实验一:离散信号采样、傅里叶变换、Z变换

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

z变换 傅里叶变换 联系和差别

z变换 傅里叶变换 联系和差别

一、引言在数学和工程领域中,z变换和傅里叶变换是两个重要的概念。

它们在信号处理、控制系统、电路分析等领域有着广泛的应用。

本文将探讨z 变换和傅里叶变换的联系和差别,帮助读者更好地理解这两个概念。

二、z变换的概念和用途1. z变换是一种离散时间信号的转换方法,可以将离散时间域中的信号转换为z域中的信号。

它在数字滤波、数字信号处理等领域有着重要的应用。

2. z变换可以将离散时间域中的差分方程转换为z域中的代数方程,从而简化系统的分析和设计。

3. z变换的应用范围广泛,涉及数字滤波器的设计、控制系统的稳定性分析、信号的频域分析等多个领域。

三、傅里叶变换的概念和用途1. 傅里叶变换是一种连续时间信号的频域分析方法,可以将时域中的信号转换为频域中的信号,展现信号的频谱特性。

2. 傅里叶变换在通信、电子电路、光学等领域有着广泛的应用,可以用于信号的滤波、频谱分析、信号合成等方面。

3. 傅里叶变换可以将时域中的信号分解为不同频率的正弦和余弦信号,从而更直观地理解信号的频谱特性。

四、z变换和傅里叶变换的联系1. z变换和傅里叶变换都是一种信号分析的方法,z变换主要针对离散时间信号,而傅里叶变换主要针对连续时间信号。

2. 在频域中,z变换和傅里叶变换都可以将时域中的信号转换为频域中的信号,为信号的分析提供了重要手段。

3. 在数字信号处理中,z变换可以用于数字滤波器的设计和频域特性分析,而傅里叶变换可以用于时域信号的频谱分析和频率特性展现。

五、z变换和傅里叶变换的差别1. z变换是一种离散时间信号的频域分析方法,可以将差分方程转换为代数方程,而傅里叶变换是一种连续时间信号的频域分析方法,可以将时域信号分解为频域信号。

2. z变换适用于数字信号处理和数字系统分析,而傅里叶变换适用于模拟信号处理和连续系统分析。

3. z变换和傅里叶变换在数学形式上有所不同,z变换主要通过z域中的复平面上的积分来表示,而傅里叶变换主要通过复指数函数的积分来表示。

第二章 z变换与离散时间傅里叶变换(DTFT)

第二章 z变换与离散时间傅里叶变换(DTFT)

2.2 z变换
定义: X ( z ) = ΖT [ x (n) ]
注意符号:时域小写 x 变换域大写 X
= ∑ x(n)z − n
n =−∞ ∞

=
n =−∞
∑ x(n)r
− n − jω n
e
复变量: z = re jω ,复平面上的点 r = z 幅度,到原点的距离 ω 数字角频率, 与水平轴之间的夹角
重叠区域。一般缩小,个别扩大
十一、时域乘积定理 x(n) ⋅ h(n) ←⎯ → X ( z) ∗ H ( z) Rx − Rh− < z < Rx + Rh + 1 ⎛ z ⎞ −1 = ⎟ν dν ∫ X (ν )H ⎜ 2π j C ν ⎝ ⎠ 1 ⎛ z ⎞ −1 = ⎟ν dν ∫ H (ν )X ⎜ 2π j C ν ⎝ ⎠
Rx − < z < Rx +
Rx − < z < Rx +
2.4 z变换的基本性质和定理

ZT x(n) ←⎯→ X ( z)
Rx − < z < Rx +
五、共轭序列 x *(n) ←⎯ → X * ( z *)
Rx − < z < Rx +
六、翻摺序列
⎛1⎞ → X ⎜ ⎟, x(− n) ←⎯ ⎝z⎠ 1 1 < z < Rx + Rx −
实用公式——根据极点的阶,用相应的公式求留数
若zr 是X ( z )z n -1 的多重极点(l 阶极点),则该点处的留数
n -1 ⎤ X z Res ⎡ ( )z ⎣ ⎦ z = zr
1 d l −1 ⎡ l = ⋅ l −1 ( z − zr ) X ( z )z n -1 ⎤ ⎦ z = zr ( l-1)! dz ⎣

连续与离散信号三大变换(傅立叶、拉斯、Z变换)性质总结

连续与离散信号三大变换(傅立叶、拉斯、Z变换)性质总结
一、连续傅里叶变换性质
连续傅里叶变换对
相对偶的连续傅里叶变换对
名称
连续时间函数
傅里叶变换
名称
连续时间函数
傅里叶变换
线性
对称性
尺度变换
时移
频移
时域微分
频域微分
时域积分
频域积分
时域卷积
频域卷积
时域抽样
频域抽样
希尔伯特变换
帕什瓦尔公式
, :能量谱密度
二、离散傅里叶变换性质
连续傅里叶变换对
相对偶的连续傅里叶变换对
名称
连续时间函数
傅里叶变换
名称
连续时间函数
傅里叶变换
线性
对称性
尺度变换
为整数
时移
频移
频域微分
差分
时域卷积
频域卷积
时域对偶
频域对偶
帕什瓦尔公式
, :能量谱密度
三、拉氏变换与
双边拉氏变换对
双边 变换对
连续时间函数
像函数
离散时间序列
像函数
1
1





,,Βιβλιοθήκη ,四、拉氏变换性质
连续拉普拉斯变换对
相对偶的连续拉普拉斯变换对
1
1
七、
变换对
相对偶的 变换对
名称
离散时间函数
变换
名称
离散时间函数
变换
线性
收敛域
收敛域
尺度变换
收敛域:
收敛域:
时移
频移
收敛域:
收敛域:
收敛域:
收敛域:
Z域微分
时域卷积
Z域卷积
初值定理
若 是因果序列,则

傅立叶变换、拉普拉斯变换、Z变换最全攻略

傅立叶变换、拉普拉斯变换、Z变换最全攻略

傅立叶变换、拉普拉斯变换、Z变换最全攻略傅立叶变换、拉普拉斯变换、Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换。

研究的都是什么?从几方面讨论下。

这三种变换都非常重要!任何理工学科都不可避免需要这些变换。

傅立叶变换,拉普拉斯变换, Z变换的意义【傅里叶变换】在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。

理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。

我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。

傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。

傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。

这都是一个信号的不同表示形式。

它的公式会用就可以,当然把证明看懂了更好。

对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。

幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。

在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。

实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。

离散信号的傅立叶变换

离散信号的傅立叶变换

离散信号的傅立叶变换一、傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:/pdfbook.htm要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。

二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。

当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。

法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

数字信号处理-z变换与离散时间傅立叶变换(DTFT)

数字信号处理-z变换与离散时间傅立叶变换(DTFT)
离散时间系统
N a i y i ( n ) T a i xi ( n ) i 1 i 1
N
9
4.移不变系统
——系统的响应与激励施加于系统的时刻无关
x ( n)
移位m
T[ ]
T [ x(n m)]
x ( n)
T[ ]
移位m
y ( n m)
10
5.单位抽样响应与卷积和
序列x(n)的Fourier反变换定义:
a<-1
0<a<1
-1<a<0
a=1
a=-1
7
5.复指数序列 x(n) Ca n
x(n) C a n cos(0 n ) j sin( 0 n )
|a|=1
C C e j a a e j0
|a|>1
|a|<1
8
3.线性系统
——满足叠加原理(可加性、比例性)
15
1.1 z变换的定义
序列x(n)的Z变换定义为:
X ( z) Z x(n) x(n) z
n

n
Z是复变量,所在的平面称为Z平面
16
1.2 z变换的收敛域
对于任意给定的序列x(n),使其Z变换X(z)收敛的所有z值
的集合称为X(z)的收敛域(Region of convergence,ROC)。
=X (e
jT
ˆ ( j ) ) X a
抽样序列在单位圆上的z变换=其理想抽样信号的傅里叶变换
52
第五节 序列的傅立叶变换(DTFT)
5.1 序列的傅立叶变换定义
序列x(n)的Fourier变换定义:
X (e ) DTFT [ x(n)]

对傅里叶变换、拉氏变换、z变换详细剖析

对傅里叶变换、拉氏变换、z变换详细剖析

对傅里叶变换、拉氏变换、z变换详细剖析变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。

已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。

这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。

所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。

我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。

傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。

但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。

建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。

(另一种说法)对于周期函数f,傅立叶变换就是把这个函数分解成很多个正弦函数fn的和,每个fn的频率是f的n倍。

实验一 快速傅里叶变换及其应用

实验一 快速傅里叶变换及其应用

实验一快速傅里叶变换及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉FFT子程序。

2.熟悉应用FFT对典型信号进行频谱分析的方法。

3.了解应用FFT进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT。

4.熟悉应用FFT实现两个序列的线性卷积的方法。

二、实验原理与方法在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。

FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT是以2为基数的,其长度。

它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

(一)在运用DFT进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。

数字信号处理——第2章 离散时间傅里叶变换与Z变换

数字信号处理——第2章 离散时间傅里叶变换与Z变换

• 总结:
①序列ZT的收敛域以极点为边界(包含0 和 ②收敛域内不含任何极点,可以包含0 ③相同的零极点可能对应不同的收敛域,即: 不同的序列可能有相同的ZT ④收敛域汇总:右外、左内、双环、有限长z平面


常见典型序列z变换
序列 Z变换 收敛域
z a
z b
注意:只有z变换和它的收敛域两者在一起才和序列相对应。 其它序列见P54: 表2-1 几种序列的z变换
2.3
z反变换

Z反变换: 从X(z)中还原出原序列x(n)
X ( z ) ZT [ x ( n)]
n

x (n) z n
实质:求X(z)幂级数展开式
Z反变换的求解方法: 留数定理法
部分分式法
长除法
1. 留数定理法
根据复变函数理论,可以推导出
x ( n)
1 2 j
X ( z ) z n 1dz
1 1 3z 1
n
z 2
2 n u ( n)
z 3
3
n
n
u (n 1)
x n 2 u n 3 u n 1
3. 幂级数法(长除法)
如果序列的ZT能表示成幂级数的形式,则序列x(n) 是幂 级数 说明: ①这种方法只对某些特殊的ZT有效。 ②如果ZT为有理函数,可用长除法将X(z)展开成幂级 数。 若为右边序列(特例:因果序列),将X(z)展开成负幂 级数; 若为左边序列(特例:反因果序列),将X(z)展开成正 幂级数; 中
z z 1 1 X z 1 z 2 z 3 1 2z 1 3 z 1
1 ZT [a u (n)] z a 1 1 az 1 n ZT [a u (n 1)] z a 1 1 az

实验一信号、系统及系统响应实验报告

实验一信号、系统及系统响应实验报告

实验一信号、系统及系统响应一、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。

二、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。

N=500;x=rand(1,N);subplot(1,2,1);plot(x);grid on;y=randn(1,N);subplot(1,2,2);plot(y);b. 线性时不变系统单位脉冲响应为h(n)=(0.9)n u(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。

n=[1:1:1000];y=0.9.^n.*u(n);x=ones(1,10);z=conv(x,y);stem(z)axis([0 20 0 10]);c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。

计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?A=[1,-1,0.9];B=[1];hn=impz(B,A,20);subplot(2,9,1);plot(hn);hn=impz(B,A,30);subplot(2,9,2);plot(hn);hn=impz(B,A,40);subplot(2,9,3);plot(hn);hn=impz(B,A,50);subplot(2,9,4);plot(hn);hn=impz(B,A,60);subplot(2,9,5);plot(hn);hn=impz(B,A,70);subplot(2,9,6);plot(hn);hn=impz(B,A,80);subplot(2,9,7); plot(hn);hn=impz(B,A,90); subplot(2,9,8); plot(hn);hn=impz(B,A,100); subplot(2,9,9); plot(hn);sn1=ones(1,20); sn=filter(B,A,sn1); subplot(2,9,10); stem(sn);sn2=ones(1,30); sn=filter(B,A,sn2); subplot(2,9,11); stem(sn);sn3=ones(1,40); sn=filter(B,A,sn3); subplot(2,9,12); stem(sn);sn4=ones(1,50); sn=filter(B,A,sn4); subplot(2,9,13); stem(sn);sn5=ones(1,60); sn=filter(B,A,sn5); subplot(2,9,14); stem(sn);sn6=ones(1,70); sn=filter(B,A,sn6); subplot(2,9,15); stem(sn);sn7=ones(1,80); sn=filter(B,A,sn7); subplot(2,9,16); stem(sn);sn8=ones(1,90); sn=filter(B,A,sn8); subplot(2,9,17); stem(sn);sn9=ones(1,100); sn=filter(B,A,sn9); subplot(2,9,18); stem(sn);d. 序列x(n)=(0.8)n u(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。

实验一 基于matlab语言的线性离散系统的z变换分析法1(1)

实验一 基于matlab语言的线性离散系统的z变换分析法1(1)

实验一基于MATLAB语言的线性离散系统的Z变换分析法一、实验目的1. 学习并掌握 Matlab 语言离散时间系统模型建立方法;2.学习离散传递函数的留数分析与编程实现的方法;3.学习并掌握脉冲和阶跃响应的编程方法;4.理解与分析离散传递函数不同极点的时间响应特点。

二、实验工具1. MATLAB 软件(6.5 以上版本);2. 每人计算机一台。

三、实验内容1. 在Matlab语言平台上,通过给定的离散时间系统差分方程,理解课程中Z变换定义,掌握信号与线性系统模型之间Z传递函数的几种形式表示方法;2. 学习语言编程中的Z变换传递函数如何计算与显示相应的离散点序列的操作与实现的方法,深刻理解课程中Z变换的逆变换;3. 通过编程,掌握传递函数的极点与留数的计算方法,加深理解G(z)/z 的分式方法实现过程;4. 通过系统的脉冲响应编程实现,理解输出响应的离散点序列的本质,即逆变换的实现过程;5. 通过编程分析,理解系统的Z传递函数等于单位脉冲响应的Z变换,并完成响应的脉冲离散序列点的计算;6. 通过程序设计,理解课程中脉冲传递函数极点对系统动态行为的影响,如单独极点、复极点对响应的影响。

四、实验步骤1.创建系统How to create digital system g Four examples are as follows:numg=[0.1 0.03 -0.07];deng=[1 -2.7 2.42 -0.72];g=tf(numg,deng,-1)get(g);[nn dd]=tfdata(g,'v')[zz,pp,kk]=zpkdata(g,'v')Unite circle region with distrbuting zeros points and poles points hold onpzmap(g), hold offaxis equal运行结果:2.转换为零极点标准形式Convert from tf(z-function) to zpk(z-function) Part C exercise form gg=zpk(g)[zz,pp,kk tts]=zpkdata(gg,'v')[z,p k,ts]=zpkdata(g,'v')运行结果:3.四个例子Four examples are as follows:Part A exerciseeg1mun=[1.25 -1.25,0.30];eg1den=[1 -1.05 0.80 -0.10];eg1=tf(eg1mun,eg1den,-1);eg1zpk=zpk(eg1);[zz1,pp1,kk1,tts1]=zpkdata(eg1zpk,'v');Part B exerciseeg2mun=[0.84 -0.062 -0.156 0.058];eg2den=[1 -1.03 0.22 0.094 0.05];eg2=tf(eg2mun,eg2den,-1);eg2zpk=zpk(eg2);[zz2,pp2,kk2,tts2]=zpkdata(eg2zpk,'v');Part C exercisezz3=[-0.2 0.4];pp3=[0.6 0.5+0.75i 0.5-0.75i 0.3];kk3=150;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);Part D exercisezz4=[-0.3 0.4+0.2i 0.4-0.2i];pp4=[-0.6 -0.3,0.5 0.6];kk4=5;tts4=-1;eg4zpk=zpk(zz4,pp4,kk4,tts4);eg4=tf(eg4zpk);4.留数法Residue method and impluse response numg=[2 -2.2 0.65];deng=[1 -0.6728 0.0463 0.4860]; [rGoz, pGoz,other]=residue(numg,[deng 0]) [mag_pGoz,theta_pGoz] =xy2p(pGoz)[mag-rGoz,theta-rGoz]=xy2p(rGoz)G=tf(numg,deng,-1)impulse(G)[y,k]=impulse(G);stem(k,y,'filled');impulse(G)运行结果:5.复杂极点响应When transfer function is G(Z) with complex ,t=t*ts;pole of z=e^(+-j*30*pi/3) and z=-0.5,as well as its gain value is unit step signal,its collecting cycle is 0.5 second,how to analyze its response.gcfts=0.3;num=[1 0.5];den=conv([1 -exp(i*pi/3)],[1 -exp(-i*pi/3)]);g1=tf(num,den,ts)[y,k]=impulse(g1,20);stem(k,y,'filled'),grid运行结果:6.重极点响应How to analyze response with repeating poles dtime=[0:90];y(k+2)-1.8y(k+1)+0.81y(k)=3u(k+1)-1.2u(k) yi=impulse(gstep,dtime)gcfnum=[3 -1.2];den=[1 -1.8 0.81];[rGoz, pGoz,other]=residue(num,[den 0])t=0:60;y=rGoz(2,1).*(t.*(pGoz(2,1).^(t-1)))+rGoz(1,1).*(pGoz(1,1).^(t)) y1=zeros(1,61);y1(1,1)=rGoz(3,1);y=y+y1;t=ts*t;stem(t,y,'filled'),gridSpecial example about difference real pole tosystem response[rGoz,pGoz,other]=residue(num,[den,0])num1=[rGoz(1) 0];den1=[1 -pGoz(1)]gg1=tf(num1,den1,ts)[y,t]=impulse(gg1,50)stem(t,y,'filled'),grid运行结果:7.阶跃响应numg=[2 -2.2 0.56];deng=[1 -0.6728 0.0463 0.4860];g=tf(numg,deng,1);numgstep=[numg 0];dengstep=conv(deng,[1 -1]);gstep=tf(numgstep,dengstep,1)dtime=[0:90];yi=impulse(gstep,dtime)subplot(2,1,1)stem(dtime,yi,'filled')ys=step(g,dtime);subplot(2,1,2)stem(dtime,ys,'filled')dcgain(g)ys_ss=ys(end)ys_ss=ys(max(dtime))运行结果:Example 1: Analysis of subsection input function subplot(1,1,1)num=[2 -2.2 0.56];den=[1 -0.6728 0.0463 0.4860];ts=0.2;g=tf(num,den,ts);dtime=[0:ts:8]';u=2.0*ones(size(dtime));ii=find(dtime>=2.0); u(ii)=0.5;y=lsim(g,u,dtime);stem(dtime,y,'filled'),gridhold onplot(dtime,u,'o')hold offtext(2.3,-1.8,'output')text(1.6,2.3,'input')运行结果:五、实验思考1、根据实验结果,分析离散传递函数不同极点的时间响应特点。

2.z变换与离散时间傅里叶变换(DTFT)

2.z变换与离散时间傅里叶变换(DTFT)

z 变换与离散时间Fourier 1、z 变换2、离散时间3、序列的z Fourier 变换的关系4、离散系统的系统函数,系统的频率响应信号与系统的分析方法:时域分析方法 变换域分析方法连续时间信号与系统: Fourier Laplace离散时间信号与系统: z 变换离散时间信号与系统的分析方法2.1.1 z 变换的定义2.1 z 变换:z X )(其中成一个复平面,称为ωj e r z ⋅=(x z 反变换:其中,积分路径是在逆时针旋转的闭合围线。

在数字信号处理中,不需要用围线积分来求2.1.2 z 变换的收敛域对任意给定序列的所有z 值的集合称为z 变换公式的级数收敛的充要条件是满足绝对可和,对某一具体的使该不等式成立,这个域,收敛域内不能有极点。

n ∞=−∞∑2.1.3 4 种典型序列的除0 和∞两点是否收敛与n 1和n 2取值情况有关外,整个z 平面均收敛。

1. 有限长序列x (n ) 只在n 1≤n ()()z X z x n 其变换:即要求: ROC 至少为:1()()X z x n z −=0(0)x z +如果n 2 ≤0 n 1<0,n 2≤如果n 1≥0 n 1≥0,n 2> 0如果n 1< 0 <n 1<0,n 2 > 0 1100n n Roc ∴≥<当时, 当时, 因果序列的处收敛在∞处收敛的变换,其序列必为因果序列在工程中,人们感兴趣的主要是因果序列。

1()()n n X z x n ∞==∑2. 右边序列x (n ) 在n ≥n 1时有值,在2200n n Roc ∴≤>当时, 当时,2()()()n n n X z x n x n =−∞=−∞==∑∑3. 左边序列x (n ) 在n ≤n 2 时有值,在x x x x x R R R R z R −+−++∴≥<<<当时, 当时,0()()()nn n X z x n x n z ∞−=−∞==∑ Roc: 0≤前式 Roc: x R −后式4. 双边序列n 为任意值时x 例1:x (n )=δ(变换及收敛域。

第二章 z变换与离散时间傅里叶变换(DTFT)

第二章 z变换与离散时间傅里叶变换(DTFT)
f (n )
F(e
jωC
1 ) F(e j 0 ) 2
1
2
1 a 2a cosωC

1 2( 1 a)
ωC 0.006 rad
1
c f f s 15 Hz 2π
F ( e j )
...
1 2 1 a
0
n
2

c

2

三、FT与DTFT的关系
1 j ˆ a ( j) | T X a ( j 2k ) X (e ) X T k T
z e
数字频率表示z平面的辐角,它和模拟角频率的 关系为
f T 2 fs fs
所以说,数字频率是模拟角频率的归一化值,或 是模拟频率对抽样频率的相对比值乘以2
X ( z ) |z e
j
1 2k j X (e ) X a ( j ) T k T
FT
x1 (n) e
jω0 n

DTFT
X 1 (e jω ) 2π
FT
m
(ω ω

0
2mπ )
2) cosω0t π [δ (Ω ω0 ) δ (Ω ω0 )]
x2 (n) cosω0 n
DTFT
π
m
[ (ω ω
1 1 n 1 x ( n) |z|1 X ( z) z dz 2 2j
X (e


j
)e
jwn
dw
• 序列的傅里叶变换是序列的z变换在单位圆 上的值
• 利用ZT和DTFT的关系可以有ZT计算DTFT。
例1、计算门序列的DTFT

傅里叶变换 拉普拉斯变换 z变换

傅里叶变换 拉普拉斯变换 z变换

傅里叶变换、拉普拉斯变换和z变换,是在信号处理和控制系统领域中非常重要的数学工具和转换方法。

它们各自具有独特的数学特性和应用领域,对于理解和分析信号、系统和控制器具有重要意义。

在本篇文章中,我将从基础概念到深入原理,探讨这三种变换的定义、特性和应用,并共享我个人的见解和理解。

一、傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的数学方法。

通过傅里叶变换,我们可以将一个周期性信号分解为不同频率的正弦和余弦函数的叠加,从而分析信号的频谱特性。

傅里叶变换在通信、图像处理、音频处理等领域有着广泛的应用。

1. 定义和公式对于一个连续信号x(t),其傅里叶变换X(ω)定义如下:X(ω) = ∫[−∞, +∞]x(t)e^(−jωt)dt其中,X(ω)表示信号x(t)的频域表示,ω为角频率,e^(−jωt)为复指数函数。

2. 特性傅里叶变换具有线性性、时移性、频移性、频率缩放性等性质,这些性质使得我们可以通过傅里叶变换对信号进行分析和处理。

3. 应用傅里叶变换广泛应用于信号的频谱分析、滤波器设计、信息压缩等领域。

在音频处理中,通过傅里叶变换可以将时域的音频信号转换为频域表示,从而实现音频的频谱分析和变换。

二、拉普拉斯变换拉普拉斯变换是一种对信号进行复域转换的方法,它在控制系统分析和传递函数求解中有着重要的应用。

与傅里叶变换不同,拉普拉斯变换适用于非周期性信号和因果系统的分析。

1. 定义和公式对于一个连续信号x(t),其拉普拉斯变换X(s)定义如下:X(s) = ∫[0, +∞]x(t)e^(−st)dt其中,X(s)表示信号x(t)的拉普拉斯域表示,s为复数变量,e^(−st)为复指数函数。

2. 特性拉普拉斯变换具有线性性、平移性、尺度变换性等性质,这些性质使得我们可以方便地对线性时不变系统进行稳定性分析和传递函数求解。

3. 应用拉普拉斯变换在控制系统分析、电路分析、信号处理等领域有着广泛的应用。

在控制系统中,通过拉普拉斯变换可以将微分方程转换为代数方程,从而方便地进行系统的稳定性分析和控制器设计。

傅里叶变换拉普拉斯变换z变换

傅里叶变换拉普拉斯变换z变换

傅里叶变换拉普拉斯变换z变换第一部分:引言1. 介绍傅里叶变换、拉普拉斯变换和z变换的概念和背景在现代数学和工程学中,傅里叶变换、拉普拉斯变换和z变换是常见的数学工具,它们在信号处理、控制系统、通信等领域有着广泛的应用。

这三种变换都是对信号或系统进行频域分析的工具,能够将时域中的信号或系统转换到频域中,从而更好地理解和处理问题。

第二部分:深入探讨傅里叶变换2. 对傅里叶变换的介绍傅里叶变换是一种将时域信号转换为频域表示的工具。

它能够将一个信号分解成不同频率的正弦和余弦信号的叠加,从而得到信号的频谱信息。

3. 傅里叶变换的公式傅里叶变换的数学公式是一个关于频率(频域)和时间(时域)的积分变换,它能够将一个信号从时域转换到频域,显示出信号在各个频率上的成分。

4. 傅里叶变换的应用傅里叶变换在信号处理、通信、图像处理等领域有着广泛的应用,能够帮助工程师和科学家更好地理解和分析信号的频域特性,从而进行相应的处理和改进。

第三部分:进一步了解拉普拉斯变换5. 对拉普拉斯变换的介绍拉普拉斯变换是一种对信号或系统进行复频域分析的工具,它能够将时域中的信号或系统转换为s域(复频域)中进行分析。

6. 拉普拉斯变换的公式拉普拉斯变换的数学公式是一个对信号进行积分变换,它将时域中的信号转换到复频域中,从而更好地理解信号的稳定性、收敛性和频域特性。

7. 拉普拉斯变换的应用拉普拉斯变换在控制系统、电路分析、信号处理等领域有着重要的应用,能够帮助工程师和科学家更好地分析和设计系统,以及进行相应的频域处理。

第四部分:探讨z变换及其特点8. 对z变换的介绍z变换是一种对离散信号或系统进行频域分析的工具,它能够将离散时域中的序列转换为z域中的分析。

9. z变换的数学公式z变换是对离散信号进行求和,将时域中的序列转换到z域中进行分析,它能够更好地了解信号或系统的稳定性、性能和频域特性。

10. z变换的应用z变换在数字信号处理、控制系统、滤波器设计等领域有着重要的应用,能够帮助工程师和科学家更好地分析和设计离散系统,以及进行相应的频域处理。

离散信号采样与保持以及使用Z变换原理

离散信号采样与保持以及使用Z变换原理

作者简介:郭泽宇(2001-),男,河南省濮阳市清丰县人,本科在读,研究方向为测控技术与仪器。

离散信号采样与保持以及使用Z 变换原理Discrete Signal Sampling and Holding and Using the Principle of Z Transformation郭泽宇(河南大学国际教育学院,河南开封475001)Guo Ze-yu (International Education College of Henan University,Henan Kaifeng 475001)摘要:当今工业发展迅速,计算机控制已经十分普遍,计算机是典型的离散控制系统。

因此离散信号的采样、保持和分析就十分重要。

该文介绍了对离散信号与连续信号不同的分析方法。

关键词:离散系统;采样;拉氏变换;Z 变换中图分类号:TP273文献标识码:A文章编号:1003-0107(2021)04-0005-04Abstract:Today's industry is developing rapidly,and computer control has become very puters are a typical discrete control system.Therefore,the sampling,holding and analysis of discrete signals are very important.This article introduces the different analysis methods for discrete signals and continuous signals.Key words:Discrete System;Sampling;Laplace Transform;Z Transform CLC number:TP273Document code:AArticle ID :1003-0107(2021)04-0005-040引言离散系统是系统的全部或关键组成部分的变量具有离散信号形式,系统的状态在时间的离散点作突变的系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要求:a、画出原始波形; b、画出其采样信号;
实验信号(2)

x(n) cos(0.48n) cos(0.52n),(0 n 100)
• 要求:a、画出原始波形; • b、画出傅里叶变换的幅频特性图以 及相频特性图;
1 1 n 实验信号(3) x ( n) [( ) ( ) n ]u ( n) 2 3
ylabel('幅值','FontName','Times New Roman','FontSize',10);
• • • • • • • • • • • • • • • • • • • • •
实验三程序 clear all; clc; syms n % N=50; % n=0:N-1; f=(1/2).^n+(1/3).^n; %定义离散信号 stem(n,f); F=ztrans(f); %z变换 pretty(F); B=[2 -5/6];A=[1 -5/6 1/6]; subplot(2,2,1); stem(n,f); subplot(2,2,2); zplane(B,A); [H,w]=freqz(B,A); subplot(2,2,3); plot(w/pi,abs(H)); xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|'); axis([0,1 0,2.5]); subplot(2,2,4);plot(w/pi,angle(H)); xlabel('\omega/\pi');ylabel('\phi(\omega)');
z z X(Z)= z 1/ 2 z 1/ 3
5 1 2 z 6 5 1 1 2 1 z z 6 6
• 1、求出该序列的Z变换; • 2、画出Z变换的零极点图; • 3、画出Z变换的幅频特性和相频特性图。
实验一信号 程序
• • • • • • • • • • • • • • • • • • • • %% 模拟信号采样、 Z 变换、傅里叶变换 clc; clear all; %清楚所有变量 f=0.2;phi=pi/3; % 赋值,这一步可省略 t=0:0.1:20; % 时间长度及取值 x=cos(2*pi*f*t+phi); % 表达式 % 画图 %% 采样 Ts=1/5; % 采样周期 n=0:Ts:20; % n1=0:2*Ts:20; n2=0:3*Ts:20; X=cos(2*pi*f*n+phi); X1=cos(2*pi*f*n1+phi); X2=cos(2*pi*f*n2+phi); subplot(221) plot(t,x), grid on, title('原始信号') xlabel('时域时间值','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10);
title('原始信号') xlabel('时域时间值 ','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10); subplot(2,2,2) k=0:length(magxk)-1; stem(k,magxk); title('傅里叶变换') xlabel('时域离散值 Ts=1/5','FontName','Times New Roman','FontSize',10);
subplot(222) stem(n,X,'.'); grid on; title('采样信号') xlabel('时域离散值Ts=1/5','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10); subplot(223); stem(n1,X1,'r.'); grid on; title('采样信号') xlabel('时域离散值Ts=2/5','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10); subplot(224); stem(n2,X2,'g.'); grid on; title('采样信号') xlabel('时域离散值Ts=3/5','FontName','Times New Roman','FontSize',10);
实验一: 信号采样、Z变换及离散傅里叶变换
一、实验目的
1、从采样实验中理解连续信号到离散信号的过程。
2、利用matlab验证计算序列的傅里叶变换、Z变换。
3、利用傅立叶反变换、逆Z变换进行相关运算。
实验信号 ( 1)
xa (t ) cos(2 ft ), f 0.2Hz , / 2,Ts 1/ 5
ylabel('幅值','FontName','Times New Roman','FontSize',10);
实验二对应程序 clc; clear all; N=50; n=0:N-1; xn=cos(0.48*pi*n)+cos(0.52*pi*n); % xn=cos(0.48*pi*n); xk=fft(xn,N); magxk=abs(xk); subplot(2,2,1) stem(n,xn);
相关文档
最新文档