(完整word版)高中数学选修2-2函数的单调性与导数

合集下载

人教A版数学选修2-2课件:1.3.1函数的单调性与导数

人教A版数学选修2-2课件:1.3.1函数的单调性与导数
【解题探究】利用求导的方法确定函数的单调性.
【解析】∵f(x)=x3-3x, ∴f′(x)=3x2-3=3(x+1)(x-1). 令f′(x)>0,可解得x<-1或x>1, ∴f(x)的单调递增区间为(-∞,-1)和(1,+∞). 令f′(x)<0,可解得-1<x<1, ∴f(x)的单调递减区间为(-1,1). 故f(x)在区间(-∞,-1),(1,+∞)上单调递增,在区间 (-1,1)上单调递减.
C.y=12x
D.y=1x
【答案】BCD
【解析】在 A 中,y=log2x 在区间(0,+∞)上为增函数;在 B 中,y=- x在区间(0,+∞)上为减函数;在 C 中,y=12x 在 区间(0,+∞)上为减函数;在 D 中,y=1x在区间(0,+∞)上为 减函数.故选 BCD.
(202X年四川成都外国语学校月考)已知函数f(x)=x2+ 2cos x,若f′(x)是f(x)的导函数,则函数f′(x)的图象大致是 ()
x=1-xl2n
x .
∵0<x<2,∴ln x<ln 2<1,1-ln x>0.
∴f′(x)=1-xl2n x>0.
根据导数与函数单调性的关系,可得函数f(x)=
ln x
x
在区间
(0,2)上是单调递增函数.
利用导数证明一个函数在给定这时一般是先将函数的导 数求出来,然后对其进行整理、化简、变形,根据不等式的相 关知识,在给定区间上判断导数的正负,从而得证.
【解析】(1)函数的定义域为R.
y′=2x2-4x=2x(x-2).
令y′>0,则2x(x-2)>0,解得x<0或x>2.
所以函数的单调递增区间为(-∞,0),(2,+∞).
令y′<0,则2x(x-2)<0,解得0<x<2,

高中数学选修2-2全套知识点及练习答案解析

高中数学选修2-2全套知识点及练习答案解析

选修2-2 知识点及习题答案解析导数及其应用一.导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在x x =处的导数,记作0()f x '或|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()x f x e '=7 若()log xaf x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x'=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2.[()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''∙-∙'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

人教A版高中数学选修2-2《导数与函数的单调性》说课课件(共31张ppt)

人教A版高中数学选修2-2《导数与函数的单调性》说课课件(共31张ppt)

解不等式f ' (x)>0 得函数单调递增区间
解不等式f ' (x)<0 得函数单调递减区间
规范写出单调区间
1 h
2 h
h 3
h 4
o A to B t o C t o D t
分析 以容器 2 为例,由于容器
上细下粗,所以水以常速注入时,
开始阶段高度增加得慢,以后高
度增加得越来越快.反映在图象
探究 学习
教学过程
微课
问题1.函数单调性的定义是什么?判断函数单调性的 常用方法有哪些? 问题2.导数的定义与几何意义是什么?
问题3.能否用学过的方法求下列函数的单调 性?
用定义法讨论(1)函数单调性虽然可行,但十分 麻烦,(2)(3)我们就操作不了了。那么本节课我 们一起来探究单调性的新世界?
绕着点P逐渐转
动的情况.
o
y=f(x) Q
割 线
T 切线
P

x
(3)深入思考,揭示本质
问题4:既然是“任取”,那么我们干脆把两个点无限靠近,
大家觉得可以得到什么.
瞬时变化率,就是某点切线的斜率,也就是区间内任意一点
处的导数都大于零.
f (x1) f (x2 ) 0 f '(x) 0 f (x)为增函数 x1 x2
本节课将两者结合,重新认识单调性。对研究复杂函 数的单调性及函数极值最值问题,至关重要。
因此,本节内容具有承上启下的作用。
教学目标
1、知识与能力: 理解函数单调性与导数的关系,会用导数确定函数的单调区 间,进而确定函数的大致图像。 2、过程与方法: 通过导数研究单调性问题,体会从特殊到一般、数形结合的 研究方法。 通过导数研究单调性的基本步骤,体会算法思想。 3、情感态度与价值观: 通过导数研究单调性问题,体会到不同数学知识间的内在联 系,认识到数学是一个有机整体。体会导数的实用价值。

(完整word版)高中数学选修2-2函数的单调性与导数

(完整word版)高中数学选修2-2函数的单调性与导数

1.3.1函数的单调性与导数[学习目标]1•结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函.3.会求函数的单调区间(其中多项式数的单调性,并能够利用单调性证明一些简单的不等式函数的最高次数一般不超过三次).尸知识梳理自主学习知识点一函数的单调性与其导数的关系在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f' (x)>0单调递增f' (x)<0单调递减—f' (x) = 0常函数思考以前,我们用定义来判断函数的单调性,在假设X i V X2的前提下,比较f(x i)与f(X2)的大小,在函数y= f(x)比较复杂的情况下,比较f(x i)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性?答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减知识点二利用导数求函数的单调区间利用导数确定函数的单调区间的步骤:(1) 确定函数f(x)的定义域.⑵求出函数的导数f' (x).(3)解不等式f' (x)>0,得函数的单调递增区间;解不等式f' (x)v0,得函数的单调递减区间.知识点三导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些也就是说导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度如图,函数y= f(x)在(a,0)和(0, b)内的图象“陡峭”,在(一® a)和(b,+^ )内的图象“平题型一利用导数确定函数的单调区间例1求下列函数的单调区间.(1)f(x) = 3X2—2ln x; (2)f(x)= x2• e e;1(3)f(x) = x+ x .解⑴函数的定义域为 D = (0 ,+^). T f' (x)= 6x—2,令f (x) = 0,得x i = ¥, X2= —申x 3 3 (舍去),用x i分割定义域D,得下表:x0,号3+ 8 3 ,+f' (x)一0+f(x)•••函数f(x)的单调递减区间为0,呼,单调递增区间为.3 3⑵函数的定义域为D = (— 8,+^). •/ f' (x)= (x2)' e—x+ x2(e—x)' = 2xe—x—x2e—x= e—x(2x —x2),令f' (x)= 0,由于e x> 0, • x i = 0, x2= 2,用x i, x2分割定义域D,得下表:x(—8, 0)0(0,2)2(2, +8)f' (x)一0+ 0一f' (x)• f(x)的单调递减区间为(—8, 0)和(2, +8),单调递增区间为(0,2).(3)函数的定义域为D = (—8 , 0)U (0, +8).1f ' (x)= 1 —~2,令f' (x)= 0,得x i=—1, X2= 1,用x i , X2 分割定义域D,得下表:xx(—8,—1)—1(—1,0)(0,1)1(1 ,+ 8 )f' (x)+0一一0+f(x)•••函数f(x)的单调递减区间为(一1,0)和(0,1),单调递增区间为(一8,—1)和(1,+8).反思与感悟首先确定函数定义域,然后解导数不等式,最后写成区间的形式,注意连接同类单调区间不能用“U”.跟踪训练1 求函数f(x)= x3—3x的单调区间.解f' (x)= 3x2—3 = 3(x2—1).当f' (x)> 0 时,x v—1 或x> 1,此时函数f(x)单调递增;当f' (x)v 0时,一1 v x v 1,此时函数f(x)单调递减.•函数f(x)的递增区间是(—8,—1), (1,+ 8 ),递减区间是(一1,1).题型二利用导数确定函数的大致图象例2 画出函数f(x) = 2x3—3x2—36x+ 16的大致图象.解f' (x) = 6x2—6x—36= 6(x2—x—6)= 6(x—3)(x+ 2).由f' (x)> 0 得x v — 2 或x> 3,•函数f(x)的递增区间是(一8,—2)和(3,+ 8).由f' (x)v 0 得一2v x v 3,•函数f(x)的递减区间是(一2,3).由已知得f( —2) = 60, f(3)=—65, f(0) = 16.•结合函数单调性及以上关键点画出函数f(x)大致图象如图所示(答案不唯一).反思与感悟利用导数可以判定函数的单调性,而函数的单调性决定了函数图象的大致走向当函数的单调区间确定以后,再通过描出一些特殊点,就可以画出一个函数的大致图象跟踪训练2已知导函数f' (x)的下列信息:当2v x v 3 时,f' (x)v 0;当x> 3 或x v 2 时,f' (x)> 0;当x= 3 或x= 2 时,f' (x)= 0;试画出函数f(X )图象的大致形状•解当2 v X V 3时,f' (x)v 0,可知函数在此区间上单调递减;当x> 3或x v 2时,f' (x)> 0,可知函数在这两个区间上单调递增;当x= 3或x= 2时,f' (x)= 0,在这两点处的两侧,函数单调性发生改变综上可画出函数f(x)图象的大致形状,如图所示(答案不唯一).例3 已知函数f(x)= 2ax—x3, x€ (0,1], a>0,若函数f(x)在(0,1]上是增函数,求实数a的取值范围•解f' (x) = 2a —3x2,又f(x)在(0,1]上是增函数等价于f' (x)>0对x€ (0,1]恒成立,且仅有有限个点使得f' (x) = 0,3••• x€ (0,1]时,2a —3x2>0,也就是a>3x2恒成立.3 3又x€ (0,1]时,/2€ 0, ,3• a的取值范围是-,+ ^反思与感悟已知函数在某个区间上的单调性,求参数的范围,是近几年高考的热点问题,解决此类问题的主要依据就是导数与函数的单调性的关系,其常用方法有三种:①利用充要条件将问题转化为恒成立问题,即f' (x)> 0(或f' (x) w 0)在给定区间上恒成立,然后转为不等式恒成立问题;②利用子区间(即子集思想),先求出函数的单调增或减区间,然后让所给区间是求出的增或减区间的子集;③利用二次方程根的分布,着重考虑端点函数值与0的关系和对称轴相对区间的位置•1跟踪训练 3 已知函数f(x)= In x, g(x)= 2ax2+ 2x, a^ 0.(1)若函数h(x) = f(x)—g(x)存在单调递减区间,求a的取值范围;⑵若函数h(x) = f(x)—g(x)在[1,4]上单调递减,求a的取值范围1解(1)h(x) = In x —?ax2—2x, x€ (0, + ),1• h' (x)= -一ax— 2.xh(x)在(0, + m)上存在单调递减区间,1•••当 x € (0,+^)时,-一ax — 2v 0 有解,x 1 2即a >X — 2有解. 1 2设 G(x) = x 2-X , 只要a >G(x)min 即可. 工1 2而 G(x) = - — 1 2— 1,x--G (x)min = 一 1 , a > — 1.(2) •/ h(x)在[1,4]上单调递减,1• x € [1,4]时,h ' (x) = 一一 ax — 2< 0 恒成立,x 1 2即a > £— 2恒成立,x 2 x- 1 …--a 》G(X )max ,而 G(x)= x 一 1 一 1 ,• ■ • a 》—16.1 1错解 y ' = 1 — i,令y ' = 1 —1 >0,得x > 1或x v 0,所以函数y = x — ln x 的单调递增区x x 1间为(1, + m ), (—g, 0).令y ' = 1 — _v 0,得0 v x v 1,所以函数y = x — In x 的单调递减 x 区间为(0,1).错因分析在解与函数有关的问题时,一定要先考虑函数的定义域,这是最容易忽略的地方. 正解 函数y = x — ln x 的定义域为(0, + g ), 又 y ' = 1 —-,X ,1令y ' = 1 — ->0,得x > 1或x v 0(舍去),所以函数y = x — ln x 的单调递增区间为(1, + g ). x 1令y ' = 1 — _v 0,得0v x v 1,所以函数y = x — ln x 的单调递减区间为(0,1). x 防范措施 在确定函数的单调区间时,首先要确定函数的定义域--G (x)max =_7 16,例4 求函数y = x — ln x 的单调区间m当堂检测宜查自纠1•函数f(x) = x + In x 在(0,6)上是()A. 单调增函数B. 单调减函数1 1C. 在0,-上是减函数,在-,6上是增函数e e1 1D. 在0, -上是增函数,在-,6上是减函数e e答案A1解析•/ x€ (0,6)时,f,(x) = 1 + -> 0,•••函数f(x)在(0,6)上单调递增.x2. f,(x)是函数y= f(x)的导函数,若y= f,(x)的图象如图所示,则函数y= f(x)的图象可能是( )答案D解析由导函数的图象可知,当x v 0时,f,(x)>0,即函数f(x)为增函数;当0v x v 2时, f,(x)< 0,即f(x)为减函数;当x> 2时,f,(x)> 0,即函数f(x)为增函数•观察选项易知D正确•3•若函数f(x)= x3—ax2- x+ 6在(0,1)内单调递减,则实数a的取值范围是()A. [1,+旳B.a= 1C.(—s, 1]D.(0,1)答案A解析T f,(x) = 3x2—2ax—1,且f(x)在(0,1)内单调递减,•不等式3x2—2ax—K 0在(0,1)内恒成立,• f,(0)w 0,且f,(1)w 0, • a> 1.4•函数y = x 2— 4x + a 的增区间为 ________ ,减区间为 ________ . 答案(2,+^ )( — 8, 2)解析 y ' = 2x — 4,令 y ' > 0,得 x > 2;令 y ' v 0,得 x v 2, 所以y = x 2— 4x + a 的增区间为(2,+ g ),减区间为(一^, 2).1 一5•已知函数 f(x) = 2ax — -, x € (0,1].若f(x)在x € (0,1]上是增函数,则 a 的取值范围为x1答案—2,+m1解析 由已知条件得f ' (x) = 2a +采.••• f(x)在 (0,1]上是增函数,1而g(x) = — 2"2在 (0,1]上是增函数,1f ' (x)=— 1 + p 对 x € (0,1]有 f ' (x)>0,且仅在 x = 1 时, —1• a =— 时,f(x)在(0,1]上是增函数 一 1• a 的取值范围是一夕+g ._课堂小结 ------------------判断函数单调性的方法如下:(1)定义法.在定义域内任取 X 1 , x 2,且X 1V X 2,通过判断f(X 1)—f(x 2)的符号来确定函数的单调 性.⑵图象法.利用函数图象的变化趋势进行直观判断.图象在某个区间呈上升趋势,则函数在这个区间内是增函数;图象在某个区间呈下降趋势,则函数在这个区间内是减函数 (3)导数法.利用导数判断可导函数 f(x)在区间(a , b)内的单调性,步骤是:①求f ' (x);②确定f ' (x)在(a , b)内的符号;③确定单调性.(x)> 0, 12护在x € (0,1]上恒成立g(X )max = g(1)=— 12.f ' (x) = 0.求函数y = f(x)的单调增区间、减区间分别是解不等式f' (x) > 0和f' (x) v 0所得的x的取值集合.反过来,如果已知f(x)在区间D上单调递增,求f(x)中参数的值,这类问题往往转化为不等式的恒成立问题,即f' (x)>0在D上恒成立且仅在有限个点上等号成立,求f(x)中参数的值.同样可以解决已知f(x)在区间D上单调递减,求f(x)中参数的值的问题.课时精练一、选择题1•函数y=(3 —x1 2)e x的单调递增区间是()A. ( —g, 0)B.(0 ,+s )C.( — g,—3)和(1 ,+g )D.( —3,1)答案D解析求导函数得y' = (—x2—2x+ 3)e x.令y' = (—x2—2x+ 3)e x>0,可得x2+ 2x—3v 0,—3v x v 1.•••函数y = (3 —x2)e x的单调递增区间是(—3,1).2.已知函数f(x) = —x3+ ax2—x—1在(一g, +g )上单调递减,则实数a的取值范围是()A. ( —g,—.3] U [ 3,+g )B. [ —.3, .3]C. ( — g,—.3) U ( 3,+g )D. ( —. 3, .3)答案B解析由题意得f' (x) = —3x2+ 2ax—1< 0在(—g , + g)上恒成立,且仅在有限个点上f' (x)=0,则有△= 4a2—12W 0,解得—.3W a w 3.3. 下列函数中,在(0,+g )内为增函数的是()A.y= sin xB.y= xe2C. y= x3—xD.y= In x—x答案B解析显然y= sin x在(0, + g)上既有增又有减,故排除A;对于函数y= xe2,因e2为大于零的常数,1对于 D , y' = —— 1 (x> 0).x故函数在(1, + g)上为减函数,在(0,1)上为增函数.故选B.不用求导就知y= xe2在(0 ,+g)内为增函数;对于C, y' = 3x2— 1 = 3 x+于x —_33,故函数在—g,——3, -3, + g上为增函数,3 3在—专,专上为减函数;3 34•设f(x), g(x)在[a, b]上可导,且f' (x)>g ' (x),则当a v x v b 时,有()A. f(x)> g(x)B. f(x)v g(x)C. f(x) + g(a)> g(x) + f(a)D. f(x) + g(b)> g(x) + f(b)答案C解析■/ f' (x) - g' (x) > 0,•••(f(x)—g(x))' >0,••• f(x)- g(x)在[a, b]上是增函数,•••当a v x v b 时f(x)- g(x)> f(a)- g(a),• f(x) + g(a)> g(x) + f(a).5. 函数y= ln_|x|的图象大致是()x答案C解析T y= f(—x)= ln~! =—f(x),—x•- y= f(x) = ln |x l为奇函数,x• y= f(x)的图象关于原点成中心对称,可排除 B.又•••当x> 0 时,f(x)=乎,f' (x)= 1-x2l x,•当x> e 时,f' (x)v 0,•函数f(x)在(e,+s)上单调递减;当O v x v e 时,f' (x)>0,•函数f(x)在(0, e)上单调递增.故可排除A , D,而C满足题意.6. 定义在R上的函数f(x)满足:f' (x)> 1 —f(x) ,f(O)= 6 ,f' (x)是f(x)的导函数,则不等式e x f(x) >e x+ 5(其中e为自然对数的底数)的解集为()A.(O,+s )B.( 0) U (3 ,+s )C.( — f, 0)U (1 ,+s )D.(3 ,+s )答案A解析由题意可知不等式为e x f(x) —e x—5> 0,设g(x) = e x f(x)—e x—5,••• g' (x)= ef(x)+ e x f' (x) —e x=e x[f(x) + f'x)—1] > 0.•函数g(x)在定义域上单调递增.又••• g(0) = 0, • g(x)> 0 的解集为(0,+^).二、填空题7•若函数f(x)= 2x2—In x在定义域内的一个子区间(k —1, k+ 1)上不是单调函数,贝U实数k的取值范围是__________________ .3答案1, 31 4x2—1解析显然函数f(x)的定义域为(0, + f), f' (x) = 4x — - = --- •由f' (x)> 0,得函数f(x)x x1 1的单调递增区间为2,+ m;由f'(x)< 0,得函数f(x)单调递减区间为0, 2 •因为函数在1 1 3区间(k—1, k+ 1)上不是单调函数,所以k—1v 2< k + 1,解得一2< k v3,又因为(k—1, k3+1)为定义域内的一个子区间,所以k— 1 >0,即k> 1•综上可知,K k<3.38•函数y= f(x)在其定义域—2, 3内可导,其图象如图所示,记y= f(x)的导函数为y= f' (x),则不等式f' (x)< 0的解集为__________ •1答案—3, 1 U [2,3)9.函数y= In(x2—x—2)的递减区间为________ •答案(— R, —1)2x—1 1解析f' (x)= -,令f' (x)< 0得x<—1或1<x< 2,注意到函数定义域为(―8,—x2—x— 2 2 4 4 U (2, + f),故递减区间为(一8,—1)・1 110•若函数f(x)= x 2+ ax + -在2,+m上是增函数,则a 的取值范围是 _________X 2 答案 [3 ,+^ )1 1解析 因为f(x)= x 2 + ax + -在2,+ m上是增函数,'X. 厶1 1故f ' (x)= 2x + a —采》0在2,+g 上恒成立, 1 1即a >尹—2x 在-,+ 上恒成立•2则 h ' (x)=— --3 — 2,入1当x € 2,+ g 时,h ' (x) v 0,贝U h(x)为减函数, 1所以 h(x) v h 2 = 3,所以 a >3. 三、解答题11. 已知函数f(x) = ax 3+ bx 2的图象经过点 M(1,4),曲线在点M 处的切线恰好与直线 垂直.(1) 求实数a , b 的值;⑵若函数f(x)在区间[m , m + 1]上单调递增,求 m 的取值范围.解 (1) •••函数 f(x)= ax 3 + bx 2 的图象经过点 M(1,4),二 a + b = 4.① f ' (x)= 3ax 2+ 2bx ,则 f ' (1) = 3a + 2b.1由条件 f ' (1) •— 9 =— 1,即 3a + 2b = 9.② 由①②解得a = 1, b = 3.(2) f(x) = x 3 + 3x 2,则 f ' (x)= 3x 2 + 6x. 令 f ' (x)= 3x 2 + 6x >0,得 x >0 或 x < — 2. •••函数f(x)在区间[m , m + 1]上单调递增, •••[m , m + 1]?(—g,— 2] U [0,+ g) /• m >0或 m + K — 2, • m >0 或 m W — 3.12. 已知函数f(x)= a x + x 2— xln a — b(a , b € R , a > 1), e 是自然对数的底数. (1)试判断函数f(x)在区间(0,+g )上的单调性;⑵当a = e , b = 4时,求整数k 的值,使得函数f(x)在区间(k , k + 1)上存在零点 解 (1)f ' (x) = a x ln a + 2x — In a = 2x + (a x — 1)ln a.•/a > 1, •••当 x € (0, + g )时,ln a >0 , a x — 1>0 ,1令 h(x)=护—2x ,x + 9y = 0• f' (x)> 0,•函数f(x)在(0 , +g)上单调递增.⑵•/ f(x) = e x+ x2- X—4, ••• f (x) = e x+ 2x—1,••• f' (0) = 0.当x> 0 时,e x> 1, • f' (x) >0,• f(x)是(0, + g)上的增函数.同理,f(x)是(-g, 0)上的减函数•又f(0) =—3v 0, f(1) = e—4v 0, f(2) = e2—2>0, 当x>2 时,f(x)>0,•••当x> 0时,函数f(x)的零点在(1,2)内,•- k= 1满足条件.1 1f(0) = —3V0, f(—1)=——2V 0, f( —2) = -2+ 2>0, e e当x v—2 时,f(x)>0,•••当x v 0时,函数f(x)零点在(一2,—1)内,•- k=—2满足条件.综上所述,k= 1或—2.13. 求下列函数的单调区间.(1) y= In (2x+ 3) + x2;x一1(2) f(x) = aln x+ (a 为常数).x+ 13解(1)函数y= In (2x+ 3) + x2定义域为一§, + g •/y= In (2x+ 3) + x2, , 2 4x2+ 6x+ 2 2 2x+ 1 x+ 1…y = + 2x= =y 2x+ 3 2x+ 3 2x+ 3当y' > 0,即一3v x v —1 或x>—丄时,2 2函数y= In(2x+ 3) + x2单调递增.1当y' v 0,即一1 v x v —时,函数y= In(2x+ 3) + x2单调递减.3 1故函数y = In(2x + 3) + x 2的单调递增区间为 一2, — 1 , — ?, 当a >0时,f ' (x)> 0,函数f(x)在(0,+s )上单调递增当 a v 0 时,令 g(x)= ax 2 + (2a + 2)x + a , 由于 △= (2a + 2尸一4a 2= 4(2a + 1),1①当 a =-㊁时,A= 0, g(x )w 0,1② 当 a v -号时,Av 0, g(x)v 0, f ' (x)v 0,函数f(x )在(0 ,+a )上单调递减 1③当一2< a v 0 时,A> 0.设x 1, X 2(X 1< X 2)是函数g(x)的两个零点, Qa 2+ 2a + — 2a + 1 >。

选修2-2函数的单调性与导数

选修2-2函数的单调性与导数

因此,函数fx = sinx - x,x∈0,π内 单调递减 .
如图(3)所示.
y
o
图3
x
fx = sinx - x
4因为f x = 2x3 + 3x2 - 24x +1,所以fx = 6 x 2 6 x 24 .
当fx > 0,即
x 1 17 或x 1 17
2
2
时,
函数f x
单调递增
;
当fx < 0,即
t
Oa
b
(1)
(2)
观察下面一些函数图象, 探讨函数的单调性与其导函数正负
的关系. y yx
y y x2
OO
x
1
y
y x3
2 OO
x
y y1 x
OO
x
3
OO
x
4
如图,导数f x0 表示函数
f x 在点 x0,f x0 处的
y y f x
切线的斜率.在x = x0 处,
f x0 > 0,切线是“左下
一些.如图所示,函数y = f x 在0,a或
-a,0内图象“陡峭”,在 a,+∞或 -∞,-a内
“平缓”.
例4 已知函数f(x)=ax3+3x2-x+1在(-∞,+∞)
上是减函数,求实数a的取值范围.
【解析】f′(x)=3ax2+6x-1, 由题意得3ax2+6x-1≤0在(-∞,+∞)上恒成立. 当a=0时,6x-1≤0,x≤1 不满足题意,∴a≠0.
试画出函数f(x)图象的大致形状.
解当: 1 < x < 4 时, f(可x )知> 0 , 在此区f(间x)内单调
递增;

(完整版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档

(完整版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档

19 反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否 定是错误的,从而肯定原结论是正确的证明方法。
反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确, 即所求证命题正确。反证法的思维方法:正难则反。矛盾(1)与已知条件矛盾: (2)与已有公理、定理、定义矛盾; (3)自相矛盾. 20 常见的“结论词”与“反义词”
常见的导数和定积分运算公式:若 f x, g x均可导(可积),则有:
和差的导数运算 积的导数运算 商的导数运算 复合函数的导数 微积分基本定理
和差的积分运算
积分的区间可加性
-1-
六安一中东校区高二数学选修 2-x)的导数 f '(x) ②令 f '(x) >0,解不等
证明当 n=k+1 时命题也成立.由(1),(2)可知,命题对于从 n0 开始的所有正整数
n
都正确
新疆 王新敞
[注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
b
f (x)dx
a
a
c1
ck
11 定积分的取值情况:定积分的值可能取正值,
也可能取负值,还可能是 0.
( l )当对应的曲边梯形位于 x 轴上方时,
定积分的值取正值,且等于 x 轴上方的图形面积;
(2)当对应的曲边梯形位于 x 轴下方时, 定积分的值取负值,且等于 x 轴上方图形面积的 相反数;
(3)当位于 x 轴上方的曲边梯形面积等于 位于 x 轴下方的曲边梯形面积时,定积分的值 为 0,且等于 x 轴上方图形的面积减去下方的图 形的面积.
原结论词
反义词

人教b版数学选修2-2导数专题之函数的单调性.docx

人教b版数学选修2-2导数专题之函数的单调性.docx

高中数学学习材料马鸣风萧萧*整理制作导数专题之导数与函数的单调性重点归纳1、已知2()1xe f x ax=+(其中a 为正实数)在R 上的单调递增,则a 的取值范围( A ) A .01a <≤ B .01a << C .02a << D .02a <≤2、已知函数sin cos 1,02f x x x x x π=-++<<(),则函数f (x )的单调递减区间为( B ) A .(0,)π B .3,2ππ⎛⎫ ⎪⎝⎭ C .3,22ππ⎛⎫ ⎪⎝⎭ D .3(0,),22πππ⎛⎫ ⎪⎝⎭和 3、若[0,)x ∈+∞,则下列不等式恒成立的是( C ) A .21xe x x ++… B .21111241x x x<-++C .21cos 12x x -… D .21ln(1)8x x x +-… 4、已知函数()f x 满足121()(1)(0)2x f x f e f x x -'=-+;求()f x 的解析式及单调区间。

f ‘(x )>0→f (x )单增; f ‘(x )<0→f (x )单减f (x )单增→f ‘(x )≥0; f (x )单减→f ‘(x ) ≤01求定义域→求导→判断正负→单增单减2 单调性(函数零点,函数最值,不等式证明,恒成立问题等)5、已知函数ln ()xx kf x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;解析:由f(x) = x e k x +ln 可得=')(x f xe xk x ln 1--,而0)1(='f ,即01=-e k ,解得1=k ; (Ⅱ)=')(x f xex x ln 11--,令0)(='x f 可得1=x , 当10<<x 时,0ln 11)(>--='x x x f ;当1>x 时,0ln 11)(<--='x xx f .于是)(x f 在区间)1,0(内为增函数;在),1(+∞内为减函数.6、已知函数f (x )=ln 2(1+x)-21x x+,求函数f (x ) 的单调区间。

2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.1 单调性 Word版含答案

2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.1 单调性 Word版含答案

1.3 导数在研究函数中的应用1.3.1单调性1.利用导数研究函数的单调性.(重点)2.含有字母参数的函数单调性的讨论,单调区间的求解.(难点)3.由单调性求参数的取值范围.(易错点)[基础·初探]教材整理函数的单调性与其导数的关系阅读教材P28“例1”以上部分,完成下列问题.1.函数的单调性与其导数的关系(1)一般地,在某区间上函数y=f(x)的单调性与导数有如下关系:(2)2.导数与函数图象间的关系(1)导函数图象在x轴上方的区间为原函数的单调增区间,导函数图象在x轴下方的区间为原函数的单调减区间.(2)一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”;反之,函数的图象就“平缓”一些.1.判断正误:(1)若函数f(x)在(a,b)上是增函数,则对任意x∈(a,b),都有f′(x)>0.( )(2)函数f(x)=1x在其定义域上是单调减函数.( )(3)函数f(x)=x3-2x在(1,+∞)上单调递增.( )(4)若存在x∈(a,b)有f′(x)=0成立,则函数f(x)为常数函数.( )【答案】(1)×(2)×(3)√(4)×2.函数f(x)=(x-3)e x的单调递增区间是________.【解析】f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x,令f′(x)>0,解得x>2.【答案】(2,+∞)[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型](1)0)内是减函数.(2)判断函数f(x)=ln xx在区间(0,2)上的单调性.【精彩点拨】求出导数f′(x),然后判断导数的符号即可.【自主解答】(1)证明:由于f(x)=e x-x-1,所以f′(x)=e x-1,当x∈(0,+∞)时,e x>1,即f′(x)=e x-1>0.故函数f(x)在(0,+∞)内为增函数,当x∈(-∞,0)时,e x<1,即f′(x)=e x-1<0. 故函数f(x)在(-∞,0)内为减函数.(2)由于f(x)=ln x x,所以f′(x)=1x·x-ln xx2=1-ln xx2.由于0<x<2,所以ln x<ln 2<1,x2>0.故f′(x)=1-ln xx2>0.∴函数f(x)在区间(0,2)上是单调递增函数.1.利用导数证明函数f(x)在给定区间上的单调性,实质上就是证明f′(x)>0(或f′(x)<0)在给定区间上恒成立.2.利用导数判断可导函数f(x)在(a,b)内的单调性,步骤是:(1)求f′(x);(2)确定f′(x)在( a,b)内的符号;(3)得出结论.[再练一题]1.证明:函数y=ln x+x在其定义域内为增函数.【证明】显然函数的定义域为{x|x>0},又f′(x)=(ln x+x)′=1x+1,当x>0时,f′(x)>1>0,故y=ln x+x在其定义域内为增函数.(1)f(x)=x2-ln x;(2)f(x)=exx-2;(3)f (x )=-x 3+3x 2.【精彩点拨】 首先确定函数的定义域,再求导数,进而解不等式得单调区间. 【自主解答】 (1)函数f (x )的定义域为(0,+∞). f ′(x )=2x -1x=错误!.因为x >0,所以2x +1>0,由f ′(x )>0,解得x >22,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎪⎫22,+∞; 由f ′(x )<0,解得x <22,又x ∈(0,+∞),所以函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎪⎫0,22. (2)函数f (x )的定义域为(-∞,2)∪(2,+∞). f ′(x )=错误!=错误!.因为x ∈(-∞,2)∪(2,+∞), 所以e x >0,(x -2)2>0.由f ′(x )>0,解得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0,解得x <3,又x ∈(-∞,2)∪(2,+∞),所以函数f (x )的单调递减区间为(-∞,2)和(2,3).(3)函数f (x )的定义域为R . f ′(x )=-3x 2+6x =-3x (x -2).当0<x <2时,f ′(x )>0,所以函数f (x )的单调递增区间为(0,2);当x <0或x >2时,f ′(x )<0,所以函数f (x )的单调递减区间为(-∞,0)和(2,+∞).利用导数求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)由f ′(x )>0(或f ′(x )<0),解出相应的x 的范围;当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应区间上是减函数.(4)结合定义域写出单调区间.[再练一题]2.若函数f (x )=x 2-2x -4ln x ,则函数f (x )的单调递增区间为________.【导学号:01580011】【解析】 由已知f (x )的定义域为(0,+∞), f ′(x )=2x -2-4x =2x2-2x -4x,由f ′(x )>0得x 2-x -2>0,解得x <-1或x >2, 又x >0,所以函数f (x )的单调递增区间为(2,+∞). 【答案】 (2,+∞)[探究共研型]探究【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x +ax +ln x (a ∈R )在(1,+∞)上单调递增,求a 的取值范围.【提示】 函数f (x )的定义域为(0,+∞),f ′(x )=1-ax2+1x =x2+x -ax由题意知,f ′(x )≥0在(1,+∞)上恒成立, 即x 2+x -a ≥0在(1,+∞)上恒成立, 令g (x )=x 2+x -a =⎝ ⎛⎭⎪⎪⎫x +122-14-a ,则g (x )>2-a ,从而2-a ≥0,∴a ≤2. 当a =2时,f ′(x )>0在(1,+∞)上恒成立, 因此实数a 的取值范围是(-∞,2].已知关于x 的函数y =x 3-ax +b .(1)若函数y 在(1,+∞)内是增函数,求a 的取值范围; (2)若函数y 的一个单调递增区间为(1,+∞),求a 的值.【精彩点拨】 (1)函数在区间(1,+∞)内是增函数,则必有y ′≥0在(1,+∞)上恒成立,由此即可求出a 的取值范围.(2)函数y 的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】 y ′=3x 2-a .(1)若函数y =x 3-ax +b 在(1,+∞)内是增函数. 则y ′=3x 2-a ≥0在x ∈(1,+∞)时恒成立, 即a ≤3x 2在x ∈(1,+∞)时恒成立, 则a ≤(3x 2)最小值. 因为x >1,所以3x 2>3.所以a ≤3,即a 的取值范围是(-∞,3]. (2)令y ′>0,得x 2>a3.若a ≤0,则x 2>a3恒成立,即y ′>0恒成立,此时,函数y =x 3-ax +b 在R 上是增函数,与题意不符. 若a >0,令y ′>0,得x >a 3或x <-a 3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a =3.1.解答本题注意:可导函数f (x )在(a ,b )上单调递增(或单调递减)的充要条件是f ′(x )≥0(或f ′(x )≤0)在(a ,b )上恒成立,且f ′(x )在(a ,b )的任何子区间内都不恒等于0.2.已知f (x )在区间(a ,b )上的单调性,求参数范围的方法(1)利用集合的包含关系处理f (x )在(a ,b )上单调递增(减)的问题,则区间(a ,b )是相应单调区间的子集;(2)利用不等式的恒成立处理f (x )在(a ,b )上单调递增(减)的问题,则f ′(x )≥0(f ′(x )≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-1所示,则导函数y=f′(x)的图象可能是( )图1-3-1【解析】当x<0时,f(x)为增函数,f′(x)>0,排除①,③;当x>0时,f(x)先增后减再增,对应f ′(x )先正后负再正.故选④.【答案】 ④2.下列函数中,在区间(-1,1)上是减函数的有________(填序号). ①y =2-3x 2;②y =ln x ;③y =1x -2;④y =sin x .【解析】 显然,函数y =2-3x 2在区间(-1,1)上是不单调的; 函数y =ln x 的定义域为(0,+∞),不满足题目要求; 对于函数y =1x -2,其导数y ′=错误!<0,且函数在区间(-1,1)上有意义,所以函数y =错误!在区间(-1,1)上是减函数;函数y =sin x 在⎝ ⎛⎭⎪⎪⎫-π2,π2上是增函数,所以函数y =sin x 在区间(-1,1)上也是增函数.【答案】 ③3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________.【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,12.【答案】 ⎝⎛⎭⎪⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x2-2x恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎢⎡⎦⎥⎥⎤14,1,所以G (x )最大值=-716(此时x =4), 所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x16x=错误!.因为x ∈[1,4],所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫-716,+∞.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________我的课下提升方案:(1)_______________________________________________(2)_______________________________________________。

高中数学 北师大选修2-2 3.1.1导数与函数的单调性

高中数学 北师大选修2-2  3.1.1导数与函数的单调性

只需证
g(1) g(1)
0,0即11
a a
2 2
0, 0
解得
:
1
a
1
例2.判断下列函数的单调性,并求出单调区间.
(1) f (x) x3 3x
(2) f (x) x2 2x 3
(3) f (x) sin x x x (0, ) (4) f (x) 2x3 3x2 24x 1
解 : (1) f (x) x3 3x f (x) 3x2 3 3(x2 1) 0 因此, f (x) x3 3x在R上单调递增.如图1所示.
x 在(, 0)上单调递减,在(0, )上单调递减.
而y
1 x2
,因为x
0, 所以y
0.
再观察函数y=x2-4x+3的图象:
y
0 ....2
.. .
该函数在区间(-∞,2) 上单减,切线斜率小于0, 即其导数为负;
在区间(2,+∞)上单 增,切线斜率大于0,即
x 其导数为正.
而当x=2时其切线斜率 为0,即导数为0. 函数在该点单调性发 生改变.
解: (3) f (x) sin x x x (0, ) f (x) cos x 1 0
因此,函数f (x) sin x x 在(0, )单调递减, 如图
解: (4) f (x) 2x3 3x2 24x 1
当f (x) 0,即
时,函数f (x) 2x3 3x2 24x 1
函数的单调性与导数的关系:
一般地,设函数y=f(x)在某个区间(a,b)内可导,
则函数在该区间 如果f´(x)>0, 则f(x)在这个区间为增函数; 如果f´(x)<0, 则f(x)在这个区间为减函数. 如果在某个区间内恒有f´(x)=0,则f(x)为常数函数.

2018学年高中数学新选修2-2课件:第一章 导数及其应用1.3.1函数的单调性与导数 含解析 精品

2018学年高中数学新选修2-2课件:第一章 导数及其应用1.3.1函数的单调性与导数 含解析 精品
解析答案
12345
4.函数 y=x2-4x+a的增区间为_(2_,__+__∞__)_,减区间为_(-__∞__,__2_)_. 解析 y′=2x-4, 令y′>0,得x>2; 令y′<0,得x<2, 所以y=x2-4x+a的增区间为(2,+∞),减区间为(-∞,2).
解析答案
12345
解析答案
返回
答案
知识点二 利用导数求函数的单调区间 利用导数确定函数的单调区间的步骤: (1)确定函数 f(x)的定义域. (2)求出函数的导数 f′(x). (3)解不等式 f′(x)>0,得函数的单调递增区间;解不等式 f′(x)<0, 得函数的单调递减区间.
知识点三 导数绝对值的大小与函数图象的关系 一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在 这个范围内变化较快,这时,函数的图象就比较“陡峭”(向上或向下); 反之,函数的图象就“平缓”一些.也就是说导数绝对值的大小反映了 函数在某个区间或某点附近变化的快慢程度. 如图,函数 y=f(x)在(a,0)和(0,b)内的图象“陡峭”,在(-∞,a)和(b, +∞)内的图象“平缓”.
返回
题型探究
题型一 利用导数确定函数的单调区间 例1 求下列函数的单调区间. (1)f(x)=3x2-2ln x;
重点突破
解析答案
(2) f(x)=x2·e-x求函数 f(x)=x3-3x的单调区间. 解 f′(x)=3x2-3=3(x2-1). 当 f′(x)>0时,x<-1或x>1, 此时函数 f(x)单调递增; 当 f′(x)<0时,-1<x<1,此时函数 f(x)单调递减. ∴函数 f(x)的递增区间是(-∞,-1),(1,+∞),递减区间是(-1,1).
解析答案
题型三 利用导数确定参数的取值范围 例3 已知函数 f(x)=2ax-x3,x∈(0,1],a>0,若函数 f(x)在(0,1]上是 增函数,求实数a的取值范围.

高中数学北师大版选修2-2第3章《导数与函数的单调性》word教案

高中数学北师大版选修2-2第3章《导数与函数的单调性》word教案

导数与函数的单调性教学目标:知识与技能:⑴理解函数单调性的概念⑵会判断函数的单调性,会求函数的单调区间过程与方法:⑴通过具体实例的分析,经历对函数平均变化率和瞬时变化率的探索过程 ⑵通过分析具体实例,经历由平均变化率及渡到瞬时变化率的过程 情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的思想方法教学重点:函数单调性的判定教学难点:函数单调区间的求法教学过程:一、复习回忆1. 函数的单调性:对于函数)(x f y =定义域内的任意一个子集A ,如果对于集合A 中的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f <(或)()(21x f x f >)就称)1(f 在集合A 上增加(减少)2. 单调函数如果函数)(x f y =在其定义域上显增加的(或减少的)则称函数)(x f y =在集合A 上显增函数(或减函数)单调区间:二、导数与函数的单调性之间的关系1. 具体函数 ①一次函数:52)(+==x x f y ,02)('>=x f , 43)(+-==x x f y 03)3('<-=f②二次函数:2)(x x f y ==,x x f 2)('=0>x 时,0)('>x f 0<x 时,0)('<x f③指数函数:x y 2= 01ln 22ln 2)('=⋅>⋅=x x x fx y )21(= 01ln )21(21ln )21()('=⋅<⋅=x x x f ④对数函数:x y 3log = 03ln 1'>⋅=x y ,x y 31log = 031ln 1'<⋅=x y 由以上具体实例,导函数的符号与函数单调性之间关系?2. 抽象概括:(倾斜角)1)如果在某个区间内,函数)(x f y =的导数0)('>x f ,则在这个区间上,函数)(x f y =是增加的2)如果在某个区间内,函数)(x f y =的导数0)('>x f ,则在这个区间上,函数)(x f y =是减少的反之呢?对于在某个区间),(b a 内可导函数)(x f y =,如果函数在这个区间上是增加的,那么在区间),(b a 上,0)('≥x f (或0)('≤x f )如:3x y =在R↑ 03)('2≥=x x f说明:①单调性解决的是随x ↑ y 增还是减少问题而导数刻画的是y 相对于自变量x 变化快慢问题,导数里比单调性更加精确地反映函数的变化趋势的一个是y ↑且且越来越快 y ↑且且越来越慢0)('>x f 且越来越大 0)('>x f 且越来越小y ↓且越来越快 y ↓且越来越慢0)('<x f 且越来越小 0)('<x f 且越来越大如设)('x f 是)(x f 导数,)('x f y =如下图,则)(x f y =量有可能 D3. 例题讲解例1:求163632)(23+--=x x x x f 的递增性与递减区间解:法1 (定义法) 21x x < )()(21x f x f -法2 )3)(2(63666)('2-+=--=x x x x x f0)('>x f 时 )2,(-∞∈x 或),3(+∞∈x ↑0)('<x f 时,)3,2(-∈x ↓ 递减区间为)3,2(-单调性决定图象 163632)(23+--=x x x x f补:例2:求下列函数的单调区间 ①mx x x f 23)(2-=;52)(24+--x x x f 解:0)13(22626)(22>-=-=-=xx x x x x x f )0,33(-或),33(+∞↑ )33,0(或)33,(--∞↓正确:定义域}0|{>x x xx x f )13(2)('2-= 0>x00)('>>x x f 0132>-x 312>x )33,0,(-∞∴↑ 0)('<x f 0132<-x )33,0(↓ 注意定义域!步骤:①求)(x f 定义域;②求)('x f ;③0)('>x f ↑ 舍参数的函数单调性的问题: 0)('<x f ↓。

高中数学(人教选修2-2)配套课件第一章 1.3 1.3.1 函数的单调性与导数

高中数学(人教选修2-2)配套课件第一章 1.3 1.3.1 函数的单调性与导数


33,+∞ , 单 调 递 减 区 间 为
0,
33
点评:单调区间的求解过程:
已知 y=f(x).
(1)分析 y=f(x)的定义域;
栏 目
(2)求导数 y′=f′(x);
链 接
(3)解不等式 f′(x)>0,解集在定义域内的部分为单调递增区间;
(4)解不等式 f′(x)<0,解集在定义域内的部分为单调递减区间.
C.(1,4)
D.(2,+∞)




解析:f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令
f′(x)>0,解得 x>2.
答案:D
自测 自评
2.函数 f(x)=x3-3x2+1 的单调递减区间为( )
A.(2,+∞)
B.(-∞,2)
C.(-∞,0)
D.(0,2)




解析:f′(x)=3x2-6x=3x(x-2),令 f′(x)<0,得 0
必要条件,若在此区间内有有限个点使f′(x)=0,f(x)在该区间内
为 增 函 数 , 因 此 , 在 证 明 f(x) 在 给 定 区 间 内 是 增 函 数 时 , 证 明
栏 目
f′(x)≥0(但f′(x)=0不恒成立)即可.
链 接
跟踪 训练
2.证明函数 f(x)=lnxx在区间(0,2)内是单调递增函数.
∞);由 f′(x)<0 得 x<3,又定义域为(-∞,2)∪(2,+
∞),所以函数 f(x)的单调递减区间为(-∞,2)和(2,3).
题型2 证明函数的单调性
例2 求证:函数f(x)=ex-x+1在(0,+∞)内是增函数,在(-∞, 0)内是减函数.

3.1.1 导数与函数的单调性 课件(北师大选修2-2)

3.1.1 导数与函数的单调性 课件(北师大选修2-2)
问题3:试判断上面六个函数的单调性. 提示:(1)(3)(5)在定义域上是增加的,(2)(4)(6)在定义 域上是减少的. 问题4:试探讨函数的单调性与其导函数正负的关系.
提示:当f′(x)>0时,f(x)为增加的,当f′(x)<0时,f(x)
为减少的.
函数在区间(a,b)上的单调性与其导函数的符号有
理解教材新知
第 三 章 §1
1.1
把握热 点考向
考点一 考点二 考点三
应用创新演练
1.1 导数与函数的单调性
已知函数(1)y1=2x-1,(2)y2=-x+10,(3)y3=2x,
1 (4)y4=2x,(5)y5=log2x,(6)y6=log 1 2
x.
问题1:求上面六个函数的导数.
1 因此a≤ . 2 1 x+1 2 1 1 又当a= 时,f(x)= = 为常数函数, 2 x+2 2
1 所以不符合题意,所以a的取值范围是-∞,2.
(1)在利用导数来讨论函数的单调性时,首先要确定 函数的定义域,解决问题的过程中只能在定义域内通过讨 论导数的符号来确定函数的单调区间.
(2)在某一区间上f′(x)>0(或f′(x)<0)是函数y=f(x)在
该区间上为增加(或减少)的充分不必要条件,而不是充 要条件.
[例1]
ln x 证明函数f(x)= x 在区间(0,2)上是增加的.
[思路点拨]
要证函数f(x)在(0,2)上为增加的,只要
证f′(x)>0在(0,2)上恒成立即可.
(3)由不等式恒成立求参数范围;
(4)验证等号是否成立.
7.若函数f(x)=x3+x2+mx+1是R上的单调函数,则m的 取值范围是________.

高中数学选修2-2课件1.3.1《函数的单调性与导数》课件

高中数学选修2-2课件1.3.1《函数的单调性与导数》课件

y y=x
y y = x2
y y = x3
y
y1 x
O
x
O
x
O
x
x
O
在某个区间(a,b)内,如果 f (x) 0 ,那么函数 y f (x)在这个区间内单调递增; 如果 f (x) 0 ,那
么函数 y f (x) 在这个区间内单调递减.
如果恒有 f '(x) 0 ,则 f (x) 是常数。
h
h
h
h
O
t
(A)
O
t
(B)
O
t
(C)
O
t
(D)
一般地, 如果一个函数在某一范围内导数 的绝对值较大, 那么函数在这个范围内变化得 快, 这时, 函数的图象就比较“陡峭”(向上 或向下); 反之, 函数的图象就“平缓”一些.
如图,函数 y f (x) 在 (0,b)或 (a,0)内的图 象“陡峭”,在(b,) 或(, a)
练习2
已知函数f(x)=2ax - x3,x (0,1],a 0,
若f(x)在(0,1]上是增函数,求a的取值范围。
[
3 2
,)
例3:方程根的问题
求证:方程 x 1 sin x 0 只有一个根。
2
f ( x ) x - 1 sin x,x ( , ) 2
f '( x ) 1 1 cos x 0 2
在(- ∞ ,1)上是减 函数,在(1, +∞)上 是增函数。
在(- ∞,+∞)上是 增函数
(1)函数的单调性也叫函数的增减性; (2)函数的单调性是对某个区间而言的,它是个局部概
念。这个区间是定义域的子集。 (3)单调区间:针对自变量x而言的。

(完整word版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档

(完整word版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档

导数及其应用知识点必记1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:6.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。

(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。

2019-2020学年高二数学人教A版选修2-2课件:1.3.1 函数的单调性与导数 Word版含解析.pdf

2019-2020学年高二数学人教A版选修2-2课件:1.3.1 函数的单调性与导数 Word版含解析.pdf

-8-
目标导航
知识梳理
重难聚焦
典例透析
2.利用导数求函数单调区间的步骤及注意的问题是什么? 剖析(1)利用导数求函数单调区间的步骤:
①确定函数的定义域; ②求导数f'(x); ③在定义域内,解不等式f'(x)>0得到函数的递增区间;解不等式
f'(x)<0得到函数的递减区间. (2)注意的问题:
①在利用导数求函数单调区间时,首先必须求出函数的定义域,
-10-
目标导航
知识梳理
重难聚焦
典例透析
4.利用导数证明不等式的一般形式和步骤是什么? 剖析(1)常见形式:已知x∈(a,b),求证:u(xቤተ መጻሕፍቲ ባይዱ>v(x). (2)证明步骤:
①将所给的不等式移项,构造函数f(x)=u(x)-v(x),转化为证明函数
f(x)>0;
②当x∈(a,b)时,判断f'(x)的符号; ③若f'(x)>0,说明f(x)在区间(a,b)内是增函数,只需将所给的区间
的左端点的值代入f(x),检验其值为零(或为正),即证得f(a)≥0;若 f'(x)<0,说明f(x)在区间(a,b)内是减函数,只需将所给的区间的右端 点的值代入f(x),检验其值为零(或为正),即证得f(b)≥0.
例如:求证:当x>0时,ex>x+1. 证明:令f(x)=ex-(x+1),则f'(x)=ex-1. 因为x>0,所以f'(x)>0,即函数f(x)在(0,+∞)内单调递增,所以 f(x)>f(0)=0,故ex>x+1.
然后在定义域的前提之下解不等式得到单调区间,否则容易导致错 误.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1函数的单调性与导数[学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次).知识点一函数的单调性与其导数的关系在区间(a,b)内函数的导数与单调性有如下关系:思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性?答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减.知识点二利用导数求函数的单调区间利用导数确定函数的单调区间的步骤:(1)确定函数f(x)的定义域.(2)求出函数的导数f′(x).(3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间.知识点三导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.也就是说导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.如图,函数y =f (x )在(a,0)和(0,b )内的图象“陡峭”,在(-∞,a )和(b ,+∞)内的图象“平缓”.题型一 利用导数确定函数的单调区间 例1 求下列函数的单调区间. (1)f (x )=3x 2-2ln x ;(2)f (x )=x 2·e -x ; (3)f (x )=x +1x.解 (1)函数的定义域为D =(0,+∞).∵f ′(x )=6x -2x ,令f ′(x )=0,得x 1=33,x 2=-33(舍去),用x 1分割定义域D ,得下表:∴函数f (x )的单调递减区间为⎝⎛⎭⎫0,33,单调递增区间为⎝⎛⎭⎫33,+∞. (2)函数的定义域为D =(-∞,+∞).∵f ′(x )=(x 2)′e -x +x 2(e -x )′=2x e -x -x 2e -x =e -x (2x -x 2),令f ′(x )=0,由于e -x >0,∴x 1=0,x 2=2,用x 1,x 2分割定义域D ,得下表:∴f (x )的单调递减区间为(-∞,0)和(2,+∞),单调递增区间为(0,2). (3)函数的定义域为D =(-∞,0)∪(0,+∞).∵f ′(x )=1-1x2,令f ′(x )=0,得x 1=-1,x 2=1,用x 1,x 2分割定义域D ,得下表:∴函数f(x)的单调递减区间为(-1,0)和(0,1),单调递增区间为(-∞,-1)和(1,+∞).反思与感悟首先确定函数定义域,然后解导数不等式,最后写成区间的形式,注意连接同类单调区间不能用“∪”.跟踪训练1求函数f(x)=x3-3x的单调区间.解f′(x)=3x2-3=3(x2-1).当f′(x)>0时,x<-1或x>1,此时函数f(x)单调递增;当f′(x)<0时,-1<x<1,此时函数f(x)单调递减.∴函数f(x)的递增区间是(-∞,-1),(1,+∞),递减区间是(-1,1).题型二利用导数确定函数的大致图象例2画出函数f(x)=2x3-3x2-36x+16的大致图象.解f′(x)=6x2-6x-36=6(x2-x-6)=6(x-3)(x+2).由f′(x)>0 得x<-2或x>3,∴函数f(x)的递增区间是(-∞,-2)和(3,+∞).由f′(x)<0得-2<x<3,∴函数f(x)的递减区间是(-2,3).由已知得f(-2)=60,f(3)=-65,f(0)=16.∴结合函数单调性及以上关键点画出函数f(x)大致图象如图所示(答案不唯一).反思与感悟利用导数可以判定函数的单调性,而函数的单调性决定了函数图象的大致走向.当函数的单调区间确定以后,再通过描出一些特殊点,就可以画出一个函数的大致图象.跟踪训练2已知导函数f′(x)的下列信息:当2<x<3时,f′(x)<0;当x>3或x<2时,f′(x)>0;当x=3或x=2时,f′(x)=0;试画出函数f (x )图象的大致形状.解 当2<x <3时,f ′(x )<0,可知函数在此区间上单调递减; 当x >3或x <2时,f ′(x )>0,可知函数在这两个区间上单调递增; 当x =3或x =2时,f ′(x )=0,在这两点处的两侧,函数单调性发生改变. 综上可画出函数f (x )图象的大致形状,如图所示(答案不唯一).题型三 利用导数确定参数的取值范围例3 已知函数f (x )=2ax -x 3,x ∈(0,1],a >0,若函数f (x )在(0,1]上是增函数,求实数a 的取值范围.解 f ′(x )=2a -3x 2,又f (x )在(0,1]上是增函数等价于f ′(x )≥0对x ∈(0,1]恒成立, 且仅有有限个点使得f ′(x )=0,∴x ∈(0,1]时,2a -3x 2≥0,也就是a ≥32x 2恒成立.又x ∈(0,1]时,32x 2∈⎝⎛⎦⎤0,32, ∴a ≥32.∴a 的取值范围是⎣⎡⎭⎫32,+∞. 反思与感悟 已知函数在某个区间上的单调性,求参数的范围,是近几年高考的热点问题,解决此类问题的主要依据就是导数与函数的单调性的关系,其常用方法有三种:①利用充要条件将问题转化为恒成立问题,即f ′(x )≥0(或f ′(x )≤0)在给定区间上恒成立,然后转为不等式恒成立问题;②利用子区间(即子集思想),先求出函数的单调增或减区间,然后让所给区间是求出的增或减区间的子集;③利用二次方程根的分布,着重考虑端点函数值与0的关系和对称轴相对区间的位置.跟踪训练3 已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),∴h ′(x )=1x-ax -2.∵h (x )在(0,+∞)上存在单调递减区间,∴当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,∴只要a >G (x )min 即可. 而G (x )=⎝⎛⎭⎫1x -12-1, ∴G (x )min =-1, ∴a >-1.(2)∵h (x )在[1,4]上单调递减,∴x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立,∴a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, ∴G (x )max =-716, ∴a ≥-716.求函数单调区间时,因忽视函数定义域致误例4 求函数y =x -ln x 的单调区间.错解 y ′=1-1x ,令y ′=1-1x >0,得x >1或x <0,所以函数y =x -ln x 的单调递增区间为(1,+∞),(-∞,0).令y ′=1-1x <0,得0<x <1,所以函数y =x -ln x 的单调递减区间为(0,1).错因分析 在解与函数有关的问题时,一定要先考虑函数的定义域,这是最容易忽略的地方. 正解 函数y =x -ln x 的定义域为(0,+∞), 又y ′=1-1x,令y ′=1-1x >0,得x >1或x <0(舍去),所以函数y =x -ln x 的单调递增区间为(1,+∞).令y ′=1-1x <0,得0<x <1,所以函数y =x -ln x 的单调递减区间为(0,1).防范措施 在确定函数的单调区间时,首先要确定函数的定义域.1.函数f (x )=x +ln x 在(0,6)上是( ) A.单调增函数 B.单调减函数C.在⎝⎛⎭⎫0,1e 上是减函数,在⎝⎛⎭⎫1e ,6上是增函数 D.在⎝⎛⎭⎫0,1e 上是增函数,在⎝⎛⎭⎫1e ,6上是减函数 答案 A解析 ∵x ∈(0,6)时,f ′(x )=1+1x>0,∴函数f (x )在(0,6)上单调递增.2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )答案 D解析 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确.3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ) A.[1,+∞) B.a =1 C.(-∞,1] D.(0,1) 答案 A解析 ∵f ′(x )=3x 2-2ax -1, 且f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1≤0在(0,1)内恒成立, ∴f ′(0)≤0,且f ′(1)≤0,∴a ≥1.4.函数y =x 2-4x +a 的增区间为________,减区间为________. 答案 (2,+∞) (-∞,2)解析 y ′=2x -4,令y ′>0,得x >2;令y ′<0,得x <2, 所以y =x 2-4x +a 的增区间为(2,+∞),减区间为(-∞,2).5.已知函数f (x )=2ax -1x ,x ∈(0,1].若f (x )在x ∈(0,1]上是增函数,则a 的取值范围为__________. 答案 ⎣⎡⎭⎫-12,+∞ 解析 由已知条件得f ′(x )=2a +1x 2.∵f (x )在(0,1]上是增函数,∴f ′(x )≥0,即a ≥-12x 2在x ∈(0,1]上恒成立.而g (x )=-12x 2在(0,1]上是增函数,∴g (x )max =g (1)=-12.∴a ≥-12.当a =-12时,f ′(x )=-1+1x 2对x ∈(0,1]有f ′(x )≥0,且仅在x =1时,f ′(x )=0.∴a =-12时,f (x )在(0,1]上是增函数.∴a 的取值范围是⎣⎡⎭⎫-12,+∞.判断函数单调性的方法如下:(1)定义法.在定义域内任取x 1,x 2,且x 1<x 2,通过判断f (x 1)-f (x 2)的符号来确定函数的单调性.(2)图象法.利用函数图象的变化趋势进行直观判断.图象在某个区间呈上升趋势,则函数在这个区间内是增函数;图象在某个区间呈下降趋势,则函数在这个区间内是减函数.(3)导数法.利用导数判断可导函数f (x )在区间(a ,b )内的单调性,步骤是:①求f ′(x );②确定f ′(x )在(a ,b )内的符号;③确定单调性.求函数y =f (x )的单调增区间、减区间分别是解不等式f ′(x )>0和f ′(x )<0所得的x 的取值集合.反过来,如果已知f (x )在区间D 上单调递增,求f (x )中参数的值,这类问题往往转化为不等式的恒成立问题,即f ′(x )≥0在D 上恒成立且仅在有限个点上等号成立,求f (x )中参数的值.同样可以解决已知f (x )在区间D 上单调递减,求f (x )中参数的值的问题.一、选择题1.函数y =(3-x 2)e x 的单调递增区间是( ) A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)答案 D解析 求导函数得y ′=(-x 2-2x +3)e x .令y ′=(-x 2-2x +3)e x >0,可得x 2+2x -3<0, ∴-3<x <1.∴函数y =(3-x 2)e x 的单调递增区间是(-3,1).2.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上单调递减,则实数a 的取值范围是( ) A.(-∞,-3]∪[3,+∞) B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3) 答案 B解析 由题意得f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)上恒成立,且仅在有限个点上f ′(x )=0,则有Δ=4a 2-12≤0,解得-3≤a ≤ 3. 3.下列函数中,在(0,+∞)内为增函数的是( ) A.y =sin x B.y =x e 2 C.y =x 3-x D.y =ln x -x 答案 B解析 显然y =sin x 在(0,+∞)上既有增又有减,故排除A ;对于函数y =x e 2,因e 2为大于零的常数,不用求导就知y =x e 2在(0,+∞)内为增函数; 对于C ,y ′=3x 2-1=3⎝⎛⎭⎫x +33⎝⎛⎭⎫x -33, 故函数在⎝⎛⎭⎫-∞,-33,⎝⎛⎭⎫33,+∞上为增函数,在⎝⎛⎭⎫-33,33上为减函数; 对于D ,y ′=1x -1 (x >0).故函数在(1,+∞)上为减函数, 在(0,1)上为增函数.故选B.4.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( ) A.f (x )>g (x ) B.f (x )<g (x )C.f (x )+g (a )>g (x )+f (a )D.f (x )+g (b )>g (x )+f (b ) 答案 C解析 ∵f ′(x )-g ′(x )>0, ∴(f (x )-g (x ))′>0,∴f (x )-g (x )在 [a ,b ]上是增函数, ∴当a <x <b 时f (x )-g (x )>f (a )-g (a ), ∴f (x )+g (a )>g (x )+f (a ).5.函数y =ln |x |x的图象大致是( )答案 C解析 ∵y =f (-x )=ln |-x |-x =-f (x ),∴y =f (x )=ln |x |x为奇函数,∴y =f (x )的图象关于原点成中心对称,可排除B. 又∵当x >0时,f (x )=ln xx ,f ′(x )=1-ln x x 2,∴当x >e 时,f ′(x )<0,∴函数f (x )在(e ,+∞)上单调递减; 当0<x <e 时,f ′(x )>0, ∴函数f (x )在(0,e)上单调递增. 故可排除A ,D ,而C 满足题意.6.定义在R 上的函数f (x )满足:f ′(x )>1-f (x ),f (0)=6,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x +5(其中e 为自然对数的底数)的解集为( )A.(0,+∞)B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(1,+∞)D.(3,+∞)答案 A解析 由题意可知不等式为e x f (x )-e x -5>0, 设g (x )=e x f (x )-e x -5, ∴g ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1]>0.∴函数g (x )在定义域上单调递增.又∵g (0)=0,∴g (x )>0的解集为(0,+∞). 二、填空题7.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是______________. 答案 ⎣⎡⎭⎫1,32 解析 显然函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x .由f ′(x )>0,得函数f (x )的单调递增区间为⎝⎛⎭⎫12,+∞;由f ′(x )<0,得函数f (x )单调递减区间为⎝⎛⎭⎫0,12.因为函数在区间(k -1,k +1)上不是单调函数,所以k -1<12<k +1,解得-12<k <32,又因为(k -1,k+1)为定义域内的一个子区间,所以k -1≥0,即k ≥1.综上可知,1≤k <32.8.函数y =f (x )在其定义域⎝⎛⎭⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.答案 ⎣⎡⎦⎤-13,1∪[2,3) 9.函数y =ln(x 2-x -2)的递减区间为________. 答案 (-∞,-1)解析 f ′(x )=2x -1x 2-x -2,令f ′(x )<0得x <-1或12<x <2,注意到函数定义域为(-∞,-1)∪(2,+∞),故递减区间为(-∞,-1).10.若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞上是增函数,则a 的取值范围是________. 答案 [3,+∞)解析 因为f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞上是增函数, 故f ′(x )=2x +a -1x 2≥0在⎝⎛⎭⎫12,+∞上恒成立, 即a ≥1x 2-2x 在⎝⎛⎭⎫12,+∞上恒成立. 令h (x )=1x 2-2x ,则h ′(x )=-2x 3-2, 当x ∈⎝⎛⎭⎫12,+∞时,h ′(x )<0,则h (x )为减函数,所以h (x )<h ⎝⎛⎭⎫12=3,所以a ≥3.三、解答题11.已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.(1)求实数a ,b 的值;(2)若函数f (x )在区间[m ,m +1]上单调递增,求m 的取值范围.解 (1)∵函数f (x )=ax 3+bx 2的图象经过点M (1,4),∴a +b =4.①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b .由条件f ′(1)·⎝⎛⎭⎫-19=-1,即3a +2b =9.② 由①②解得a =1,b =3.(2)f (x )=x 3+3x 2,则f ′(x )=3x 2+6x .令f ′(x )=3x 2+6x ≥0,得x ≥0或x ≤-2.∵函数f (x )在区间[m ,m +1]上单调递增,∴[m ,m +1]⊆(-∞,-2]∪[0,+∞),∴m ≥0或m +1≤-2,∴m ≥0或m ≤-3.12.已知函数f (x )=a x +x 2-x ln a -b (a ,b ∈R ,a >1),e 是自然对数的底数.(1)试判断函数f (x )在区间(0,+∞)上的单调性;(2)当a =e ,b =4时,求整数k 的值,使得函数f (x )在区间(k ,k +1)上存在零点. 解 (1)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a .∵a >1,∴当x ∈(0,+∞)时,ln a >0,a x -1>0,∴f ′(x )>0,∴函数f (x )在(0,+∞)上单调递增.(2)∵f (x )=e x +x 2-x -4,∴f ′(x )=e x +2x -1, ∴f ′(0)=0.当x >0时,e x >1,∴f ′(x )>0,∴f (x )是(0,+∞)上的增函数.同理,f (x )是(-∞,0)上的减函数.又f (0)=-3<0,f (1)=e -4<0,f (2)=e 2-2>0, 当x >2时,f (x )>0,∴当x >0时,函数f (x )的零点在(1,2)内,∴k =1满足条件.f (0)=-3<0,f (-1)=1e -2<0,f (-2)=1e 2+2>0, 当x <-2时,f (x )>0,∴当x <0时,函数f (x )零点在(-2,-1)内, ∴k =-2满足条件.综上所述,k =1或-2.13.求下列函数的单调区间.(1)y =ln(2x +3)+x 2;(2)f (x )=a ln x +x -1x +1(a 为常数). 解 (1)函数y =ln (2x +3)+x 2定义域为⎝⎛⎭⎫-32,+∞. ∵y =ln(2x +3)+x 2,∴y ′=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3. 当y ′>0,即-32<x <-1或x >-12时, 函数y =ln(2x +3)+x 2单调递增.当y ′<0,即-1<x <-12时, 函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝⎛⎭⎫-32,-1,⎝⎛⎭⎫-12,+∞; 单调递减区间为⎝⎛⎭⎫-1,-12. (2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增. 当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1),①当a =-12时,Δ=0,g (x )≤0, f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减. ②当a <-12时,Δ<0,g (x )<0, f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0时,Δ>0. 设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a>0, 所以当x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,当x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增,当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时, f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.。

相关文档
最新文档