−sinx +sinx =2|cos2x |不恒为0, D 选项错误. 故选:A10、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( ) A .向左平移π4个单位B .向右平移π4个单位C .向左平移π2个单位D .向右平移π2个单位答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin (2x +π3+π2)=cos (2x +π3) 所以sin(2x +π3)→sin(2x +π2+π3),只需将f (x )的图象向左平移π4个单位, 故选:A. 填空题11、已知函数f (x )=Asinωx (A >0,ω>0),若至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A ,则实数ω的取值范围是________.答案:[94,52]∪[134,+∞)分析:当π>2T 时,易知必满足题意;当π<2T 时,根据x ∈[π,2π]可得ωx ∈[πω,2πω],由最大值点的个数可构造不等式组,结合ω>0确定具体范围.∵至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A , ∴当π>2T =4πω,即ω>4时,必存在两个不相等的实数x 1,x 2∈[π,2π]满足题意;当π<2T ,即0<ω<4时,ωx ∈[πω,2πω], ∴{πω≤π2+2kπ2πω≥5π2+2kπ (k ∈Z ),∴{ω≤12+2kω≥54+k(k ∈Z ); 当k ≤0时,解集为∅,不合题意;令k =1,则94≤ω≤52;令k =2,则134≤ω<4; 综上所述:实数ω的取值范围为[94,52]∪[134,+∞).所以答案是:[94,52]∪[134,+∞).小提示:关键点点睛:本题考查根据正弦型函数最值点的个数求解参数范围的问题,解题关键是能够采用整体对应的方式,根据πω的范围所需满足的条件来构造不等式组,解不等式组求得结果. 12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解. ∵cos 2θ=14, ∴sin 2θ+2cos 2θ=1−cos 2θ2+1+cos 2θ=32+12cos 2θ=32+12×14=138.所以答案是:138. 13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)是定义域为R的奇函数,满足f(π2−x)=f(π2+x),且当x∈[0,π)时,f(x)=sinxx2−πx+π,给出下列四个结论:①f(π)=0;②π是函数f(x)的周期;③函数f(x)在区间(−1,1)上单调递增;④函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π. 其中,正确结论的序号是___________.答案:①③④分析:由f(π2−x)=f(π2+x)可得f(π)=f(0)直接计算f(0)即可判断①;根据函数f(x)的奇偶性和对称性即可求得周期,从而可判断②;先判断f(x)在(0,1)的单调性,再根据奇函数关于原点对称的区间单调性相同即可判断③;根据对称性以及函数图象交点的个数即可判断④.对于①:由f(π2−x)=f(π2+x)可得f(π)=f(0)=sin0π=0,故①正确;对于②:由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,因为f(x)是定义域为R的奇函数,所以f(π+x)=f(−x)=−f(x)所以f(2π+x)=−f(x+π)=f(x),所以函数f(x)的周期为2π,故②不正确;对于③:当0<x<1时,y=sinx单调递增,且y=sinx>0,y=x2−πx+π=(x−π2)2+π−π24在0<x<1单调递减,且y>1−π+π=1,所以f(x)=sinxx2−πx+π在0<x<1单调递增,因为f(x)是奇函数,所以函数f(x)在区间(−1,1)上单调递增;故③正确;对于④:由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,作出示意图函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和即为函数y=f(x)与y=sin1两个函数图象交点的横坐标之和,当x∈[−π2,3π2]时,两图象交点关于x=π2对称,此时两根之和等于π,当x∈(3π2,10]时两图象交点关于x=5π2对称,此时两根之和等于5π,当x∈[−5π2,−π2)时两图象交点关于x=−3π2对称,此时两根之和等于−3π,x∈[−10,−5π2)时两图象无交点,所以函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π.故④正确;所以答案是:①③④小提示:求函数零点的方法:画出函数f(x)的图象,函数f(x)的图象与x轴交点的个数就是函数f(x)的零点个数;将函数f(x)拆成两个函数,ℎ(x)和g(x)的形式,根据f(x)=0⇔ℎ(x)=g(x),则函数f(x)的零点个数就是函数y=ℎ(x)和y=g(x)的图象交点个数;零点之和即为两个函数图象交点的横坐标之和.15、已知sin(π+α)−3sin(π2−α)=0,则cos2α的值为________.答案:−45分析:根据sin(π+α)−3sin(π2−α)=0,利用诱导公式结合商数关系得到tanα=−3,然后由cos2α=cos2α−sin2α=cos2α−sin2αcos2α+sin2α求解.因为sin(π+α)−3sin(π2−α)=0,所以−sinα−3cosα=0,解得tanα=−3,所以cos2α=cos 2α−sin 2α=cos 2α−sin 2αcos 2α+sin 2α, =1−tan 2α1+tan 2α=1−(−3)21+(−3)2=−45,所以答案是:−45小提示:本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用,还考查了运算求解的能力,属于中档题. 解答题16、已知函数f (x )=2sinxcosx −2√3sin 2x +√3. (1)求函数f (x )的最小正周期及其单调递增区间;(2)当x ∈[−π6,π6],时,a −f (x )≤0恒成立,求a 的最大值. 答案:(1)最小正周期π,单调递增区间为[k π−5π12,k π+π12],k ∈Z(2)最大值为0分析:(1)根据正弦和余弦的二倍角公式以及辅助角公式即可化简f (x )为f (x )=2sin (2x +π3),然后根据周期公式可求周期,整体代入法求单调增区间,(2)根据x 的范围可求2x +π3∈[0,2π3],进而可求f (x )的值域,故可求a 的范围.(1)f (x )=2sinxcosx −2√3sin 2x +√3=sin2x +√3cos2x =2sin (2x +π3) 故函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x +π3≤2k π+π2得k π−5π12≤x ≤k π+π12(k ∈Z ). ∴函数f (x )的单调递增区间为[k π−5π12,k π+π12],k ∈Z . (2)∵x ∈[−π6,π6],∴2x +π3∈[0,2π3],∴sin (2x +π3)∈[0,1],f (x )=2sin (2x +π3)∈[0,2].由a −f (x )≤0恒成立,得a ≤(f (x ))min ,即a ≤0.故a 的最大值为0.17、已知函数f(x)=√3sin(2x+π6).(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.答案:(1)π(2)单调递增区间是[−π3+kπ,π6+kπ](k∈Z)分析:(1)根据公式可求函数的最小正周期;(2)利用整体法可求函数的增区间.(1)∵f(x)=√3sin(2x+π6),∴f(x)最小正周期T=2π2=π.(2)令−π2+2kπ≤2x+π6≤π2+2kπ(k∈Z),解得−π3+kπ≤x≤π6+kπ(k∈Z),∴f(x)的单调递增区间是[−π3+kπ,π6+kπ](k∈Z).18、已知函数f(x)=√3sinωxcosωx−cos2ωx(ω>0)周期是π2. (1)求f(x)的解析式,并求f(x)的单调递增区间;(2)将f(x)图像上所有点的横坐标扩大到原来的2倍,再向左平移π6个单位,最后将整个函数图像向上平移32个单位后得到函数g(x)的图像,若π6≤x≤2π3时,|g(x)−m|<2恒成立,求m得取值范围.答案:(1)f(x)=sin(4x−π6)−12,单调递增区间为[kπ2−π12,kπ2+π6],k∈Z;(2)(0,2).解析:(1)根据正弦和余弦的二倍角公式化简可得f(x)=sin(2ωx−π6)−12,由T=2π2ω=π2,解得ω=2,带入正弦函数的递增区间2kπ−π2≤4x−π6≤2kπ+π2,化简即可得解;(2)根据三角函数的平移和伸缩变换可得g(x)=sin(2x+π6)+1,根据题意只需要[g(x)−2]max<m<[g(x)+2]min,分别在π6≤x≤2π3范围内求出g(x)的最值即可得解.(1)f(x)=√3sinωxcosωx−cos2ωx=√32sin2ωx−12(cos2ωx+1) =sin(2ωx−π6)−12由T=2π2ω=π2,解得ω=2所以,f(x)=sin(4x−π6)−12∵2kπ−π2≤4x−π6≤2kπ+π2∴2kπ−π3≤4x≤2kπ+2π3∴kπ2−π12≤x≤kπ2+π6∴f(x)的单调递增区间为[kπ2−π12,kπ2+π6],k∈Z(2)依题意得g(x)=sin(2x+π6)+1因为|g(x)−m|<2,所以g(x)−2<m<g(x)+2因为当x∈[π6,2π3]时,g(x)−2<m<g(x)+2恒成立所以只需[g(x)−2]max<m<[g(x)+2]min转化为求g(x)的最大值与最小值当x∈[π6,2π3]时,y=g(x)为单调减函数所以g(x)max=g(π6)=1+1=2,g(x)min=g(2π3)=−1+1=0,从而[g(x)−2]max=0,[g(x)+2]min=2,即0<m<2所以m的取值范围是(0,2).小提示:本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有:(1)三角函数基本量的理解应用;(2)三角函数图像平移伸缩变换的方法;(3)恒成立思想的理解及转化.19、已知函数f(x)=asinx+bcosx,其中ab≠0.(1)若b=1,是否存在实数a使得函数f(x)为偶函数,若存在,求出a的值;若不存在,请说明理由;(2)若x=34π为函数f(x)的对称轴,求函数f(x)的单调增区间.答案:(1)不存在,理由见解析;(2)a>0时,单调增区间是[2kπ−π4,2kπ+3π4],k∈Z,a<0时,单调增区间是[2kπ+3π4,2kπ+7π4],k∈Z.解析:(1)利用函数奇偶性的定义可得答案;(2)由条件结合辅助角公式可得√22a−√22b=±√a2+b2,化简可得b=−a,f(x)=a(sinx−cosx)=√2asin(x−π4),然后分a>0、a<0两种情况讨论.(1)当b=1时,f(x)=asinx+cosx若存在实数a使得函数f(x)为偶函数,则f(−x)=f(x)恒成立,即asin(−x)+cos(−x)=asinx+cosx恒成立,整理得asinx=0恒成立,所以a=0,与ab≠0矛盾,故不存在;(2)结合三角函数的性质知,三角函数在对称轴处取最值,又由辅助角公式知f(x)的最值为±√a2+b2,所以f(34π)=√22a−√22b=±√a2+b2,两边平方,得12a2+12b2−ab=a2+b2,所以12a2+12b2+ab=0,即12(a+b)2=0,所以b=−a,所以f(x)=a(sinx−cosx)=√2asin(x−π4),当a>0时,令2kπ−π2≤x−π4≤2kπ+π2,k∈Z,解得2kπ−π4≤x≤2kπ+3π4,k∈Z,所以单调增区间是[2kπ−π4,2kπ+3π4],k∈Z,当a<0时,令2kπ+π2≤x−π4≤2kπ+3π2,k∈Z,解得2kπ+3π4≤x≤2kπ+7π4,k∈Z,所以单调增区间是[2kπ+3π4,2kπ+7π4],k∈Z.。

指数函数经典例题(标准答案)

指数函数经典例题(标准答案)

指数函数1.指数函数的定义: y a x(a 0且a 1) 的图象和性质。

a>1 0<a<1图 象111性 质(1) 定义域: R(2)值域:(0,+∞)(3)过点( 0,1),即 x=0 时,y=1 (4)在 R 上是增函(4)在 R 上是减函指数函数是高中数学中的一个基本初等函数, 有关指数函数的图象与性质的 题目类型较多, 同时也是学习后续数学内容的基础和高考考查的重点, 本文对此 部分题目类型作了初步总结,与大家共同探讨.1.比较大小例 1 已知函数 f (x) x 2 bx c 满足 f (1 x) f (1 x),且 f(0) 3 ,则 f(b x)与函数 y a x(a 0且a 1)叫做指数函数,其中 x 是自变量,函数定义域是 R我 们 观 察 y= 2x , y= 2 , y=10x, y= 10 图 象 特 征 , 就 可 以 得 到f(c ) 的大小关系是.分析:先求b,c的值再比较大小,要注意b x,c x的取值是否在同一单调区间内.解:∵ f (1 x) f (1 x) ,∴函数 f (x) 的对称轴是x 1 .故b 2,又f(0) 3,∴ c 3.∴函数f(x)在∞,1 上递减,在1,∞ 上递增.若x≥0,则3x≥2x≥1,∴ f(3x)≥f(2x);若x 0,则3x 2x 1,∴ f(3x) f(2x).综上可得f(3x)≥ f(2x),即f(c x)≥ f(b x).评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例 2 已知(a2 2a 5)3x (a2 2a 5)1 x,则x 的取值范围是_____ .分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵ a2 2a 5 (a 1)2 4≥ 4 1 ,∴函数y (a2 2a 5)x在( ∞,∞) 上是增函数,∴3x 1 x,解得x 1.∴x的取值范围是1,∞ .44 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与 1 的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例 3 求函数y 1 6x 2的定义域和值域.解:由题意可得 1 6x 2≥0,即6x 2≤1,∴x 2≤0,故x≤2.∴函数 f (x)的定义域是∞,2 .令t 6x 2,则y 1 t ,又∵ x≤2 ,∴ x 2≤ 0.∴ 0 6x 2≤1,即0 t≤1.∴ 0 ≤ 1 t 1 ,即0 ≤ y 1 .∴函数的值域是0,1 .评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题例 4 函数 y a 2x 2a x 1(a 0且a 1)在区间 [ 1,1] 上有最大值 14,则a 的值 是 .分析:令 t a x 可将问题转化成二次函数的最值问题,需注意换元后 t 的取值 范围.解:令 t a x,则 t 0,函数 y a 2x 2a x 1可化为 y (t 1)22 ,其对称轴为 t 1 .∴当a1 时,∵x 1,1 ,∴1≤ a x ≤ a ,即 1≤t ≤ a . aa∴当t a 时, y max2(a 1)2214 . 解得a 3 或a 5 (舍去) 当 0 a 1 时,∵ x 1,1 ,∴a ≤ a x≤ 1,即 a ≤ t ≤ 1, aa1 12∴ t 时, y max 1 2 14 ,aa解得a 1或a 1 (舍去),∴ a 的值是 3或1.3 5 3 评注:利用指数函数的单调性求最值时注意一些方法的运用, 比如:换元法, 整体代入等. 5.解指数方程 例 5 解方程 3x 2 32 x80 .解:原方程可化为 9 (3x )2 80 3x 9 0 ,令 t 3x(t 0),上述方程可化为9t 2 80t 9 0,解得 t 9或t 1 (舍去),∴ 3x 9,∴ x 2 ,经检验原方程的 9解是 x 2 . 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例 6 为了得到函数 y 9 3x 5的图象,可以把函数 y 3x 的图象( ).A .向左平移 9 个单位长度,再向上平移 5 个单位长度B .向右平移 9个单位长度,再向下平移 5 个单位长度C .向左平移 2 个单位长度,再向上平移 5 个单位长度D .向右平移 2 个单位长度,再向下平移 5 个单位长度 分析:注意先将函数 y 9 3x5转化为t 3x 25 ,再利用图象的平移规律进 行判断.解:∵ y 9 3x5 3x 25 ,∴把函数 y 3x的图象向左平移 2 个单位长度, 再向上平移 5 个单位长度,可得到函数 y 9 3x5的图象,故选( C ). 评注:用函数图象解决问题是中学数学的重要方法, 利用其直观性实现数形 结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、 伸缩、对称等. 习题1、比较下列各组数的大小:1)若 ,比较与2) 3) 4若 ,比较 与 ; 若 ,比较 与 ; 若 ,且 , 若 ,且 ,故解:(1)由,此时函数比较 a 与 b ; ,比较 a 与 b . 为减函数. 由 ,.又 ,故 (3)由 ,因 ,故 .又而.2)由 ,故.从而 ,故.从(4)应有 .因若 ,则.又.又因 ,故 .从而 , (5)应有 .因若,则.又,故 这与已知,故这样 矛,这样有.又因 ,且 ,故 .从而 ,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线分别是指数函数, 和的图象, 则与1 的大小关系是( ).(分析:首先可以根据指数函数单调性, 确定, 在轴右侧令, 由小到大依次为, 故应选.小结: 这种类型题目是比较典型的数形结合的题目由数到形的转化,第(2) 题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值3,求下列函数的定义域与值域1(1)y =2 x 3; (2)y =4x+2x+1+1.5、设 ,求函数 的最大值和最小值.分析:注意到 ,设,利用闭区间上二次函数的值域的求法,可求得函数的最值. 解:设 ,由 知, ,函数成为 , ,对称轴,因端点 较 距对称.6.(9 分)已知函数 y a 2x 2a x1(a 1) 在区间[-1,1]上的最大值是 14,求 a 的值.1.解: y a 2x 2a x 1(a 1), 换元为 y t 22t 1( t a ) ,对称轴为 t 1. a 当a 1,t a ,即 x=1 时取最大值,略 解得 a=3 (a= -5舍去 )7.已知函数 ( 且(1)求 的最小值; (2)若 求 的取值范围..解:( 1) 时, 有最小值为( 2) ,解得当 时, ; 当 时, .28(10分)(1)已知 f (x ) x 2m 是奇函数,求常数 m 的值;3x12)画出函数 y |3x1|的图象,并利用图象回答: k 为何值时,方程 |3Xk 无解?有一解?有两解?,则原来的函数成为,故函数最小值为轴 远,故函数的最大值为)解: (1)常数 m=1(2)当k<0时,直线y=k 与函数 y |3x1|的图象无交点 ,即方程无解;当k=0或k 1时, 直线y=k 与函数 y |3 1| 的图象有唯一的交点,所以方程 有一解;当 0<k<1 时, 直线 y=k 与函数 y |3x 1|的图象有两个不同交点, 所以方程有 两解。

人教高中数学必修一第五章三角函数经典大题例题

人教高中数学必修一第五章三角函数经典大题例题

(名师选题)人教高中数学必修一第五章三角函数经典大题例题单选题1、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1 答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +rsin∠BPO =5,所以r +rsin1=5, 所以r =5sin11+sin1,故选:C.2、函数f(x)=sin (2x −π3)的一个对称中心的坐标是( ) A .(0,0)B .(0,−√32)C .(π2,0)D .(π6,0) 答案:D分析:解方程2x −π3=kπ,k ∈Z 即得解.解:令2x −π3=kπ,k ∈Z,∴x =12kπ+π6, 令k =0,∴x =π6,所以函数f(x)=sin (2x −π3)的一个对称中心的坐标是(π6,0). 故选:D3、《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为π4m ,肩宽约为π8m ,“弓”所在圆的半径约为54m ,则掷铁饼者双手之间的距离约为(参考数据:√2≈1.414,√3≈1.732)( )A .1.012mB .1.768mC .2.043mD .2.945m 答案:B分析:由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.如图所示,由题意知“弓”所在的弧ACB⌢ 的长l =π4+π4+π8=5π8,其所对圆心角α=5π854=π2,则两手之间的距离|AB |=2|AD |=2×54×sin π4≈1.768(m ). 故选:B .4、筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图,将筒车抽象为一个几何图形(圆),筒车半径为4m,筒车转轮的中心O到水面的距离为2m,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系xOy.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:s),且此时点P距离水面的高度为h(单位:m),则点P第一次到达最高点需要的时间为()s.A.2B.3C.5D.10答案:C分析:设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,根据题意求出A,ω,φ,再令ℎ(t)=6可求出结果.设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,依题意可得A=4,ω=8π60=2π15,φ=−π6,所以ℎ(t)=4sin(2π15t−π6)+2,令ℎ(t)=4sin(2π15t−π6)=6,得sin(2π15t−π6)=1,得2π15t−π6=2kπ+π2,k∈Z,得t=15k+5,k∈Z,因为点P 第一次到达最高点,所以0<t <2π2π15=15,所以k =0,t =5s . 故选:C5、已知sinθ=45,则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=( )A .−169B .169C .−43D .43 答案:B分析:由诱导公式和同角关系sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)可化为sin 2θcos 2θ,再由同角关系由sinθ求出cos 2θ,由此可得结果.∵ sinθ=45,∴ cos 2θ=1−sin 2θ=925则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=sinθ(−sinθ)(−cosθ)cosθ=sin 2θcos 2θ=169,故选:B.6、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ).A .1B .32C .2D .3 答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3 , 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B7、f(x)=−sinx−xcosx+x 2在[−π,π]的图象大致为( )A .B .C .D .答案:C分析:先由函数为奇函数可排除A ,再通过特殊值排除B 、D 即可. 由f(−x)=−sin (−x )+x cosx+x 2=−−sinx−xcosx+x 2=−f (x ),所以f (x )为奇函数,故排除选项A. 又f (π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D故选:C8、sin1860°等于( ) A .12B .-12C .√32D .-√32答案:C分析:用诱导公式先化简后求值.sin1860°=sin (5×360°+60°)=sin60°=√32, 故选: C9、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos2α−8cosα−8=0,即3cos2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos2α=√53.故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.10、将函数f(x)=2cosx的图象先向右平移φ(0<φ<π)个单位长度,再把所得函数图象的横坐标变为原来的1ω(ω>0)倍,纵坐标不变,得到函数g(x)的图象,若对g(x)满足|g(x1)−g(x2)|=4,有|x1−x2|min=π4恒成立,且g(x)在区间(π6,π3)上单调递减,则φ的取值范围是()A.[π12,π3]B.[π3,π2]C.(π3,2π3]D.[π3,2π3]答案:D分析:可得g(x)=2cos(ωx−φ),根据题意可求出最小正周期,得出ω,求出g(x)的单调递减区间,根据包含关系可求出.由题可得g(x)=2cos(ωx−φ),若满足|g(x1)−g(x2)|=4,则x1和x2必然一个极大值点,一个极小值点,又|x1−x2|min=π4,则T2=π4,即T=π2,所以ω=2πT=4,令2kπ≤4x−φ≤2kπ+π,可得kπ2+φ4≤x≤kπ2+π4+φ4,即g(x)的单调递减区间为[kπ2+φ4,kπ2+π4+φ4],k∈Z,因为g(x)在区间(π6,π3)上单调递减,所以(π6,π3)⊆[kπ2+φ4,kπ2+π4+φ4],k∈Z,则{kπ2+φ4≤π6kπ2+φ4+π4≥π3,解得−2kπ+π3≤φ≤−2kπ+2π3,k∈Z,因为0<φ<π,所以可得π3≤φ≤2π3.故选:D. 填空题11、函数f (x )=2tan (kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为_______. 答案:2或3分析:由正切型函数的最小正周期可构造不等式,结合k 为自然数可求得结果. ∵f (x )的最小正周期T =π|k |,∴1<π|k |<2,又k 为自然数,∴k <π<2k , 解得:π2<k <π,∴k =2或3.所以答案是:2或3.12、已知△ABC 的内角A,B,C 的对边分别为a,b,c .若cosA (sinC −cosC )=cosB, a =2,c =√2,则角C 大小为_____. 答案:π6解析:根据三角形内角和以及诱导公式将B 转化为A,C ,利用两角和公式,可求出A ,再用正弦定理,即可求解.因为cosA (sinC −cosC )=cosB, 所以cosA (sinC −cosC )=−cos (A +C ),所以cosAsinC =sinAsinC,所以sinC (cosA −sinA )=0, 因为C ∈(0,π),∴sinC ≠0,所以cosA =sinA , 则tanA =1,所以A =π4,又a sinA =√2sinC ,则sinC =12,因为c <a ,所以0<C <π4,故C =π6. 故答案为:π6.小提示:本题主要考查解三角形、三角恒等变换等基础知识,属于基础题. 13、已知sin α−3cos α=0,则sin 2α+sin2α=__________. 答案:32##1.5分析:首先根据同角三角函数的基本关系求出tanα,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;解:因为sinα−3cosα=0,所以tanα=sinαcosα=3,所以sin2α+sin2α=sin2α+2sinαcosα=sin2α+2sinαcosαsin2α+cos2α=tan2α+2tanαtan2α+1=32+2×332+1=32所以答案是:3214、若sin(θ+π8)=13,则sin(2θ−π4)=________.答案:−79分析:由题知2(θ+π8)−π2=(2θ−π4),进而根据诱导公式与二倍角公式求解即可.解:因为2(θ+π8)−(2θ−π4)=π2,所以sin(2θ−π4)=sin[2(θ+π8)−π2]=−cos[2(θ+π8)]=2sin2(θ+π8)−1=2×(13)2−1=−79.所以答案是:−7915、若cosα=−35,α为第二象限的角,则sin(π−α)=__________.答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α).∵cosα=−35,α为第二象限的角,∴sinα=√1−cos2α=45,∴sin(π−α)=sinα=45.所以答案是:45.小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题.解答题16、函数f(x)=A sin(ωx+φ)+B的部分图象如图所示,其中A>0,ω>0,|φ|<π2.(Ⅰ)求函数y=f(x)解析式;(Ⅱ)求x∈[0,π2]时,函数y=f(x)的值域.答案:(Ⅰ)f(x)=2sin(2x+π6)+2;(Ⅱ)[1,4].解析:(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由f(π6)=4求出φ的值,可得函数的解析式;(Ⅱ)由已知可求范围2x+π6∈[π6,7π6],利用正弦函数的图象和性质可得sin(2x+π6)∈[−12,1],即可求解.(Ⅰ)根据函数f(x)=Asin(ωx+φ)+B的一部分图象,其中A>0,ω>0,|φ|<π2,可得A=4−2=2,B=2,T4=14⋅2πω=5π12−π6,∴ω=2.又f(π6)=4,得2sin(2×π6+φ)+2=4,∴π3+φ=2kπ+π2,即φ=2kπ+π6,∵|φ|<π2,∴φ=π6,∴f(x)=2sin(2x+π6)+2;(Ⅱ)∵x∈[0,π2],∴2x+π6∈[π6,7π6],∴sin(2x+π6)∈[−12,1],∴y=2sin(2x+π6)+2∈[1,4].小提示:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式、正弦函数的定义域和值域及正弦函数的单调性,考查了学生的计算能力,培养了学生分析问题与解决问题的能力,属于中档题.17、已知1|sinα|=−1sinα,且lgcosα有意义.(1)试判断角α是第几象限角;(2)若角α的终边上有一点M (35,m),且OM =1(O 为坐标原点),求实数m 的值及sinα的值.答案:(1)角α是第四象限角 (2)m =−45,sinα=−45分析:(1)根据已知分别确定sinα,cosα的正负,再三角函数值符号得象限角的结论 (2)由余弦函数定义求出m ,再由正弦函数定义求得结论. (1) ∵1|sinα|=−1sinα,∴sinα<0, ∴角α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lgcosα有意义,可知cosα>0,∴角α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上,角α是第四象限角 (2)∵OM =1,∴(35)2+m 2=1,解得m =±45. 又角α是第四象限角,故m <0,∴m =−45.∴sinα=−451=−45.18、已知函数f(x)=2cos 2x +2√3sinxcosx . (1)若x ∈R ,求f (x )的单调递增区间;(2)若f (x )在[0,m ]上的最小值为2,求实数m 的取值范围. 答案:(1)[−π3+kπ,π6+kπ](k ∈Z ) (2)(0,π3]分析:(1)先化简得到f(x)=2sin (2x +π6)+1,利用复合函数单调性“同增异减”列不等式求出f (x )的递增区间;.(2)利用单调性实数m的取值范围.(1)f(x)=2cos2x+2√3sinxcosx=cos2x+√3sin2x+1=2sin(2x+π6)+1.令−π2+2kπ≤2x+π6≤π2+2kπ,(k∈Z)解得−π3+kπ≤x≤π6+kπ,(k∈Z)∴f(x)的递增区间为[−π3+kπ,π6+kπ](k∈Z).(2)x∈[0,m],得2x+π6∈[π6,π6+2m].∵f(x)在[0,m]上的最小值为2,∴π6+2m≤5π6,解得m∈(0,π3].。

(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题

(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题单选题1、函数f(x)=−x2+2(1−m)x+3在区间(−3,4]上单调递增,则m的取值范围是()A.[−3,+∞)B.[3,+∞)C.(−∞,5]D.(−∞,−3]答案:D分析:首先求出函数的对称轴,根据二次函数的性质得到不等式,解得即可;解:因为函数f(x)=−x2+2(1−m)x+3,开口向下,对称轴为x=1−m,依题意1−m≥4,解得m≤−3,即m∈(−∞,−3]故选:D2、若函数f(x+1x )=x2+1x2,且f(m)=4,则实数m的值为()A.√6B.√6或−√6C.−√6D.3答案:B分析:令x+1x=t,配凑可得f(t)=t2−2,再根据f(m)=4求解即可令x+1x =t(t≥2或t≤−2),x2+1x2=(x+1x)2−2=t2−2,∴f(t)=t2−2,f(m)=m2−2=4,∴m=±√6.故选;B3、已知f(x)是一次函数,且f(x−1)=3x−5,则f(x)=()A.3x−2B.2x+3C.3x+2D.2x−3答案:A分析:设一次函数y=ax+b(a≠0),代入已知式,由恒等式知识求解.设一次函数y=ax+b(a≠0),则f(x−1)=a(x−1)+b=ax−a+b,由f(x−1)=3x−5得ax−a+b=3x−5,即{a=3b−a=−5,解得{a=3b=−2,∴f(x)=3x−2.故选:A.4、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1,故选:C5、幂函数y=x a,y=x b,y=x c,y=x d在第一象限的图像如图所示,则a,b,c,d的大小关系是()A.a>b>c>d B.d>b>c>a C.d>c>b>a D.b>c>d>a答案:D分析:根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大,即可判断; 根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大, 所以由图像得:b >c >d >a , 故选:D6、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2 答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0,所以(12)a +(12)b=1, 故选:B .7、已知幂函数y =xm 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32) 答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m 2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m=1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32. 故应选:D .8、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件 A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R ,则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立; “函数g (x )=2x −m 2⋅2−x 为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.9、若函数y=√ax2+4x+1的值域为[0,+∞),则a的取值范围为()A.(0,4)B.(4,+∞)C.[0,4]D.[4,+∞)答案:C分析:当a=0时易知满足题意;当a≠0时,根据f(x)的值域包含[0,+∞),结合二次函数性质可得结果. 当a=0时,y=√4x+1≥0,即值域为[0,+∞),满足题意;若a≠0,设f(x)=ax2+4x+1,则需f(x)的值域包含[0,+∞),∴{a>0Δ=16−4a≥0,解得:0<a≤4;综上所述:a的取值范围为[0,4].故选:C.10、已知函数f(x+2)=x2+6x+8,则函数f(x)的解析式为()A.f(x)=x2+2x B.f(x)=x2+6x+8C.f(x)=x2+4x D.f(x)=x2+8x+6答案:A分析:利用配凑法(换元法)计算可得.解:方法一(配凑法)∵f(x+2)=x2+6x+8=(x+2)2+2(x+2),∴f(x)=x2+2x.方法二(换元法)令t=x+2,则x=t−2,∴f(t)=(t−2)2+6(t−2)+8=t2+2t,∴f(x)=x2+2x.故选:A填空题11、若函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为____.答案:92分析:根据二次函数的性质,结合定义域和值域均为[1,b ](b >1),列出相应方程组,求出a ,b 的值即可. 解:由函数f (x )=12x 2−x +a ,可得对称轴为x =1, 故函数在[1,b ]上是增函数.∵函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1), ∴ {f (1)=1f (b )=b ,即{12−1+a =112b 2−b +a =b. 解得a =32,b =1或b =3.∵ b >1,∴ b =3. ∴ a +b =32+3=92.所以答案是:92.12、已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.答案:7分析:根据题意直接求解即可 解:因为f (x )={3x −1,x ≥12−x +3,x <1,所以f (−2)=22+3=7, 所以答案是:713、设m 为实数,若函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,则m 的值为__________. 答案:0分析:根据函数的奇偶性的定义可得答案.解:因为函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,所以f(−x)=f (x ), 所以(−x )2−m (−x )+m +2=x 2−mx +m +2,得2mx =0,所以m =0,14、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)15、设函数f(x)=x3+(x+1)2x2+1在区间[−2,2]上的最大值为M,最小值为N,则(M+N−1)2022的值为______.答案:1分析:先将函数化简变形得f(x)=x 3+2xx2+1+1,然后构造函数g(x)=x3+2xx2+1,可判断g(x)为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M+N=2,从而可求得结果由题意知,f(x)=x 3+2xx2+1+1(x∈[−2,2]),设g(x)=x 3+2xx2+1,则f(x)=g(x)+1,因为g(−x)=−x 3−2xx2+1=−g(x),所以g(x)为奇函数,g(x)在区间[−2,2]上的最大值与最小值的和为0,故M+N=2,所以(M+N−1)2022=(2−1)2022=1.解答题16、记函数f(x)=√2−x+3x+1的定义域为A,函数g(x)=√(x−a−1)(2a−x)(a<1)的定义域为B.(1)求A;(2)若B⊆A,求实数a的取值范围.答案:(−∞,−2]∪[12,1)解析:(1)求函数的定义域,就是求使得根式有意义的自变量x的取值范围,然后求解分式不等式即可;(2)因为a<1,所以一定有2a<a+1,从而得到B=(2a,a+1),要保证B⊆A,由它们的端点值的大小列式进行计算,即可求得结果.(1)要使函数f(x)有意义,则需2−x+3x+1≥0,即x−1x+1≥0,解得x<−1或x≥1,所以A=(−∞,−1)∪[1,+∞);(2)由题意可知,因为a<1,所以2a<a+1,由(x−a−1)(2a−x)>0,可求得集合B=(2a,a+1),若B⊆A,则有{a<1a+1≤−1或{a<12a≥1,解得a≤−2或12≤x<1,所以实数a的取值范围是(−∞,−2]∪[12,1).小提示:该题考查的是有关函数的定义域的求解,以及根据集合之间的包含关系确定参数的取值范围的问题,属于简单题目.17、已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x+1x+1.(1)求f(x)在R上的解析式;(2)判断f(x)在(0,1)的单调性,并给出证明. 答案:(1)f(x)={x +1x +1,x >00,x =0x +1x −1,x <0; (2)f(x)在(0,1)上是减函数,证明见解析.分析:(1)根据奇函数的性质进行转化求解析式即可. (2)根据函数单调性的定义进行判断单调性. (1)∵f(x)是定义在R 上的奇函数,∴f(0)=0,又当x >0时,f(x)=x +1x +1.∴当x <0时,则−x >0,则f(−x)=−x −1x +1=−f(x),则f(x)=x +1x −1(x <0),综上,f(x) ={x +1x +1,x >00,x =0x +1x −1,x <0. (2)设0<x 1<x 2<1,则f(x 1)−f(x 2)=x 1+1x 1+1−x 2−1x 2−1=(x 1−x 2) +x 2−x 1x 1x 2= (x 1−x 2)(1−1x1x 2)=(x 1−x 2) ⋅x 1x 2−1x 1x 2,∵0<x 1<x 2<1,∴x 1−x 2<0,0<x 1x 2<1,x 1x 2−1<0,则f(x 1)−f(x 2)>0,即f(x 1)>f(x 2), ∴函数f(x)在(0,1)上是减函数. 18、已知幂函数f(x)=x −m 2+4m(m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是严格增函数.(1)求m 的值;(2)求满足不等式f(2a −1)<f(a +1)的实数a 的取值范围. 答案:(1)m =2(2)0<a<2分析:(1)先利用幂函数在区间(0,+∞)上是严格增函数得到−m2+4m>0,再验证其图象关于y轴对称进行求值;(2)利用(1)中函数的奇偶性和单调性进行求解.(1)解:因为幂函数f(x)=x−m2+4m在区间(0,+∞)上是严格增函数,所以−m2+4m>0,解得0<m<4,又因为m∈Z,所以m=1或m=2或m=3,当m=1或m=3时,f(x)=x3为奇函数,图象关于原点对称(舍);当m=2时,f(x)=x4为偶函数,图象关于y轴对称,符合题意;综上所述,m=2.(2)解:由(1)得f(x)=x4为偶函数,且在区间(0,+∞)上是严格增函数,则由f(2a−1)<f(a+1)得|2a−1|<|a+1|,即(2a−1)2<(a+1)2,即a2−2a<0,解得0<a<2,所以满足f(2a−1)<f(a+1)的实数a的取值范围为0<a<2.19、已知f(x),g(x)分别是R上的奇函数和偶函数,且f(x)+g(x)=3x2−x+1,试求f(x)和g(x)的表达式.答案:f(x)=−x,g(x)=3x2+1分析:本题考查函数的奇偶性的性质以及应用,关键是利用函数的奇偶性构造方程.解析:以-x代替条件等式中的x,则有f(−x)+g(−x)=3x2+x+1,又f(x),g(x)分别是R上的奇函数和偶函数,故−f(x)+g(x)=3x2+x+1.又f(x)+g(x)=3x2−x+1,联立可得f(x)=−x,g(x)=3x2+1.。

高中数学 函数的极限范例例题

高中数学 函数的极限范例例题


x0
-x+2, 當 x<0
解■ (2)如右图,lim f(x)= lim(-x+2)=2
x0-
x0-
lim f(x)= lim(2x+2)=2
x0+
x0+
lim f(x)= lim f(x)=2
x0-
x0+
∴lim f(x)=2 x0
例题 5 极限的存在
利用左极限及右极限判断下列极限是否存在。 (3) lim log2│x│。
x2-
x2-
x2+
x2+
∴2a+b=-2
② lim f (x) = lim x2=0,lim f (x) = lim(ax+b)=b
x0-
x0-
x0+
x0+
由①与②得 b2=a+0 b=-2,解得 a=-1,b=0
∴b=0
上一题
下一题
主题 3 中间值定理
例题 16 中间值定理的应用
x3

xx--43+(x-3)(2 x-1)
=lim(x-4)(x-1)+2 x3 (x-3)(x-1)
=lim x2-5x+6 =lim(x-3)(x-2) x3(x-3)(x-1) x3(x-3)(x-1)
=lim x-2=1 x3 x-1 2
上一题 下一题
例题 9 函数极限的运算性质(四)根式型
上一题 下一题
例题 17 勘根定理的应用
(1)设 f(x)=2x4-5,g(x)=x2-5,试证在 1 与 2 之间有一实数 c, 满足 f(c)+g(c)=c。
■證 (1)令 F(x)=f(x)+g(x)-x =(2x4-5)+(x2-5)-x =2x4+x2-x-10
F(1)=2+1-1-10=-8<0 F(2)=2.24+22-2-10=24>0 ∴F(1).F(2)<0 由勘根定理可知,在 1 与 2 之间有一实数 c 满足 F(c)=0 即 f(c)+g(c)-c=0 f(c)+g(c)=c

人教A版高一数学必修1函数的值域经典例题

人教A版高一数学必修1函数的值域经典例题

三道关于值域的经典例题例1.设函数/(幻=2-衣B和函数g(x) = or + a-1,若对任意xe[0,yo)都有天£ (- s,l]使得/(XJ =鼠天),则实数〃的取值范围是__________ .解析本题难度较高,应充分理解题目所给的条件,弄清两个函数的值域之间的关系是解决问题的关键.当x e [0,口)时,2x+4 N4,,J2x + 4 22, A- j2x + 4 W — 2.・・・2 — j2x + 4 WO,即函数/(x) ( A- e [O,-KZ)))的值域为(-s,O],设该值域为4 设函数g(x)( X£(-8,l])的值域为艮:对任意演e[0,*o)都有& e (-8,1]使得/(须)=g(xj①当a = 0时,g(x) = -l、B = {-1},显然不符合题意,舍去;②当”0时,函数g(x)的值域为(-即8 = (-00,2"1].•・• Aq 8, J 2a-\20,解之得:a 2 上;- 2③当,,v 0时,函数g(x)的值域为[21 -1,—),即B = [2。

-1,一),不符合题意. 综上所述,实数。

的取值范围是1+ooj.例2.已知函数产x +工有如下性质:如果常数f>0,那么该函数在(0,,]上是减X函数,在[不,一)上是增函数.(1)已知/(x) = ±£±^,xe[0』,利用上述性质,求函数f(x)的单调区间和2x + l 值域;(2)对于(1)中的函数/㈤和函数g(x) = r-2a,若对于任意的西e[O,l],总存在七e [0』,使得g(x2) = fM成立,求实数〃的值.分析:对/(x)进行变形,使函数解析式中出现x +二形式的结构.设 4x 2 - 12x - 3 = (2x + I)2 + m(2x +1) + 〃,则有: (2m + 4)x + m + 〃 + 1 = -12x - 32〃? + 4 = —12 . n 、zrl,c ,解之得:《 m + 〃 + 1 = -3••• 4/ - 12x - 3 = (2x +- 8(2x + 1) + 4解:(1) /3 = j — T2.1 = (2八+ 1) — 8(1)+ 4 = 2. +1 + _8 2x + l 2x + l 2x + l 4 设 2x +1 = f ,则 y = r + - — 8. tVxe[0,l],r.re[l,3].由题意可知:函数y =,+ ±-8的单调递减区间为/£[1,2],即xe 0」;单调递增区 f. 2- 间为,£[2,3],即) [ 4;•当 x = 3 时,/ We =2x^ + 1 + --- -- - 8 = -4.2 2 2x- + l2• ・・ /(0) = -3,/(l) = -H• ・・/(x)皿=/(0) = —3• ・・函数f(x)的值域为[-4,-3];(2)当 x e [0,1]时,函数g(x) = -X-2a 的值域为[-1 -2a-2a],设为 B. 由(1)知函数/(x)的值域为[-4,-3],设为4m = -8〃 =4二 /(x)= 4/一12工一3 (2X +1)2-8(2X + 1) + 42x + l =2x +1 H --- — —8.•・,对于任意的须e [0,1],总存在W田0吐使得以斗)= /($)成立-\-2a<-4<,解之得:- 2a > -3例3.若函数f[.x) =*也的值域为[-1,4],求实数出〃的值.r+1分析:这是利用逆向思维求函数中参数的值或取值范围的问题.先设),=色二?,然后将该函数整理为关于X的方程,对方程进行分类讨论,当该方厂+1程为一元二次方程且方程有实数根时,对应的根的判别式△力0,这样可以求出y 的取值范围,即原函数的值域.解:设y = + 〃,则>£ - ax + y - /? = 0.广+1分为两种情况:①当y = 0时,显然y的值在其值域[-14]内,符合题意;②当y X 0时,•「x wR,•••关于x的方程冲2 -ax +y-b = 0有实数根.A = (- a\ - 4y(y - Z?) N0.整理得:4y? -4Z?y-《J <0.丁y e [-1,4],,一 1 W y W4..♦ ,关于y的方程分j……,即…y-9』的两个实数根为T4.小根与系数的关系定理可得:力=一1 + 41 , I /,解之得:, = -1x44。

高中数学三角函数典型例题

高中数学三角函数典型例题

(Ⅱ)
cos
A
+
sin
C
=
cos
A
+
sin


A
=
cos
A
+
sin
6
+
A
= cos A + 1 cos A + 3 sin A
2
2
=
3
sin
A
+
3
.
2 .在 ABC 中,角 A. B.C 的对边分别为 a、b、c,且满足(2a-c)cosB=bcos C.
(Ⅰ)求角 B 的大小;
(Ⅱ)设 m = (sin A,cos 2A) ,n = (4k,1)(k 1) ,且 m n 的最大值是 5,求 k 的值.
8
8
4
4
cos B = − cos(A + C) = sin Asin C − cos Acos C = 7 3 7 − 3 1 = 9
4 8 4 8 16
(2) BA BC = 27 ,ac cos B = 27 ,ac = 24 ①
2
2
又 a = c ,C = 2A,c = 2a cos A = 3 a ②
2
∵0<B<π,∴B= . 3
(II) m n =4ksinA+cos2A.
=-2sin2A+4ksinA+1,A∈(0, 2 ) 3
设 sinA=t,则 t∈ (0,1] .
则 m n =-2t2+4kt+1=-2(t-k)2+1+2k2,t∈ (0,1] .
∵k>1,∴t=1 时, m n 取最大值.

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数测试题
一、选择题(本大题共4小题,每小题5分,共60分)
1、函数2
3()lg(31)1x f x x x
=
++-的定义域是 ( )
A .1(,)3
-+∞
B .1(,1)3
-
C .11(,)33-
D .1(,)3
-∞-
2、下列函数中,既是偶函数又在()0,+∞上单调递增的是 ( ) A. 3
y x = B. cos y x = C. 2
1
y x =
D. ln y x = 3、已知函数()x f 的定义域为[0,1],值域为[1,2],则函数()2+x f 的定义域和值域分别是/( ) A. [0,1] ,[1,2] B. [2,3] ,[3,4] C. [-2,-1] ,[1,2] D. [-1,2] ,[3,4]
4、函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( ) A. 13 B. 2 C.
132 D. 213
5、.函数
)0(21)(>++=
x x
x
x f 的值域是 ( )A. ()1,∞- B. ()+∞,1 C. ⎪⎭

⎝⎛1,21 D. ⎪
⎭⎫ ⎝⎛21,06、当[]2,0∈x 时,函数3)1(4)(2
--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是( )
A.1[,)2-+∞
B. [)+∞,0
C. [)+∞,1
D.2
[,)3
+∞
7、已知2
2
111-1(x x x x f +-=+),则)x f (的解析式可取为 ( ) A .
2
1x x + B .-
2
12x x + C .
2
12x x + D .-
2
1x x +
8、已知函数f (x )=⎩
⎪⎨⎪⎧
log 2x (x >0)3x (x ≤0),则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是( ) A .9 B.19 C .-9 D .-19 [解析] f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f ⎝⎛⎭⎫log 214=f (-2)=3-2=19
. 9、已知图1中的图像对应的函数为()y f x =,则图2中的图像对应的函数在下列给出的四式中,只可能是 ( ) A .(||)y f x = B .|()|y f x = C .(||)y f x =- D .(||)y f x =--
10、已知函数f 1(x )=a x ,f 2(x )=x a
,f 3(x )=log a x (其中a >0,且a ≠1)在同一坐标系中画出其中两个函数在
第一象限的图像,其中正确的是(
)
11、函数
)(x f 是偶函数,且在[)+∞,0上递减,0)3(=-f ,则满足•x 0)1x 2(<-f 的x 的取值范围
是 ( )
A x < -1 或x >2
B x > 2或-1<x <0
C -1<x < 2
D x < -3或x >3
12、把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为
x y 2=的图像,则)(x f y =的函数表达式为 ( )
A. 2
2
+=x y B. 2
2
+-=x y C. 2
2
--=x y D. )2(log 2+-=x y
13、如图所示,曲线是幂函数a
x y =在第一象限的图象,已知a 取±2、±2
1四个值,则相应的曲线
1C ,2C ,3C ,4C 的a 值依次为 ( )
A.-2,-21,21,2
B.2,21,-2
1,-2 C.-21,-2,2,21 D.2,21,-2,-2
1
14、实系数方程022
=++b ax x 的一根大于0且小于1,另一根大于1且小于2,则1
2
--a b 的取值范围是 ( ) A )1,41( B )1,21( C )41,21(- D )2
1,21(-
15、已知
627.4)2()1lg()(22=+++=f x x x x f 且,那么f (-2)= ( )
A .-4.627
B .4.627
C .-3.373
D .3.373
16、(选)已知)1(,1
)1(22
++=-x f x
x x
x f 则的表达式为( )
A .2
2
)
1(1)1(++
+x x B .2
2
)1(1
)11(x
x x -+- C .(x +1)2+2
D .(x +1)2+1。

相关文档
最新文档