陶瓷吸水率、气孔率及体积密度的测定
GBT3810.1-2006 第三部份 :吸水率、 显气孔率 、表观

陶瓷砖(三):吸水率、显气孔率、表观前言GB/T3810《陶瓷砖试验方法》分为16个部分:-第1部分:抽样和接收条件;-第2部分:尺寸和表面质量的检验;-第3部分:吸水率、显气孔率、表观相对密度和容重的测定;-第4部分:断裂模数和破坏强度的测定;-第5部分:用恢复系数确定砖的抗冲击性;-第6部分:无釉砖耐磨深度的测定;-第7部分:有釉砖表面耐磨性的测定;-第8部分:线性热膨胀的测定;-第9部分:热抗震性的测定:-第10部分:湿膨胀的测定;-第11部分:有釉砖抗釉裂性的测定;-第12部分:抗冻性的测定;-第13部分:耐化学腐蚀性的测定;-第14部分:耐污染性的测定;-第16部分:小色差的测定;本部分为GB/T3810《陶瓷砖试验方法》的第3部分。
本部分修改采用了ISO 10545-3:1995《陶瓷砖--第3部分:吸水率显气孔率表观相对密度和容重的测定》(英文版)。
该标准1995年出版,1997年出版技术勘误ISO10545-3:1995/Cor.1:1997(E)。
技术勘误中把3.10中的“(100士1)Kpa”代替;把5.1.2中的“(100士1)Kpa“用“(10士1)Kpa“代替。
该技术勘误已列入本部分并用垂直双线标识在它们所涉及条款的页边空白处。
本部分根据ISO 10545-1:1995重新起草。
为了更适合我国国情,本部分采用ISO10545-3:1995时进行了修改。
本部分与ISO10545-3:1995的主要差异如下:---增加了变长大于400mm的大规格砖的试样要求;---为便于使用,本部分做了下列编辑性修改:a)”ISO10545的本部分“修改为”GB/T3810的本部分“;b)删除国际标准的前言;本部分代替了GB/T3810.3-1999《陶瓷砖试验方法第3部分:吸水率显气孔率表观相对密度和容量的测定》。
本部分与GB/T3810.3-1999相比主要变化如下:---将2中的”干陶瓷砖吸饱水后吊挂在水中。
气孔率和密度-2016

陶瓷材料密度、吸水率及气孔率的测定一、实验原理在无机非金属材料中,有的材料内部是有气孔的,这些气孔对材料的性能和质量有重要的影响。
材料的体积密度是材料最基本的属性之一,是进行其他许多物性测试(如颗粒粒径测试)的基础数据。
材料的吸水率、气孔率是材料结构特征的标志。
在材料研究中,吸水率、气孔率的测定是对制品质量进行检定的最常用的方法之一。
材料吸水率、气孔率的测定都是基于密度的测定,而密度的测定则基于阿基米德原理。
由阿基米德定律可知,浸在液体中的任何物体都要受到浮力(即液体的静压力)的作用,浮力的大小等于该物体排开液体的重量。
重量是一种重力的值,但在使用根据杠杆原理设计制造的天平进行衡量时、对物体重量的测定巳归结为对其质量的测定。
因此,阿基米德定律可用下式表示:L VD m m =-21 (1) 式中 1m ——在空气中称量物体时所得物体的质量; 2m ——在液体中称量物体时所得物体的质量; V ——物体的体积; L D ——液体的密度。
物体的体积就可以通过将物体浸于已知密度的液体中,通过测定其质量的方法来求得。
由于浸于浸液中的物体受到液体静压力的作用,所以这种方法称之为“液体静力衡量法”。
在工程测量中,往往忽略空气浮力的影响,在此前提下进一步推导可得用称量法测定物体密度时的原理公式 211m m D m D L-=(2)这样,只要测出有关量并代入上式,就可计算出待测物体在温度t ℃时的密度。
材料的密度,可以分为真密度、体积密度等。
体积密度指不含游离水材料的质量与材料的总体积(包括材料的实体积和全部孔隙所占的体积)之比。
当材料的体积是实体积(材料内无气孔)时,则称真密度。
气孔率指材料中气孔体积与材料总体积之比。
材料中的气孔有封闭气孔和开口气孔(与大气相通的气孔)两种,因此气孔率含封闭气孔率、开口气孔率和真气孔率之分。
封闭气孔率指材料中的所有封闭气孔体积与材料总体积之比。
开口气孔率(也称显气孔率)指材料中的所有开口气孔体积与材料总体积之比。
陶瓷材料烧结工艺和性能测试实验指导书

陶瓷材料烧结工艺和性能测试实验指导书1实验目的和意义1)了解陶瓷材料的烧结和性能检测的工艺流程,掌握吸水率,表面气孔率,实际密度,线收缩率的测定方法。
2)利用实验找出材料的最优烧结工艺,包括烧结温度和烧结时间。
2 实验背景知识2.1 烧结实验在粉体变成的型坯中,颗粒之间结合主要靠机械咬合或塑化剂的粘合,型坯的强度不高。
将型坯在一定的温度下进行加热,使颗粒间的机械咬合转变成直接依靠离子键,共价键结合,极大的提高材料的强度,这个过程就是烧结。
陶瓷材料的烧结分为三个阶段,升温阶段,保温阶段和降温阶段。
在升温阶段,坯体中往往出现挥发分排出、有机粘合剂等分解氧化、液相产生、晶粒重排与长大等微观现象。
在操作上,考虑到烧结时挥发分的排除和烧结炉的寿命,需要在不同阶段有不同的升温速率。
保温阶段指型坯在升到的最高温度(通常也叫烧结温度)下保持的过程。
粉体烧结涉及组成原子、离子或分子的扩散传质过程,是一个热激活过程,温度越高,烧结越快。
在工程上为了保证效率和质量,保温阶段的最高温度很有讲究。
烧结温度与物料的结晶化学特性有关,晶格能大,高温下质点移动困难,不利于烧结。
烧结温度与材料的熔点有关系,对陶瓷而言是其熔点的0.7—0.9倍,对金属而言是其熔点的0.4-0.7倍。
冷却阶段是陶瓷材料从最高温度到室温的过程,冷却过程中伴随有液相凝固、析晶、相变等物理化学变化。
冷却方式、冷却速度快慢对陶瓷材料最终相的组成、结构和性能等都有很大的影响,所以所有的烧结实验需要精心设计冷却工艺。
由于烧结的温度如果过高,则可能出现材料颗粒尺寸大,相变完全等严重影响材料性能的问题,晶粒尺寸越大,材料的韧性和强度就越差,而这正是陶瓷材料的最大问题,所以要提高陶瓷的韧性,就必须降低晶粒的尺寸,降低烧结温度和时间。
但是在烧结时,如果烧结温度太低,没有充分烧结,材料颗粒间的结合不紧密,颗粒间仍然是靠机械力结合,没有发生颗粒的重排,原子的传递等过程,那么材料就是不可用的。
陶瓷密度一般为多大,陶瓷密度测量方法是什么,精密陶瓷孔隙率与体密度测试仪怎么使用?

精密陶瓷孔隙率与体密度测试仪、陶瓷体密度测定仪、陶瓷体积密度计、陶瓷孔隙率测试仪适用于测量多孔吸水性材料及无孔型非吸水性固体材料的密度测量。
如果要测量材料吸水率、孔隙率等,需要满足材料的孔隙率不小于1%才行。
陶瓷密度计的测量原理为阿基米德浮力法。
陶瓷密度检测仪的测量方法有排水法(液体浸渍法)、煮沸饱和法、封蜡法等。
陶瓷密度测试仪的设计制造符合GB/T 39688-2020《陶瓷涂层密度的测试方法》、GB/T25995-2010《精细陶瓷密度和显气孔率试验方法》及GB/T17911.3-1999《耐火陶瓷纤维制品体积密度试验方法》等相关标准中的试验方法要求。
采用排水法进行非吸水性固体材料密度测量时,仪器自动以固体材料在空气中的质量M1及材料在水中时排开水的体积V的比值,计算材料的密度值。
而材料在水中时排开水的体积V,符合(M1-M2)g=ρ1gV,其中M2为材料置于水中的浮重,ρ1则为水的密度(一般默认为1.0g/cm3),合并计算后得到陶瓷密度计内置软件程序的非吸水性固体材料密度计算公式ρ=M1ρ1/(M1-M2)。
陶瓷密度测试仪可以用于吸水性、多孔型固体材料密度、孔隙率、吸水率测量及非吸水性、无孔型固体材料的密度测定。
常用于橡胶、塑料、硬质合金、粉末冶金、陶瓷生胚、烧结陶瓷、耐火材料、磁性材料、海绵、泡沫、气动工具、汽车零件、陶瓷雾化芯、电子绝缘材料、电线电缆、氧化铝、氧化硅、氮化硼、碳化硅、氧化锆、新型陶瓷、多孔陶瓷、纳米陶瓷、陶瓷刀、陶瓷片、日用陶瓷、建筑陶瓷、工艺陶瓷、陶瓷砖、发泡陶瓷、压电陶瓷等材料的密度测试。
陶瓷密度计技术参数仪器型号:XXF-12031S称重分辨率:0.001g称重阀值:120g密度解析:0.0001g/cm3体积分辨率:0.01cm3孔隙分辨率:0.01%吸水率显示:0.01%称重传感器:德国的HBM校正方式:单点校正数据接口:RS-232结果显示:密度、孔隙率、吸水率等操作方法:触摸屏操作扩展支持定制:手势操作、声音控制等数据处理:多组数据的平均值、Max值、Min值等设定功能:温度补偿设定、溶液补偿设定、封蜡法蜡密度设定、密度上下限设置测量方法:煮沸法、真空饱和法、封蜡法、液体浸渍法、排水法精密陶瓷孔隙率与体密度测试仪的使用方法陶瓷密度测试仪用于测量非吸水性固体材料时只需要2个步骤,而测量吸水性固体材料时需要3个步骤。
陶瓷砖吸水率真空法检测的影响因素探讨

陶瓷砖吸水率真空法检测的影响因素探讨摘要:中国陶瓷砖试验方法GB/T 3810的部分规定了陶瓷砖吸水率、显气孔率、表观相对密度和容重的测定方法。
关键词:陶瓷砖吸水率;真空法检测;影响因素1 引言本篇文章向我们探讨关于陶瓷砖吸水率真空法检测的影响因素,详细状况如下所述。
2 陶瓷砖真空吸水率型号/陶瓷砖真空吸水率说明2.1 概述该仪器系采用真空法对日用陶瓷、建筑卫生陶瓷、电瓷的吸水率进行测定。
满足中华人民共和国国家标准GB/T 3810《陶瓷砖试验方法:吸水率、显气孔率、表观相对密度和容重的测定》。
该仪器也可用于测定砖瓦、水泥制品等的吸水率测定。
2.2 主要技术指标:(1)真空度:≥ 0.09MPa。
(2)容积:ф320 ×350mm。
(3)抽真空时间:0~99分钟59秒连续可调0~99。
(4)浸泡时间: 0~99分钟59秒连续可调0~99。
(5)重复性误差:<5%。
2.3 仪器的结构及组成该仪器采用机电一体化结构,由真空容器、蒸馏水容器、真空泵、真空注气阀、注水阀(放水阀)及数字式控制器组成。
2.4 仪器的测试原理该仪器采用全自动数字化控制系统,根据国家标准的技术要求设定好预抽真空时间及保持时间、浸泡时间。
当将已按测定方法制备好的试样烘至恒重后称重m1,放入真空容器内,关闭注气阀。
启动真空泵对真空容器进行预抽真空,当真空达到要求保持一定时间后,打开注水阀,使其蒸馏水徐徐注入真空容器中,直至达到水面要求时,手动关闭注水阀,然后浸泡一定时间。
通过声音报警得知浸泡时间结束,打开注气阀对真空容器中注入空气,同时打开注水阀(放水阀)将真空容器中的蒸馏水放回蒸馏水容器中。
将真空容器盖揭去,取出试样。
将一块浸湿过的麂皮用手拧干,将麂皮放在平台上依次轻轻擦干每块砖的表面,对于凹凸或有浮雕的表面应用麂皮轻快地擦去表面水分,然后立即称重m2,记录每块试样的测量结果,然后计算陶瓷砖的吸水率。
2.5 实验室应配备的相关仪器(1)能在110°c±5°c温度下工作的烘箱。
精细陶瓷密度和显气孔率试验方法

精细陶瓷密度和显气孔率试验方法
精细陶瓷密度和显气孔率试验方法
一、目的
本试验方法旨在测定精细陶瓷材料的密度和显气孔率,以评估其物理性能。
二、原理
密度是指物质的质量与其所占体积的比值,而显气孔率则表示材料中开口气孔所占的体积分数。
通过测量试样的质量和体积,结合相关计算公式,可获得密度和显气孔率的结果。
三、试验材料与设备
试验材料:精细陶瓷试样
设备:天平、溢流水槽、干燥箱、测量筒、真空泵、烘箱、切割机等
四、试验步骤
试样制备:使用切割机将试样加工成标准尺寸的小块,确保其尺寸准确,表面平整。
试样干燥:将试样放入烘箱中干燥至恒重,记录干燥后的质量m1。
浸水测量:将干燥后的试样放入测量筒中,加入足够的水淹没试样,然后使用真空泵排除试样内的空气。
将装有试样的测量筒置于溢流水槽中,直至气泡不再逸出。
测量溢流水槽中水的体积V1。
试样处理:将浸水后的试样取出,用湿布擦拭表面水分,然后放入烘箱中干燥至恒重,记录干燥后的质量m2。
计算密度:根据公式ρ=m/V,其中m为干燥后试样的质量(m1或m2),V为水的体积(V1),计算出试样的密度ρ。
计算显气孔率:根据公式显气孔率=(m1-m2)/ρ,其中m1为干燥后试样的质量,m2为浸水后干燥的试样质量,ρ为试样的密度,计算出试样的显气孔率。
五、结果分析
根据试验数据,分析试样的密度和显气孔率,并与相关标准或文献数据进行比较,评估其物理性能。
陶瓷材料体积密度、吸水率及气孔率的测定

实验三 陶瓷材料体积密度、吸水率及气孔率的测定一、目的意义在无机非金属材料中,有的材料内部是有气孔的,这些气孔对材料的性能和质量有重要的影响。
材料的体积密度是材料最基本的属性之一,它是鉴定矿物的重要依据,也是进行其他许多物性测试(如颗粒粒径测试)的基础数据。
材料的吸水率、气孔率是材料结构特征的标志。
在材料研究中,吸水率、气孔率的测定是对制品质量进行检定的最常用的方法之一。
在陶瓷材料、耐火材料、塑料、复合材料等材料的科研和生产中,测定这三个指标对质量控制有重要意义。
本实验的目的:①了解体积密度、吸水率、气孔率等概念的物理意义;②掌握体积密度、吸水率、气孔率的测定方法;③了解体积密度、吸水率、气孔率测试中误差产生的原因及防止方法。
二、基本原理材料吸水率、气孔率的测定都是基于密度的测定,而密度的测定则基于阿基米德原理。
由阿基米德定律可知,浸在液体中的任何物体都要受到浮力(即液体的静压力)的作用,浮力的大小等于该物体排开液体的重量。
重量是一种重力的值,但在使用根据杠杆原理设计制造的天平进行衡量时、对物体重量的测定巳归结为对其质量的测定。
因此,阿基米德定律可用下式表示:L VD m m =-21 (1) 式中 1m ——在空气中称量物体时所得物体的质量;2m ——在液体中称量物体时所得物体的质量;V ——物体的体积;L D ——液体的密度。
这样,物体的体积就可以通过将物体浸于已知密度的液体中,通过测定其质量的方法来求得。
由于浸于浸液中的物体受到液体静压力的作用,所以这种方法称之为“液体静力衡量法”。
在工程测量中,往往忽略空气浮力的影响,在此前提下进一步推导可得用称量法测定物体密度时的原理公式211m m D m D L -= (2) 这样,只要测出有关量并代入上式,就可计算出待测物体在温度t ℃时的密度。
材料的密度,可以分为真密度、体积密度等。
体积密度指不含游离水材料的质量与材料的总体积(包括材料的实体积和全部孔隙所占的体积)之比。
大学实验无机非金属专业气孔率吸水率及体积密度的测定

4.饱和试样质量测定:从浸液中取出试样,用 饱和了液体的毛巾,小心地擦去试样表面多余的 液滴(但不能把气孔中的液体吸出)迅速称量饱 和试样在空气中的质量m3,精确至0.01g。每个 样品的整个擦水和称量操作应在1min之内完成。 5.浸渍液体密度测定:测定在试验温度下所用 的浸渍液体的密度,可采用液体静力称量法、液 体比重大平法或液体比重计法,精确至0.01g/cm3。
/sundae_meng
图1 抽真空装置 1-抽真空用箱;2-盖子;3-垫圈;4-液体;5-开关; 6-水位仪;7-排液口;8-试样;9-排气口;10-连接管; 11-真空泵;12-接压力计口;13-压力计;14-水银槽
/sundae_meng
(1) (2 ) (3) (4)
(5)
/sundae_meng
式中 m1——干燥试样的质量,g; m2——饱和试样的表观质量,g; m3——饱和试样在空气中的质量,g; Dl——试验温度下,浸渍液体的密度, g; Dt——试样的真密度,g/cm3。
/sundae_meng
四、实验步骤 1.刷净试样表面灰尘,编号,放入电热烘 箱中于105~110℃下烘干2h,或在允许更 高温度下烘干至恒量。并于干燥器中自然 冷却至室温。称量试样的质量m1,精确至 0.01g。试样干燥至最后两次称量之差不大 于其前一次的0.1%即为恒量。
/sundae_meng
式(4)中(Dt—Db)此差值为1cm3的无孔物体比 1cm3的有孔物体重多少。为了将1cm3物体中的气 孔完全填满,而使它变为无孔物体,就需要密度 为Dt的无孔物体(Dt—Db)克。用Dt去除这个质 量所得之商即为所需的无孔物体的体积,即 (Dt—Db)/Dt cm3。而体积值(Dt—Db)/Dt就是 开口气孔和闭口气孔的总体积,以百分数表示即 为真气孔率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、实验原理
干燥试样重go(g)、饱吸液体试样在空气中的 重量g1(g)、饱吸液体试样在液体中的重量g2 (g)、液体的密度r(g/cm3)、陶瓷的理论密度, 可按下式分别计算陶瓷试样的吸水率、开口气 孔率、实际密度和总气孔率: 吸水率= 100(g1—go)/ go (%) 开口气孔率= 100(g1—go)/(g1—g2) (%) 实际密度= rgo/(g1—g2) (g/cm3)
陶瓷吸水率、气孔率及体积密度的测定 一、实验目的
1)
气孔率和体积密度是陶瓷体性能的重要指 标,是鉴定产品质量的一个重要方面; 掌握陶瓷吸水率、气孔率及实际密度的测 定方法。
2)
二、基本概念 Nhomakorabea吸水率——试样孔隙可吸收水的重量,与试样经 110C°干燥之后之重量之比,用百分率表示。 开口(显)气孔率——试样中开口孔隙(与大气相连 通的孔隙)的体积与试样总体积之比,用百分率表示。 总气孔率——试样中全部孔隙(即开口与闭口大孔隙 之和)的体积与试样总体积之比,用百分率表示。 实际密度——试样经110C°干燥之后之重量与试样 总体积之比,用g/cm3表示。 理论密度——假设试样体内完全不含气孔时的密度, 用g/cm3表示。
四、实验仪器及材料
电子天平、真空泵、真空干燥器、压力表、
电子比重计、烘箱、小烧杯、镊子、试样、 橡皮管。
五、实验步骤
抽真空装置图(图1)
1)将试样编号以后,放入105—110 C°干燥烘 箱烘至恒重,在干燥器中冷却至室温,然后在 电子比重计(图2)上称其重量go。 2)将试样放入真空装置(见图1)的中真空干燥 器中,作真空处理:先将试样在真空度不小于 95%的条件下保持10分钟;注入液体,直至试 样完全被淹没;再抽真空,直至试样中没有气 泡出来为止(约需30分钟);先放入空气,再 关闭真空泵;打开真空干燥器的盖,取出试样。
电子比重计 (图2)
3)将样品放在电子比重计上水槽的吊篮中,
天平给出的重量就是饱吸液体的试样在液体 中的重量g2。 4)从液体中取出试样,用湿毛巾均匀地抹去 试样表面的液体,在比重计上迅速称取饱吸 液体试样在空气中的重量g1。
六、注意事项
称取饱吸液体试样在空气中的重量时,抹液
体操作必须前后一致; 必须经常校准天平的零点,以保证称重准确; 每个试样需要平行测定5次,用来取平均数的 不得少于3次,吸水率、气孔率、实际密度的 绝对误差均不应不大于±0.01
七、思考题
从上面的实验数据是否可以得到试样的闭气
孔率?为多少? 称取饱吸液体试样在空气中的重量时,抹液 体操作可能造成测量误差吗?如何最大限度 避免由此产生的误差? 测定试样干燥重量时,一定得通过105—110 C°干燥处理吗?