参数检验与非参数检验的区别及优缺点课堂

合集下载

参数检验和非参数检验

参数检验和非参数检验

参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。

参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。

本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。

参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。

然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。

常见的参数检验方法有t检验、F检验和卡方检验等。

以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。

假设我们有两组样本数据,分别服从正态分布。

可以使用t检验来计算两组样本均值的差异是否显著。

t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。

参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。

此外,参数检验通常具有较好的效率和统计性质。

然而,参数检验也有一些限制和缺点。

首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。

另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。

此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。

与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。

它适用于更广泛的数据类型和样本分布。

常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。

以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。

这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。

非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。

此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。

参数检验和非参数检验精品PPT课件

参数检验和非参数检验精品PPT课件

4.1.1 均值过程分析的功能与意义
• SPSS的均值分析过程(Means)功能是计算数据的
各种基本描述统计量。通过均值过程分析,我们 可以得到数据的平均值、最大值、最小值、方差、 标准差、极差、偏度系数和峰度系数等重要的描 述统计量,这与第二章介绍的描述性分析过程 (Descriptives)是类似的。但是均值分析过程 (Means)能够对数据分组计算描述性统计量并可以 直接输出不同组的比较结果,从而能够对不同的 组进行比较分析,所以均值分析过程(Means)属于 均值比较(Compare Means)这一体系。
4.3.2 独立样本t检验实例
• 【例4.3】下面的资料给出了甲乙两所学校
各40名高三学生的高考数学成绩。试用独 立样本t检验方法研究两所学校被调查的高 三学生的高考数学成绩之间有无明显的差 别。
• 配书资料\源文件\4\正文\原始数据文件\案
例4.3.sav
4.4.1意义
• SPSS的卡方检验(Chi-square Test)是非参数
检验(Nonparametric Tests)方法的一种, 其基本功能是通过样本的频数分布来推断 总体是否服从某种理论分布或者某种假设 分布。这种检验过程是通过分析实际的频 数与理论的频数之间的差别或者说吻合程 度来完成的。
例4.2.sav
4.3.1 独立样本t检验的功能与意义
• SPSS的独立样本t检验过程(Independent-
Samples T Test)也是假设检验中最基本、 最常用的方法之一。跟所有的假设检验一 样,其依据的基本原理也是统计学中的 “小概率反证法”原理。通过独立样本t检 验,我们可以实现两个独立的样本的均值 的比较。所以独立样本t检验过程 (Independent-Samples T Test)同样属于均 值比较(Compare Means)这一体系。

【统计分析】非参数检验

【统计分析】非参数检验
α=0.05 2. 计算统计量: T+=62.5,T-=3.5
3. 查表与结论 查T界值表,T0.05(11)=10~56,T=3.5,在界 值范围外,P<0.05,拒绝H0。
符号检验(Sign test)
z n n 1 n
二、两样本比较的秩和检验 (Wilcoxon法)
适用条件:完全随机设计的两个样本比较,若不满足参数 检验的应用条件,则用本法;两个等级资料比较。
-0.45
-1
13
15.20
5.50
9.70
11
14
16.50
9.00
7.50
8.5
步骤
1. 建立假设:H0:差值的总体中位数=0, H1:差值的总体中位数0;
=0.05 2. 计算统计量
计算差值d,由小到大的顺序编秩次,并冠以原d 的正负号,然后分别求正负秩和,得到T+=73, T-=5,取秩和较小者作为检验统计量T=5 3. 查表及结论
1.0
2.5
4
17.00
6.50
10.50
12
5
13.00
5.50
7.50
8.5
6
18.00
13.50
4.50
5
7
17.50
10.00
7.50
8.5
8
10.20
10.20
0.00
-
9
10.00
10.00
0.00
-
10
10.50
9.50
1.00
2.5
11
13.80
6.80
7.00
6
12
3.03
3.48

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。

本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。

一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。

它通常要求总体分布服从特定的概率分布,如正态分布。

参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。

2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。

3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。

4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。

参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。

但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。

二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。

非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。

2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。

3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。

非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。

它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。

三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。

2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。

参数检验与非参数检验的区别及优缺点.(课堂PPT)

参数检验与非参数检验的区别及优缺点.(课堂PPT)

别 对总体参数进行区间 和检验分布(如位置)是否
估计或假设检验
相同
优 符合条件时,检验效 应用范围广、简便、易掌握 点 能高
对资料要求严格

若对符合参数检验条件的资 料用非参数检验,则检验效 能低于参数检验
点 要求资料分布型已知
资料总体方差相等
2
如H0成立,非参数检验与参数检
验效果一样好;如H0不成立,则
n(n 1)(2n 1) / 24
如果有相同秩次,应用下面的校正公式:
T n(n 1) / 4 0.5
u
n(n
1)(2n 24
1)
1 48
(t
3 j
tj)
连续性校 正数
式中 tj 为第 j 个相同秩次的个数。如有相同秩次:3.5,3.5,6,6,6, 则∑(t3j-tj)=(23-2)+(33-3)
11
22
3
n1=6ቤተ መጻሕፍቲ ባይዱ
T1=40.5
乙种香烟
尼古丁含量
秩次
28
9.5
31
13
30
12
32
14
21
2
27
8
24
5
20
1
n2=8
T2=64.5
2

14
1.建立假设,确立检验水准: H0:两总体分布相同 H1:两总体分布不同 =0.05
2.计算检验统计量T值
(1)编秩 先将两组数据由小到大分别排队,再将 两组数据从小到大统一编秩,如遇相同数据在同 一组内,按位置顺序编;如相同数据不在同一 组内,应取平均秩次 。
2

12
二 成组设计两样本比较的秩和检验 (Wilcoxon两样本比较法)

SPSS数据分析教程-第6章-非参数

SPSS数据分析教程-第6章-非参数
Moses extreme reaction 比较各组的中位数
Median test
独立样本检验举例
➢ 一个公司把他们的销售代表随机分到三个 不同的组中,进行不同的培训。两个月后 对销售进行考察,我们想通过非参数检验 比较不同组别的销售代表考试得分是否有 显著性差异。这里,不同组别的考试得分 是相互独立的,因此为独立样本数据,我 们采用独立样本非参数检验。

独立样本包括两个独立样本或者两个以上的独 立样本。
➢ SPSS提供的独立样本非参数检验的方法有:
两个独立样本分布的比较
Mann-Whitney U
Kolmogorov-Smimov
Wald-Wolfowitz K个独立样本分布的比较
Kruskal-Wallis
Jonckheere-Terpstra 比较全矩
➢ Wilcoxon符号秩检验用于检验样本所来自的 总体的中位数和所给的值是否有显著区别。 该检验适用于连续型数据(或者尺度数 据),它把观测值和原假设的中心位置之 差的绝对值的秩分别按照不同的符号相加 作为其检验统计量。
➢ Wilcoxon符号秩检验的假设为:
样本所来自的总体的中位数等于给定的数值。
游程检验
➢ 游程检验用于检验某一变量的两个值的出 现顺序是否随机,对于连续型变量的随机 性检验也可以转化为只有两个取值的分类 变量的随机性的检验。游程检验通过对样 本观测值的分析,用来检验该样本所来自 的总体序列是否为随机序列(又称为白噪 声序列)。它也可以用来检验一个样本的 观测值之间是否相互独立。
二项式检验
➢ SPSS的二项式检验通过样本数据检验样本 来自的总体是否服从指定的二项分布。例 如,现代社会男、女的比例是否为1.01:1; 工厂的次品率是否为1%等都可以通过二项 式检验完成。

非参数检验

非参数检验

两种方法治疗扁平足效果观察
建立假设
病例号
原始记录 A法 B法
量化值 A法 B法
差值
秩次
H0:两法疗效差值的总体中位数
1 2
为0;
3
4
H1:差值的总体中位数不为0。
5
6
=0.05
7
8
计算检验统计量
9
10
编秩:
11
12
求秩和:T+=61.5,T-
13
=4.5
14 15
















秩和(rank sum): 同组秩次之和;在一定程度上反映了等级 的分布位置。
秩和检验:就是通过秩次的排列求出秩和,进行假设检验。
11
非参数检验 (nonparametric test )
非参数检验的最常用方法——秩和检验( rank test ) 利用秩的大小进行推断就避免了不知道背景分布的
困难。这也是非参数检验的优点。 多数非参数检验明显地或隐含地利用了秩的性质;
但也有一些非参数方法没有涉及秩的性质。 掌握对数据进行编秩的方法是学习秩和检验的基本
要求。
12
非参数检验 (nonparametric test )
非参数检验的最常用方法——秩和检验( rank test )
A组: - 、、+、+、+、+、++、++、++、++、+++、+++
适用条件: (1)上述两种设计类型的资料不满足参数检 验条件。 (2)配对设计等级资料的比较。

参数检验与非参数检验的区别及优缺点.(课堂PPT)

参数检验与非参数检验的区别及优缺点.(课堂PPT)

别 对总体参数进行区间 和检验分布(如位置)是否
估计或假设检验
相同
优 符合条件时,检验效 应用范围广、简便、易掌握 点 能高
对资料要求严格

若对符合参数检验条件的资 料用非参数检验,则检验效 能低于参数检验
点 要求资料分布型已知
资料总体方差相等
2
如H0成立,非参数检验与参数检
验效果一样好;如H0不成立,则
2

30
频数表法:属于同一组段的观察值,一律取平均
秩次(组中值),再以该组段频数加权,计算Hc
值。
表11-8 分娩时孕周与乳量的关系
乳 量
早 产
足月 过期 产产
合计
秩次 范围
平均
秩和
秩次 早产 足月产 过期产
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
无 30 132 10 172 1~172 86.5 2595 11418 865
标准差:ơT=〔n1n2(N+1)/12〕1/2
2

18
2、频数表资料(或等级资料)的两样本比较:
表11-5 某药对两种不同病情的支气管炎疗效的秩和检验
单纯 疗效 型
(1)
控制 65
单纯型合 并肺气肿
(2)
42
合计(ti) (3)=(1)+(
2)
107
秩号范围 (4)
1-107
秩和
平均秩 次
(5)
2

22
总结
重点:
1、参数检验与非参数检验区别与优缺点。 2、非参数检验的适用条件。 3、配对资料的符号秩和检验的假设检验。 4、成组设计两样本比较的秩和检验

第十一章非参数检验

第十一章非参数检验

第十一章 非参数检验前面有关章节讨论的参数检验都要求总体服从一定的分布,对总体参数的检验是建立在这种分布基础上的。

例如,两样本平均数比较的t 检验和多个样本平均数比较的F 检验,都要求总体服从正态分布,推断两个或多个总体平均数是否相等。

本章引入另一类检验——非参数检验(non-parametric test )。

非参数检验是一种与总体分布状况无关的检验方法,它不依赖于总体分布的形式,应用时可以不考虑被研究的对象为何种分布以及分布是否已知。

非参数检验主要是利用样本数据之间的大小比较及大小顺序,对两个或多个样本所属总体是否相同进行检验,而不对总体分布的参数如平均数、标准差等进行统计推断。

当样本观测值的总体分布类型未知或知之甚少,无法肯定其性质,特别是观测值明显偏离正态分布,不具备参数检验的应用条件时,常用非参数检验。

非参数检验具有计算简便、直观,易于掌握,检验速度较快等优点。

非参数检验法从实质上讲,只是检验总体分布的位置(中位数)是否相同,所以对于总体分布已知的样本也可以采用非参数检验法,但是由于它不能充分利用样本内所有的数量信息,检验的效率一般要低于参数检验方法。

例如,非配对资料的秩和检验,其效率为t 检验的86.4%,就是说以相同概率判断出差异显著,t 检验所需的样本个数要少13.6%。

非参数检验内容很多,本章只介绍常用的符号检验(sign test ),秩和检验(rank-sum test )和等级相关分析(rank correlation analysis )三种。

第一节 符号检验一、配对资料的符号检验(一)配对资料符号检验的意义 配对资料符号检验是根据样本各对数据之差的正负符号多少来检验两个总体分布位置的异同,而不去考虑差值的大小。

每对数据之差为正值用“+”表示,负值用“-”表示。

可以设想如果两个总体分布位置相同,则正或负出现的次数应该相等。

若不完全相等,至少不应相差过大,否则超过一定的临界值就认为两个样本所来自的两个总体差异显著,分布的位置不同。

非参数检验相比于参数检验的缺点

非参数检验相比于参数检验的缺点

非参数检验相比于参数检验的缺点
1. 较低的功效:在样本容量较小或者总体分布相对简单的
情况下,非参数检验的功效通常会比参数检验低。

这意味着非参数检验可能会更难发现存在的显著差异。

2. 需要更多的数据:为了能够产生可靠的结果,非参数检验可能需要比参数检验更多的样本数据。

3. 难以确定效应大小:与参数检验相比,非参数检验往往难以确定效应的大小。

当我们使用参数检验时,我们可以根据参数的估计值计算效应大小。

但是,在非参数检验中,我们通常需要使用基于排名或任意单位的统计量,这使得效应大小的确定更加困难。

4. 不适用于某些问题:一些问题可能需要特定类型的参数
检验。

例如,当我们需要测量两个总体均值之间的差异时,T检验或方差分析通常比非参数检验更适合。

5. 理解和解释结果可能更困难:与参数检验相比,非参数检验可能更难理解和解释其结果。

这是因为非参数检验通常使用一些非常抽象的统计量,这些统计量难以解释其实际意义。

在这种情况下,解释结果可能需要更深入的统计知识和分析
技能。

SPSS统计分析2:参数检验与非参数检验

SPSS统计分析2:参数检验与非参数检验

参数检验与非参数检验一、参数检验与非参数检验的区别(1)参数检验:一般是数据的总体分布已知的情况下,对数据分布的参数是否落在相应范围内进行检验。

是对参数平均值、方差进行的统计检验,是推断统计的重要组成部分。

适用条件:当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。

此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。

这类问题往往用参数检验来进行统计推断。

它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。

(2)非参数检验:一般是在不知道数据总体分布的前提下,检验数据的分布情况。

适用条件:在数据分析过程中,由于种种原因,往往无法对总体分布形态作简单假定,此时参数检验不再适用。

非参数检验正是基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。

二、参数检验方法及适用条件三、非参数检验方法及适用条件四、使用方法当分析某个因素对变量的影响差异时,即检验该因素分类的若干个样本差异:(1)如果因素为两个,使用独立样本T-检验,来分析两个总体平均数相等的显著性;结果判定:先看方差齐性F检验结果,再看均值相等性的t检验结果,即a.如果方差齐性显著性>0.05,则表明方差齐性显著,再看第一行的检验统计值t及显著性p(p<0.05表示差异明显);b.如果方差齐性显著性<=0.05,则表明方差显著不齐,再看第二行的检验统计值t及显著性p(p<0.05表示差异明显);(2)如果因素为多个,使用单因素方差检验(即F检验),来分析该因素的影响差异。

结果判定:方差齐性显著则看ANOVA的检验统计值F及其显著性p。

参数检验和非参数检验

参数检验和非参数检验

一.单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。

在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。

二.T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

它与Z检验、卡方检验并列。

t检验t检验分为单总体检验和双总体检验。

单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。

当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。

单总体t检验统计量为:双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。

双总体t 检验又分为两种情况,一是独立样本t检验,一是配对样本t检验。

独立样本t检验统计量为:S1 和 S2 为两样本方差;n1 和n2 为两样本容量。

(上面的公式是1/n1 + 1/n2 不是减!)配对样本t检验统计量为:t检验的适用条件(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。

t检验步骤以单总体t检验为例说明:问题:难产儿出生体重n=35, X拔=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0 (无效假设,null hypothesis)H1:μ ≠ μ0(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2

7
编号⑴
1 2 3 4 5 6 7 8 9 10 11 12 13
2
培训前⑵
7 7 7 6 7 7 8 2 9 6 4 6 6
培训后⑶
10 9 7 7 10 6 9 6 8 9 6 6 7

差值d ⑷
3 2 0 1 3 -1 1 4 -1 3 2 0 1
秩次⑸
9 6.5 - 3 9 -3 3 11 -3 9 6.5 - 3 T+=60 T-=-8 6
2

12
二 成组设计两样本比较的秩和检验 (Wilcoxon 两样本比较法)
1、原始数据的两样本比较;
例11.2 为了比较甲、乙两种香烟的尼古丁含 量(mg),对甲香烟作了6次检测,对乙香烟作了 8次检测,问两种香烟中尼古丁含量有无差别?
2

13
甲种香烟
尼古丁含量
秩次
25
6
28
9.5
23
4
26
7
当相同秩次较多时,应采用校正公式:
u?
T ? n1 (N ? 1) / 2 ? 0.5
? ? n1n2
12N(N ? 1)

(Wilcoxon配
对法)
配对设计:
1、同一批样品用两种不同的处理方法; 2、同一对子内不同的个体分别接受不同的处 理。
3、在病因和危险因素的研究中,将病人和对
照按配对条件配成对子,研究是否存在某种病
因或危险因素。
2

6
例11.1 某医院组织病人对护理质量 作评价,同时对护士进行再培训, 资料见表11.1中的⑵、⑶栏,问 培训前后的评分结果有无差别?
本例n=11, T-=6,查附表T界值表(配对比较的符 号秩和检验用), P<0.05 ,按α=0.05 水准拒绝 H0,接 受H1 。故可认为培训前后护理质量评分有差别,培 训后高于培训前,培训有利于提高护理质量。
2

11
( 2)正态近似法: 如 n>25 ,可按下式正态 近似检验 :
u ? T ? n (n ? 1) / 4 ? 0 .5 n ( n ? 1 )( 2 n ? 1 ) / 24
条件:n1≤20,n2-n1≤10
以n1、n2-n1及T查附表11-4 (两样本比较 秩和检验),按所取检验水准作出推断 结论。
T值落在范围内,P > 界值P
T值落在范围外,P < 界值P
2

16
( 2)正态近似法:如果样本含量较大,表中查不 到时,可用正态近似法作检验,公式为:
u ? T ? n1( N ? 1) / 2 ? 0.5 n1n2 (N ? 1) /12
检验步骤:
1.建立假设,确立检验水准
注意: 在配对设计差值比较的符号秩和检验中,
H0:培训前后结果相同,即 差值总体中位数 为0 H1:培训前后结果 不同,即 差值总体中位数不 等于0 α=0.05
2

9
2.计算检验统计量
(1)求每对观察值的差数 d;
如表 11.1第( 4)栏;
(2)编秩 即按差值的绝对值从小到大编秩 ,并 标明原差值的正负号,如表 11.1第(5)栏;
注意:编秩时, 差数为 0的略去不计 ,并相应减
少对子
数n ;
编秩时, 遇有差值的绝对值相等,符号相 同,顺序编秩;符号相反,取其平均秩次。
(3)求秩和 分别求正、负秩次之和,并以 绝对
值较小者为统计量 T值,如本例 T-<T+,故 T-= T。
2

10
3.确定P值,做出推断结论
(1)查表法 当n≤25时,查T界值表(附表 11-2)(配对比较的秩和检验界值表),得P 值,按所取检验水准作出推断结论 。
29
11
22
3
n 1=6
T 1=40.5
乙种香烟
尼古丁含量
秩次
28
9.5
31
13
30
12
32
14
21
2
27
8
24
5
20
1
n 2=8
T 2=64.5
2

14
1.建立假设,确立检验水准:
H 0:两总体分布相同 H 1:两总体分布不同 ? =0.05
2.计算检验统计量T值
(1)编秩 先将两组数据由小到大分别排队,再将 两组数据从小到大统一编秩, 如遇相同数据在同 一组内 ,按位置顺序编;如相同数据不在同一 组内,应取平均秩次 。
如果有相同秩次,应用下面的校正公式:
T ? n(n ? 1) / 4 ? 0.5
u?
n(n
? 1)(2n 24
?
1)
?
1 48
?
(t
3 j
?
tj)
连续性校 正数
式中 t j 为第 j 个相同秩次的个数。如有相同秩次: 则∑( t3j-t j) =(2 3-2)+(3 3-3)
3.5 ,3.5 ,6,6,6,
非感参数检验效果较差
4
非参数检验适用范围
? 等级资料的比较。 ? 偏态资料。
? 未知分布型资料。
? 要比较的各组资料变异度相差较大,方差不 齐,且不能 变换达到齐性。
? 对于一些特殊情况,如从几个总体所获得的数据,往往 难以对其原有总体分布作出估计,在这种情况下可用非 参数统计方法。
2

5
第一节 配对资料的符号秩和检
复习
参数:反应总体特征的指标; 如: N、 ? 、?
统计量:反应样本特征的指标; 如:n、 x、s
2

1
第十一章 秩和检验
2

2
参数统计
(parametric statistics )
非参数统计
(nonparametric statistics )
已知总体分布类型 ,对 未知参数( μ、π)进行 统计推断
对总体的分布类型 不作任何要求
不受总体参数的影响,
依赖于特定分布类
比较分布或分布位置
型,比较的是参数 适用范围广;可用于任何
类型资料 (等级资料,或
“>50mg” )
对于符合参数统计分析条件者,采用
非参数统计分析,其检验效能较低
2

3
参数检验与非参数检验的区别及优缺点
参数检验
非参数检验
区 已知分布为假定条件,不依赖总体分布的具体形式
(T ;2 )如求果秩两和样:本含含量量较相小等,的那样就本任计取为一n个1,样其本秩的和秩记和为。
核对是否计算有误,可看两个样本的秩和相加是否
等于 N(N+1)/2,如果相等,说明计算无误,这
里N=n 2
1+n
2。
本例
n
1=6
,n
2感=8
,故
T=40.5
15
3.确定P值,做出推断结论
(1)查表法
别 对总体参数进行区间 和检验分布(如位置)是否
估计或假设检验
相同
优 符合条件时,检验效 点 能高
对资料要求严格

点 要求资料分布型已知
资料总体方差相等
2
应用范围广、简便、易掌握
若对符合参数检验条件的资 料用非参数检验,则检验效 能低于参数检验
如H0成立,非参数检验与参数检
验效果一样好;如H0不成立,则
相关文档
最新文档