中考数学中考数学压轴题知识点-+典型题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、中考数学压轴题

1.如图,在⊙O 中,直径AB =10,tanA =3. (1)求弦AC 的长;

(2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以

32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <

103

),连结PQ .当t 为何值时,△BPQ 为Rt △?

2.如图,已知抛物线()2

y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.

(1)求抛物线的解析式;

(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;

(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.

3.已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,3O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.

(1)求经过点O ,C ,A 三点的抛物线的解析式.

(2)若点M 是抛物线上一点,且位于线段OC 的上方,连接MO 、MC ,问:点M 位于何处时三角形MOC 的面积最大?并求出三角形MOC 的最大面积.

(3)抛物线上是否存在一点P ,使∠OAP=∠BOC ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.

4.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.

(1)求边AD 的长;

(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.

5.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.

已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).

(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;

(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;

(3)已知点M (m ,﹣1),若直线y =

12

x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.

6.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+,32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .

问题探究

(1)如图1,若30PBC ∠=︒,则AP 的长为__________.

(2)如图2,请求出BPC △周长的最小值;

(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN

①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;

②请直接写出PMN 面积的最小值.

7.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于A B 、两点.

(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.

(2)已知M 是O 一点,1cm OM =.

①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.

②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .

8.已知四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P ,G 不与正方形顶点重合,且在CD 的同侧),PD =PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF .

(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时.

①求证:DF =PG ;

②若AB =3,PC =1,求四边形PEFD 的面积;

(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.

9.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52

-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .

(1) 求抛物线214

y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点. ①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;

②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.

10.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,

(1)如图(1)求证:90AEC ∠=︒;

相关文档
最新文档