人教版高中数学选修1-2综合测试卷A(含答案)

合集下载

人教a版高中数学选修21全册同步练习及单元检测含答案

人教a版高中数学选修21全册同步练习及单元检测含答案

答案: 一元二次方程 ax2+ bx+ c=0( a≠0) 此方程有两个不相等的实数根

三、解答题 ( 每小题 10 分,共 20 分 )
7.指出下列命题的条件 p 和结论 q: (1) 若 x+ y 是有理数,则 x, y 都是有理数;
(2) 如果一个函数的图象是一条直线,那么这个函数为一次函数.
1
1
∴ a+1≥1且 a≤ 2,即 0≤ a≤ 2.
1 ∴满足条件的 a 的取值范围为 0, 2 .
4 8.求证: 0≤ a< 是不等式
ax2- ax+1- a>0 对一切实数
x 都成立的充要条件.
5
4 证明: 充分性:∵ 0<a< ,
5 ∴ Δ=a2- 4a(1 -a) = 5a2- 4a= a(5 a-4)<0 , 则 ax2- ax+ 1- a>0 对一切实数 x 都成立. 而当 a= 0 时,不等式 ax2-ax+ 1- a>0 可变成 1>0.
x 都成立的充要条件.
尖子生题库 ☆☆☆ 9. (10 分 ) 已知条件 p: A= { x|2 a≤ x≤ a2+ 1} ,条件 q: B={ x| x2- 3( a+ 1) x+2(3 a+ 1) ≤0} .若 p 是 q 的充分条件,求实数 a 的取值范围. 解析: 先化简 B, B= { x|( x- 2)[ x- (3 a+1)] ≤0} ,
答案: (1)(2)(3)
x 6.设集合 A= x| x-1<0 ,B= { x|0< x<3} ,那么“ m∈ A”是“ m∈ B”的 ________条件.
x
解析:
A=
x|
<0 x- 1

2021-2022学年人教A版高中数学选修1-2 模块综合评价(一) Word版含答案

2021-2022学年人教A版高中数学选修1-2 模块综合评价(一) Word版含答案

模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若z =4+3i ,则z-|z |=( ) A .1 B .-1 C.45+35i D.45-35i 解析:z -|z |=4-3i 42+32=45-35i. 答案:D2.下面几种推理是合情推理的是( ) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出全部三角形的内角和都是180°; ③张军某次考试成果是100分,由此推出全班同学的成果都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④解析:①是类比推理;②是归纳推理;④是归纳推理. 所以①、②、④是合情推理. 答案:C3.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查发觉,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.675(千元),估量该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%解析:由(x -,7.765)在回归直线y ^=0.66x +1.562上.所以7.765=0.66x -+1.562,则x -≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%. 答案:A4.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内全部直线,已知直线b 在平面α外,直线a 在平面α内,直线b ∥平面α,则直线b ∥直线a ”的结论明显是错误的,这是由于( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误解析:若直线平行平面α,则该直线与平面内的直线平行或异面,故大前提错误. 答案:A5.执行如图所示的程序框图,如图输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7解析:x =2,t =2,M =1,S =3,k =1.k ≤t ,M =11×2=2,S =2+3=5,k =2; k ≤t ,M =22×2=2,S =2+5=7,k =3;3>2,不满足条件,输出S =7. 答案:D6.如图所示,在复平面内,OP →对应的复数是1-i ,将OP →向左平移一个单位后得到O 0P 0→,则P 0对应的复数为( )A .1-iB .1-2iC .-1-iD .-i解析:要求P 0对应的复数,依据题意,只需知道OP 0→,而OP 0→=OO 0→+O 0P 0→,从而可求P 0对应的复数.由于O 0P 0→=OP →,OO 0→对应的复数是-1, 所以P 0对应的复数, 即OP 0→对应的复数是-1+(1-i )=-i . 答案:D7.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x /cm 174 176 176 176 178 儿子身高y /cm175175176177177则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析:由于x -=174+176+176+176+1785=176,y -=175+175+176+177+1775=176,又y 对x 的线性回归方程表示的直线恒过点(x -,y -),所以将(176,176)代入A 、B 、C 、D 中检验知选C. 答案:C8.观看下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+a 5=11,…,则a 10+b 10=( ) A .28 B .76 C .123D .199解析:观看可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.连续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a 10+b 10=123.答案:C9.在△ABC 中,tan A ·tan B >1,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定解析:由于tan A ·tan B >1,所以A ,B 只能都是锐角,所以tan A >0,tan B >0,1-tan A ·tan B <0. 所以tan(A +B )=tan A +tan B1-tan A ·tan B<0.所以A +B 是钝角,所以角C 为锐角.答案:A10.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆D .抛物线解析:设z =x +y i(x 、y ∈R), |x +1+y i|=(x +1)2+y 2,|1+i z |=|1+i(x +y i)|=(y -1)2+x 2, 则(x +1)2+y 2=(y -1)2+x 2,得y =-x .所以复数z =x +y i 对应点(x ,y )的轨迹为到点(-1,0)和(0,1)距离相等的直线y =-x . 答案:A11.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a (a +7)与2a +7+2(a +3)(a +4)的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12,故P <Q .答案:C12.依据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -1解析:由程序框图知第一次运行:i =1,a 1=2,S =2; 其次次运行:i =2,a 2=4,S =4; 第三次运行:i =3,a 3=8,S =8; 第四次运行:i =4,a 4=16,S =16.……第n 次运行,a n =2a n -1,因此输出数列的通项公式为a n =2n. 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.某学校的组织结构图如图所示:则教研处的直接领导是________.解析:由结构图知,教研处的直接领导为副校长甲. 答案:副校长甲14.复数z 满足(1+i)z =|3-i|,则z 的共轭复数z -=________. 解析:由于(1+i)z =|3-i|=2, 所以z =21+i =1-i ,则z -=1+i.答案:1+i 15.2+23=223, 3+38=338, 4+415=4415……若 6+a b =6ab(a ,b 均为实数),猜想,a =________,b =________.解析:由前面三个等式,推想归纳被平方数的整数与分数的关系,发觉规律,由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推想6+a b中:a =6,b =62-1=35,即a =6,b=35.答案:6 3516.执行如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为________.解析:依据程序框图逐一执行. 由x 2-4x +3≤0,解得1≤x ≤3.当x =1时,满足1≤x ≤3,所以x =1+1=2,n =0+1=1; 当x =2时,满足1≤x ≤3,所以x =2+1=3,n =1+1=2; 当x =3时,满足1≤x ≤3,所以x =3+1=4,n =2+1=3; 当x =4时,不满足1≤x ≤3,所以输出n =3. 答案:3三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)计算:i -231+23i+(5+i 19)-⎝ ⎛⎭⎪⎫1+i 222.解:原式=(i -23)·i(1+23i )·i +(5+i 16·i 3)-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i 2211=(i -23)i i -23+(5-i)-⎝ ⎛⎭⎪⎫2i 211=i +5-i +i =5+i.18.(本小题满分12分)某学校对一班级的甲、乙两个班进行“数学学前训练”对“学校数学成果优秀”影响的试验,其中甲班为试验班(实施了数学学前训练),乙班为对比班(和甲班一样进行常规教学,但没有实施数学学前训练),在期末测试后得到如下数据:班级 优秀人数 非优秀人数总计 甲班 30 20 50 乙班 25 25 50 总计5545100作用?解:由于K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×25-20×25)250×50×55×45=10099≈1.010<6.635. 所以,在犯错误的概率不超过0.01的前提下,不能认定进行“数学学前训练”对“学校数学成果优秀”有乐观作用.19.(本小题满分12分)纸杯从原材料(纸张)到商品(纸杯)主要经过四道工序:淋膜、印刷、模切、成型.首先用淋膜机给原纸淋膜,然后用分切机把已经淋膜好的纸分切成矩形纸张(印刷后作杯壁用)和卷筒纸(作杯底).再将矩形纸印刷并切成扇形杯壁,将卷筒纸切割出杯底,将杯壁与杯底黏合,最终成型.画出该工序流程图.解:该工序流程图如图所示.20.(本小题满分12分)如图所示,在四棱锥P­ABCD中,AP⊥平面PCD,AD∥BC,AB=BC =12AD,点E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面PAC.证明:(1)连接AC交BE于点O ,连接OF(如图),不妨设AB=BC=1,则AD=2,由于AB=BC,AD∥BC,所以四边形ABCE为菱形,由于O,F分别为AC,PC中点,所以OF∥AP,又由于OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由于AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD,由于BC∥ED,BC=ED,所以BCDE为平行四边形,所以BE∥CD,所以BE⊥PA,又由于ABCE为菱形,所以BE⊥AC,又由于PA∩AC=A,AP,AC⊂平面PAC,所以BE⊥平面PAC.21.(本小题满分12分)设存在复数z同时满足下列条件:(1)复数z在复平面内的对应点位于其次象限;(2)z·z-+2i z=8+a i(a∈R).试求a的取值范围.解:设z=x+y i(x,y∈R),由(1)得x<0,y>0.由(2)得x2+y2+2i(x+y i)=8+a i,即x2+y2-2y+2x i=8+a i,由复数相等的充要条件得⎩⎪⎨⎪⎧x2+y2-2y=8,2x=a,即a24+y2-2y=8,所以a24=-(y2-2y-8)=-(y-1)2+9,则a24≤9,x<0,a<0,解得-6≤a<0,所以a的取值范围是[-6,0).22.(本小题满分12分)已知△ABC的三边长分别为a,b,c,且其中任意两边长均不相等,若1a,1b,1c成等差数列.(1)比较ba与cb的大小,并证明你的结论;(2)求证:角B不行能是钝角.(1)解:ba<cb.证明如下:要证ba<cb,只需证ba<cb.由于a,b,c>0,所以只需证b2<ac.由于1a,1b,1c成等差数列,所以2b=1a+1c≥21ac,所以b2≤ac.又a,b,c均不相等,所以b2<ac.故所得大小关系正确.(2)证明:法一假设角B是钝角,则cos B<0.由余弦定理,得cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac>0,这与cos B <0冲突,故假设不成立. 所以角B 不行能是钝角.法二 假设角B 是钝角,则角B 的对边b 为最大边. 则b >a ,b >c ,所以1a >1b >0,1c >1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b冲突,故假设不成立.所以角B 不行能是钝角.。

高中数学综合测试新人教A版选修1-2

高中数学综合测试新人教A版选修1-2

综合测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间100分钟.参考公式:线性回归方程错误!=错误!x+错误!中,第Ⅰ卷(选择题,共40分)一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.)1.(2018年高考·课标全国卷Ⅲ)(1+i)(2-i)=( )A.-3-i B.-3+iC.3-i D.3+i解析:(1+i)(2-i)=2-i+2i-i2=3+i。

答案:D2.以下哪种推理方法是类比推理()A.∵数列{a n}中,a1=1,a2=3,a3=5,∴a n=2n-1(n∈N*)B.∵x2=3,∴x=±错误!C.∵平面内平行于同一直线的两直线平行,∴空间平行于同一平面的两个平面平行D.∵f(x)=x+3,∴f(0)=3答案:C3.执行如图1所示的程序框图,输出的s值为()图1A.2 B。

错误!C.错误!D。

错误!解析:运行该程序,k=0,s=1,k<3;k=0+1=1,s=错误!=2,k<3;k=1+1=2,s=错误!=错误!,k〈3;k=1+2=3,s=错误!=错误!,k=3.输出的s值为错误!。

故选C。

答案:C4.在复平面内,O为原点,向量错误!对应复数为-1-2i,若点A关于直线y=-x的对称点为B,则向量错误!对应复数为( )A.-2-i B.2+iC.1+2i D.-1+2i答案:B5.对命题“正三角形的内切圆切于三边的中点",可类比猜想出:正四面体的内切球切于四面各正三角形的什么位置()A.各正三角形内的点B.各正三角形内的某高线上的点C.各正三角形的中心D.各正三角形外的某点答案:C6.已知f(x+1)=错误!,f(1)=1(x∈N*),猜想f(x)的表达式为( )A.f(x)=错误!B.f(x)=错误!C.f(x)=错误!D.f(x)=错误!解析:由f(1)=1,排除C、D,再由f(2)=错误!=错误!,f(3)=错误!=错误!,排除A。

新人教A版选修1-2高中数学第一、二章测试题及答案

新人教A版选修1-2高中数学第一、二章测试题及答案

数学选修1-2第一、二章测试题参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,回归直线方程:1221ni ii nii x ynx y b xnx==-=-∑∑,一、选择题(共10小题,每小题5分,共50分。

) 1、下列两个量之间的关系是相关关系的为( )A .匀速直线运动的物体时间与位移的关系B .学生的成绩和体重C .路上酒后驾驶的人数和交通事故发生的多少D .水的体积和重量2、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数2R 为0.98 B. 模型2的相关指数2R 为0.80 C. 模型3的相关指数2R 为0.50 D. 模型4的相关指数2R 为0.253. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y = 7.19 x +73.93. 用这个模型预测这个孩子10岁时的身高,则正确的叙述是(A) 身高一定是145.83 cm ; (B) 身高在145.83 cm 以上; (C) 身高在145.83 cm 以下; (D) 身高在145.83 cm 左右 4、下列说法正确的是( )A.由归纳推理得到的结论一定正确 B.由类比推理得到的结论一定正确 C.由合情推理得到的结论一定正确D.演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确。

5、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 6、下表为某班5位同学身高x (单位:cm)与体重y (单位kg)的数据,若两个量间的回归直线方程为1.16y x a =+,则a 的值为( ) A .-121.04 B .123.2 C .21 D .-45.127、用反证法证明命题:“,,,a b c d R ∈,1a b +=,1c d +=,且1ac bd +>,则,,,a b c d 中至少有一个负数”时的假设为( )A .,,,a b c d 中至少有一个正数B .,,,a b c d 全为正数C .,,,a b c d 全都大于等于0D .,,,a b c d 中至多有一个负数8、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角x 为( )A .6πB .4πC .3πD .π1259、在平面上,若两个正三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为( )A .1:2 B. 1:4 C. 1:8 D. 1:610、设函数()y f x =定义在R 上,满足(2)4f =,且对任意12,x x R ∈,恒12()f x x +=12()()f x f x +,则满足()f x 的表达式为( )(A)2()log f x x = (B)()2x f x = (C)()2f x x = (D)1()2f x x =二、填空题(共4小题,每小题5分,共20分)11、回归直线方程为0.57514.9y x =-,则100x =时,y 的估计值为12、黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖________________块.13、若()()()(,),f a b f a f b a b N +=⋅∈且(1)2f =,则=+++)2011()2012()3()4()1()2(f f f f f f 14、当n=1时,有(a-b )(a+b )=a 2-b2当n=2时,有(a-b )(a 2+ab+b 2)=a 3-b 3当n=3时,有(a-b )(a 3+a 2b+ab 2+b 3)=a 4-b 4当n *∈N 时,你能得到的结论是三、解答题(共6小题,共80分) 15、(本题满分12分)在数列{a n }中,1121,()2n n na a a n N a ++==∈+,试写出这个数列的前4项,并猜想这个数列的通项公式。

人教A版选修一数学·选修 1-2(人教A版)

人教A版选修一数学·选修 1-2(人教A版)

高中数学学习材料(灿若寒星精心整理制作)数学·选修1-2(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于自变量x和因变量y,当x取值一定时,y的取值带有一定的随机性,x,y间这种非确定的关系叫做()A.函数关系B.线形关系C.相关关系D.回归关系答案:C2.下列是关于出生男婴与女婴调查的2×2列联表,那么表中m,n的值分别是()晚上白天总计男婴m 3580女婴5347100总计n 82180A.58,60 B.45,81 C.98,45 D.45,98答案:D3.△ABC三个顶点对应的复数分别是z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的()A .内心B .重心C .垂心D .外心答案:D4.用反证法证明命题“若整系数方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个偶数”时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数答案:B5.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪2cos x ,1,1,cos x 的图象的一条对称轴方程是( )A .x =π2B .x =π3C .x =π4D .x =π6解析:依题意得:f (x )=2cos 2x -1=cos 2x ,∴选A. 答案:A6.复数(a 2-a )+(|a -1|-1)i(a ∈R)不是纯虚数,则有( ) A .a ≠0 B .a ≠0且a ≠1 C .a ≠1 D .a ≠0且a ≠2答案:C7.在“由于任何数的平方都是非负数,所以(2i)2≥0”这一推理中,产生错误的原因是( )A .推理的形式不符合三段论的要求B .大前提错误C .小前提错误D .推理的结果错误解析:大前提错误,应为“任何实数的平方都是非负数”.故选B.答案:B8.如图(1)、(2),它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为()A.(1)n3≥1 000?(2)n3<1 000?B.(1)n3≤1 000?(2)n3≥1 000?C.(1)n3<1 000?(2)n3≥1 000?D.(1)n3<1 000?(2)n3<1 000?答案:C9.有一堆形状、大小相同的珠子,其中只有一粒重量比其他的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒()A.21 B.24 C. 27 D. 30答案:C10.如下面两图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1.若把它推广到长方体ABCD-A1B1C1D1中,对角线BD1与棱AB,BB1,BC所成的角分别为α,β,γ,则相应的命题形式()A.cos2α+cos2β+cos2γ=1 B.sin2α+sin2β+sin2γ=1C.cos2α+cos2β+cos2γ=2 D.sin2α+sin2β+sin2γ=2答案:A二、填空题(本大题共4小题,每小题5分,共20分;将正确答案填在题中的横线上)11.设复数z=1+i,ω=z-2|z|-4,则ω=_______________.答案:-3-22+i12.数列{an}中,a1=2,an+1=an3an+1(n∈N*),依次计算a2,a3,a4,然后归纳、猜想an=_______________.答案:26n-513.为解决四个村庄用电问题,政府投资在已建电厂与四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图(距离单位:km),则能把电力输送到这四个村庄的输电线路最短总长度应该是________.解析:要使电厂与四个村庄相连,则需四条线路,注意最短的四条线路能使电厂与四个村庄相连,∴4+5+5.5+6=20.5 km.答案:20.5 km14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图一组蜂巢的截面图中,第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 幅图的蜂巢总数,则f (4)=______,f (n )=______.解析:f (4)=4+5+6+7+6+5+4=37,f (n )=n +(n +1)+…+(2n -1)+…+(n +1)+n =2×n [n +(2n -1)]2-(2n -1)=3n 2-3n +1.答案:37 3n 2-3n +1三、解答题(本大题共6小题,共80分;解答时应写出必要的文字说明、证明过程及演算步骤)15.(12分)计算 (1)(1+2i )2+3(1-i )2+i ;(2)1-3i (3+i )2.解析:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i=i (2-i )5=15+25i;(2)1-3i(3+i)2=(3+i)(-i)(3+i)2=-i3+i=(-i)(3-i)4=-14-34i.16.(12分)某班主任对全班50名学生进行了作业量多少的调查,数据如下表:认为作业多认为作业不多总计喜欢玩电脑游戏18927不喜欢玩电脑游戏81523总计262450 试用独立性检验思想分析喜欢玩电脑游戏和认为作业量的多少是否相关.解析:根据公式计算,K2的观测值k=50(18×15-8×9)226×24×27×23≈5.059,∵5.059>5.024,∴约有97.5%的把握认为喜欢玩电脑游戏和认为作业量的多少有关.17.(14分)某人早晨起床后泡茶的过程可用流程图表示为:这种安排方式耗时多少分钟?还可以有其他的安排方法吗?试用流程图表示你准备采用的方式,并计算按你的方式耗时多少分钟.解析:按照题中流程图的安排,总耗时数为2+15+3+2+1=23(min).由于洗茶杯、取放茶叶可在烧开水时进行,故工作流程图也可以这样安排:18.(14分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.求证:(1)AB∥平面PCD.(2)BC⊥平面PAC.证明:(1)∵AB∥DC,且AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD.(2)在直角梯形ABCD中,过C作CE⊥AB于点E(如图),则四边形ADCE为矩形.∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠ABC=45°,∴CE=BE=1,CB= 2.∴AD=CE=1,则AC=AD2+DC2= 2.∴AC2+BC2=AB2,∴BC⊥AC.又∵PA⊥平面ABCD.∴PA⊥BC.又∵PA∩AC=A,∴BC⊥平面PAC.19.(14分)在关于人体脂肪含量y(百分比)和年龄x(岁)关系的研究中,得到如下一组数据:年龄(x)232739414550脂肪含量(y)9.517.821.225.927.528.2(1)画出散点图,判断x与y是否具有相关关系;(2)通过计算可知b^=0.651 2,â=-2.737 9,请写出y对x的回归直线方程,并计算出23岁和50岁的残差.解析:(1)涉及两个变量,年龄与脂肪含量.因此选取年龄为自变量x,脂肪含量为因变量y.散点图如图所示,从图中可以看出x与y具有相关关系.(2)y对x的回归直线方程为y^=0.651 2x-2.737 9.当x=23 时,y^=12.239 7,y-y^=9.5-12.239 7=-2.739 7.当x=50 时,y^=29.822 1,y-y^=28.2-29.822 1=-1.622 1.所以23岁和50岁的残差分别为-2.739 7和-1.622 1.20.(14分)设数列{}a n 的首项a 1=a ≠14,且a n +1=⎩⎪⎨⎪⎧12a n ,n 为偶数,a n +14,n 为奇数.记b n =a 2n -1-14,n =1,2,3,….(1)求a 2,a 3,a 4,a 5;(2)判断数列{}b n 是否为等比数列,并证明你的判断.解析:(1)a 2=a 1+14=a +14,a 3=12a 2=12a +18,a 4=a 3+14=12a +38,a 5=12a 4=14a +316.(2)由(1)可得 b 1=a 1-14=a -14,b 2=a 3-14=12⎝ ⎛⎭⎪⎫a -14,b 3=a 5-14=14⎝⎛⎭⎪⎫a -14.猜想:{}b n 是公比为12的等比数列.证明如下:因为 b n +1=a 2n +1-14=12 a 2n -14=12⎝ ⎛⎭⎪⎫a 2n -1-14=12b n (n ∈N *),又 a ≠14,所以 b 1=a -14≠0.所以数列{}b n 是首项为a -14,公比为12的等比数列.。

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

模块综合检测(一)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.(新课标全国卷Ⅱ)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.-5 B.5C.-4+i D.-4-i解析:选A由题意可知z2=-2+i,所以z1z2=(2+i)·(-2+i)=i2-4=-5.2.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是()A.三角形B.梯形C.平行四边形D.矩形解析:选C只有平行四边形与平行六面体较为接近.3.实数的结构图如图所示,其中1,2,3三个方格中的内容分别为()A.有理数、零、整数B.有理数、整数、零C.零、有理数、整数D.整数、有理数、零解析:选B由实数的包含关系知B正确.4.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是()A.a k+a k+1+…+a2kB.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2kD.a k-1+a k+…+a2k-2解析:选D利用归纳推理可知,第k项中第一个数为a k-1,且第k项中有k项,次数连续,故第k项为a k-1+a k+…+a2k-2.5.下列推理正确的是()A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥lg a ·lg bD .若a 为正实数,ab <0,则a b +ba =--ab +-b a≤-2⎝⎛⎭⎫-a b ·⎝⎛⎭⎫-b a =-2解析:选D A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.6.已知复数z 1=m +2i ,z 2=3-4i.若z 1z 2为实数,则实数m 的值为( )A.83B.32 C .-83D .-32解析:选D z 1z 2=m +2i 3-4i =(m +2i )(3+4i )(3-4i )(3+4i )=(3m -8)+(6+4m )i32+42.∵z 1z 2为实数, ∴6+4m =0, ∴m =-32.7.观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式为( )A .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)B .(n +1)(n +2)…(n +1+n +1)=2n ×1×3×…×(2n -1)C .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n +1)D .(n +1)(n +2)…(n +1+n )=2n +1×1×3×…×(2n -1)解析:选A 观察规律,等号左侧为(n +1)(n +2)…(n +n ),等号右侧分两部分,一部分是2n ,另一部分是1×3×…×(2n -1).8.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 125解析:选D ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n(n∈Z,且n≥5)的末四位数字呈周期性变化,且最小正周期为4.记5n(n∈Z,且n≥5)的末四位数为f(n),则f(2 015)=f(502×4+7)=f(7),∴52 015与57的末四位数相同,均为8 125.9.(重庆高考)执行如图所示的程序框图,则输出的k的值是()A.3 B.4C.5 D.6解析:选C第一次运行得s=1+(1-1)2=1,k=2;第二次运行得s=1+(2-1)2=2,k=3;第三次运行得s=2+(3-1)2=6,k=4;第四次运行得s=6+(4-1)2=15,k=5;第五次运行得s=15+(5-1)2=31,满足条件,跳出循环,所以输出的k的值是5,故选C.10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程为=0.67x+54.9.现发现表中有一个数据模糊不清,经推断可知该数据为()零件数x/个1020304050加工时间y/min62758189A.70 B.解析:选B依题意得,=15×(10+20+30+40+50)=30.由于直线=0.67x+54.9必过点(,),于是有=0.67×30+54.9=75,因此表中的模糊数据是75×5-(62+75+81+89)=68.二、填空题(本大题共4小题,每小题5分,共20分)11.复数z=-3+i2+i的共轭复数为________.解析:z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i ,所以=-1-i.答案:-1-i12.“一群小兔一群鸡,两群合到一群里,数腿共40,数脑袋共15,多少小兔多少鸡?”其解答流程图如图所示,空白部分应为________.设有x 只鸡,y 只小兔→列方程组→ →得到x ,y 的值 答案:解方程组13.图1有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图2有体积关系:V PA ′B ′C ′V PABC=________.解析:把平面中三角形的知识类比到空间三棱锥中,得V PA ′B ′C ′V PABC =PA ′·PB ′·PC ′PA ·PB ·PC .答案:PA ′·PB ′·PC ′PA ·PB ·PC14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.解析:由于f (2)-f (1)=7-1=6, f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. 答案:3n 2-3n +1三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知复数ω满足ω-4=(3-2ω)i(i 为虚数单位),z =5ω+|ω-2|,求.解:由ω-4=(3-2ω)i ,得8ω(1+2i)=4+3i , ∴ω=4+3i1+2i=2-i.∴z =52-i+|-i|=3+i. 则z =3+i 的共轭复数=3-i.于是=3+i 3-i =(3+i )2(3-i )(3+i )=8+6i 10=45+35i.16.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程=x +; (2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解:(1)由题意知, n =10,=1n ∑i =1n x i =8010=8,=1n ∑i =1n y i =2010=2,==184-10×8×2720-10×82=2480=0.3,=-b =2-0.3×8=-0.4, 故所求回归方程为y =0.3x -0.4.(2)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 17.(本小题满分12分)先解答(1),再通过结构类比解答(2). (1)求证:tan ⎝⎛⎭⎫x +π4=1+tan x1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f (x )1-f (x ),试问:f (x )是周期函数吗?证明你的结论.解:(1)根据两角和的正切公式得 tan ⎝⎛⎭⎫x +π4=tan x +tanπ41-tan x tanπ4 =tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想:f (x )是以4a 为周期的周期函数.证明:因为f (x +2a )=f ((x +a )+a ) =1+f (x +a )1-f (x +a )=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ),所以f (x +4a )=f ((x +2a )+2a ) =-1f (x +2a )=f (x ).所以f (x )是以4a 为周期的周期函数.18.(本小题满分14分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)上的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表所示:甲厂:(2)由以上统计数据填下面2×2列联表,问:能否在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”?解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%.乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)优质品360320680非优质品140180320总计500500 1 000K2的观测值k=500×500×680×320≈7.35>6.635,所以在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”.模块综合检测(二)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.设z=10i3+i,则z的共轭复数为()A.-1+3i B.-1-3i C.1+3i D.1-3i解析:选D∵z=10i3+i=10i(3-i)(3+i)(3-i)=1+3i,∴=1-3i.2.以下说法,正确的个数为()①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.②农谚“瑞雪兆丰年”是通过归纳推理得到的.③由平面几何中圆的一些性质,推测出球的某些性质,这是运用的类比推理.④个位是5的整数是5的倍数,2 375的个位是5,因此2 375是5的倍数,这是运用的演绎推理.A.0 B.2 C.3 D.4解析:选C①人的身高与脚长的关系:身高=脚印长×6.876(中国人),是通过统计数据用线性回归的思想方法得到的,故不是类比推理,所以错误.②农谚“瑞雪兆丰年”是人们在长期的生产生活实践中提炼出来的,所以是用的归纳推理,故正确.③由球的定义可知,球与圆具有很多类似的性质,故由平面几何中圆的一些性质,推测出球的某些性质是运用的类比推理是正确的.④这是运用的演绎推理的三段论.大前提是“个位是5的整数是5的倍数”,小前提是“2 375的个位是5”,结论为“2 375是5的倍数”,所以正确.故选C.3.观察下图中图形的规律,在其右下角的空格内画上合适的图形为()解析:选A表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形.4.三段论:“①所有的中国人都坚强不屈;②雅安人是中国人;③雅安人一定坚强不屈”,其中“大前提”和“小前提”分别是()A.①②B.①③C.②③D.②①解析:选A解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①所有的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②雅安人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③雅安人一定坚强不屈).故选A.5.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.6.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出:“a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出:“若a,b,c,d ∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出:“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出:“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数是()A.1 B.2 C.3 D.4解析:选B①②正确,③④错误,因为③④中虚数不能比较大小.7.执行如图所示的程序框图,则输出s的值为()A.10 B.17C.19 D.36解析:选C执行程序:k=2,s=0;s=2,k=3;s=5,k=5;s=10,k=9;s=19,k=17,此时不满足条件k<10,终止循环,输出结果为s=19.选C.8.p=ab+cd,q=ma+nc·bm+dn(m,n,a,b,c,d均为正数),则p,q的大小为()A.p≥q B.p≤qC.p>q D.不确定解析:选B q=ab+madn+nbcm+cd≥ab+2abcd+cd=ab+cd=p.9.下图所示的是“概率”知识的()A.流程图B.结构图C.程序框图D.直方图解析:选B这是关于“概率”知识的结构图.10.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表:喜爱打篮球不喜爱打篮球总计男生20525女生101525总计302050.()附参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K2>k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.78910.828C.0.005 D.0.001解析:选C由2×2列联表可得,K2的估计值k=50×(20×15-10×5)230×20×25×25=253≈8.333>7.789,所以在犯错误的概率不超过0.005的前提下,认为“喜爱打篮球与性别有关”.二、填空题(本大题共4小题,每小题5分,共20分)11.设a=3+22,b=2+7,则a,b的大小关系为________________.解析:a=3+22,b=2+7两式的两边分别平方,可得a2=11+46,b2=11+47,显然,6<7.∴a<b.答案:a<b12.复数z=i1+i(其中i为虚数单位)的虚部是________.解析:化简得z=i1+i=i(1-i)(1+i)(1-i)=12+12i,则虚部为12.答案:1 213.根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是________(填序号).①a n=2n②a n=2(n-1)③a n=2n④a n=2n-1解析:由程序框图可知:a1=2×1=2,a2=2×2=4,a3=2×4=8,a4=2×8=16,归纳可得:a n=2n.答案:③14.(福建高考)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0 有且只有一个正确,则100a+10b+c等于________.解析:可分下列三种情形:(1)若只有①正确,则a≠2,b≠2,c=0,所以a=b=1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b=2,a=2,c=0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c≠0,a=2,b≠2,所以b=0,c=1,所以100a+10b+c=100×2+10×0+1=201.答案:201三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.解:(z1-2)(1+i)=1-i⇒z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.16.(本小题满分12分)某大学远程教育学院网上学习流程如下:(1)学生凭录取通知书到当地远程教育中心报到,交费注册,领取网上学习注册码.(2)网上选课,课程学习,完成网上平时作业,获得平时作业成绩.(3)预约考试,参加期末考试获得期末考试成绩,获得综合成绩,成绩合格获得学分,否则重修.试画出该远程教育学院网上学习流程图.解:某大学远程教育学院网上学习流程如下:17.(本小题满分12分)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下面的2×2列联表:主食蔬菜主食肉类总计 50岁以下 50岁以上 总计(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)2×2列联表如下: (2)因为K 2的观测值 30×(8-128)212×18×20×10=k=10>6.635,所以在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”.18.(本小题满分14分)为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?解:根据题目所给的数据得到如下列联表:理科 文科 总计 有兴趣 138 73 211 无兴趣 98 52 150 总计236125361k =361×(138×52-73×98)2236×125×211×150≈1.871×10-4.因为1.871×10-4<2.706,所以据目前的数据不能认为学生选报文、理科与对外语的兴趣有主食蔬菜主食肉类总计 50岁以下 4 8 12 50岁以上 16 2 18 总计201030关,即可以认为学生选报文、理科与对外语的兴趣无关.。

高中数学人教a版高二选修1-2_章末综合测评1 有答案

高中数学人教a版高二选修1-2_章末综合测评1 有答案

高中数学人教a版高二选修1-2_章末综合测评1 有答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下列各量与量的关系中是相关关系的为()①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的支出与收入之间的关系;⑤某户家庭用电量与电费之间的关系.A.①②③B.③④C.④⑤D.②③④【解析】①⑤是一种确定性关系,属于函数关系.②③④正确.【答案】 D2.(散点图在回归分析过程中的作用是()A.查找个体个数B.比较个体数据大小关系C.探究个体分类D.粗略判断变量是否线性相关【解析】由散点图可以粗略地判断两个变量是否线性相关,故选D.【答案】 D3.身高与体重有关系可以用________来分析.()A.残差B.回归分析C.等高条形图D.独立性检验【解析】因为身高与体重是两个具有相关关系的变量,所以要用回归分析来解决.【答案】 B4.一位母亲记录了她儿子3岁到9岁的身高,建立了她儿子身高与年龄的回归模型y^=73.93+7.19x,她用这个模型预测儿子10岁时的身高,则下面的叙述正确的是()A .她儿子10岁时的身高一定是145.83 cmB .她儿子10岁时的身高一定是145.83 cm 以上C .她儿子10岁时的身高在145.83 cm 左右D .她儿子10岁时的身高一定是145.83 cm 以下【解析】 由回归模型得到的预测值是可能取值的平均值,而不是精确值,故选C.【答案】 C5.下列关于等高条形图的叙述正确的是( )A .从等高条形图中可以精确地判断两个分类变量是否有关系B .从等高条形图中可以看出两个变量频数的相对大小C .从等高条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对【解析】 在等高条形图中仅能粗略地判断两个分类变量的关系,故A 错.在等高条形图中仅能够找出频率,无法找出频数,故B 错.【答案】 C6.已知一个线性回归方程为y ^=1.5x +45,其中x 的取值依次为1,7,5,13,19,则y =( )A .58.5B .46.5C .60D .75【解析】 ∵x =15(1+7+5+13+19)=9,回归直线过样本点的中心(x -,y -),∴y -=1.5×9+45=58.5. 【答案】 A7.若两个变量的残差平方和是325, i =1n(y i -y ^i )2=923,则随机误差对预报变量的贡献率约为( )A .64.8%B .60%C .35.2%D .40%【解析】 相关指数R 2表示解释变量对于预报变量变化的贡献率,故随机误差对预报变量的贡献率为残差平方和总偏差平方和×100%=325923×100%≈35.2%,故选C.【答案】 C8.在研究吸烟与患肺癌的关系中,通过收集数据并整理、分析,得到“吸烟与患肺癌有关”的结论,并且有99%的把握认为这个结论成立.下列说法正确的个数是()①在100个吸烟者中至少有99个人患肺癌;②如果一个人吸烟,那么这个人有99%的概率患肺癌;③在100个吸烟者中一定有患肺癌的人;④在100个吸烟者中可能一个患肺癌的人也没有.A.4 B.3C.2 D.1【解析】有99%的把握认为“吸烟与患肺癌有关”,指的是“吸烟与患肺癌有关”这个结论成立的可能性或者可信程度有99%,并不表明在100个吸烟者中至少有99个人患肺癌,也不能说如果一个人吸烟,那么这个人就有99%的概率患肺癌;更不能说在100个吸烟者中一定有患肺癌的人,反而有可能在100个吸烟者中,一个患肺癌的人也没有.故正确的说法仅有④,选D.【答案】 D9.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图1中可以看出()图1A.性别与喜欢理科无关B.女生中喜欢理科的百分比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的百分比为60%【解析】从题图中可以分析,男生喜欢理科的可能性比女生大一些.【答案】 C10.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若判断变量X和Y有关出错概率不超过2.5%,则c等于() A.3 B.4C.5 D.6【解析】列2×2列联表如下:故K2的观测值k=31×35×(10+c)(56-c)≥5.024.将选项A、B、C、D代入验证可知选A.【答案】 A11.在两个学习基础相当的班级实行某种教学措施的试验,测试结果见下表,则试验效果与教学措施()A.C.关系不明确D.以上都不正确【解析】随机变量K2的观测值为k=100×(48×12-38×2)250×50×86×14≈8.306>7.879,则认为“试验效果与教学措施有关”的概率为0.995.【答案】 A12.为预测某种产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取了8组观测值.计算知∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1849,则y对x 的回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62xC.y ^=2.62+11.47xD.y ^=11.47-2.62x【解析】 由已知数据计算可得b ^=2.62,a ^=11.47,所以回归方程是y ^=11.47+2.62x ,故选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),若e i 恒为0,则R 2的值为________.【解析】 由e i 恒为0,知y i =y ^i ,即y i -y ^i =0,故R 2=1-∑ni =1(y i -y ^i )2∑ni =1(y i -y -)2=1-0=1.【答案】 114.已知方程y ^=0.85x -82.71是根据女大学生的身高预报体重的回归方程,其中x 的单位是cm ,y 的单位是kg ,那么针对某个体(160,53)的随机误差是________.【解析】 因为回归方程为y ^=0.85x -82.71,所以当x =160时,y ^=0.85×160-82.71=53.29,所以针对某个体(160,53)的随机误差是53-53.29=-0.29.【答案】 -0.2915.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知得到k =50×(13×20-10×7)223×27×20×30≈4.844,则认为“选修文科与性别有关系”出错的可能性为________.【解析】 k ≈4.844>3.841,故判断出错的概率为0.05. 【答案】 0.0516.若对于变量y 与x 的10组统计数据的回归模型中,相关指数R 2=0.95,又知残差平方和为120.53,那么∑i =110(y i -y )2的值为________.【解析】 ∵R 2=1-∑i =110(y i -y ^i )2∑i =110(y i -y )2,残差平方和∑i =110(y i -y ^i )2=120.53,∴0.95=1-120.53∑i =110 (y i -y )2,∴∑i =110(y i -y )2=2 410.6.【答案】 2 410.6三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)假设某农作物基本苗数x 与有效穗y 之间存在相关关系,今测得5组数据如下:【解】 散点图如图所示.从散点图可以看出这些点大致分布在一条直线附近,所以x,y线性相关.18.(本小题满分12分)吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表是性别与吃零食的列联表:【解】k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),把相关数据代入公式,得k=85×(5×28-40×12)217×68×45×40≈4.722>3.841.因此,在犯错误的概率不超过0.05的前提下,可以认为“喜欢吃零食与性别有关”.19.(本小题满分12分)新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:根据最小二乘法建立的回归直线方程为y=-20x+250.(1)试求表格中m的值;(2)预计在今后的销售中,销量与单价仍然服从建立的回归方程,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,所以y =-20×8.5+250=80, 故16(90+84+83+m +75+68)=80, 解得m =80.(2)设工厂获得的利润为L 元,依题意得 L =(x -5)(-20x +250) =-20⎝ ⎛⎭⎪⎫x 2-352x +1252(x >0),所以x =8.75时,L 取得最大值.故当单价定为8.75元/件时,工厂可获得最大利润.20.(本小题满分12分)如图2是对用药与不用药,感冒已好与未好进行统计的等高条形图.若此次统计中,用药的患者是70人,不用药的患者是40人,试问:能否在犯错误的概率不超过0.001的前提下认为“感冒已好与用药有关”?图2【解】 根据题中的等高条形图,可得在用药的患者中感冒已好的人数为70×810=56,在不用药的患者中感冒已好的人数为40×310=12. 2×2列联表如下:k =110×(56×28-12×14)270×40×68×42≈26.96>10.828.因此,能在犯错误的概率不超过0.001的前提下认为感冒已好与用药有关系. 21.(本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)图3(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?参考公式:回归直线y ^=b ^x +a^,其中b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x 2,a ^=y ^-b ^x -.【解】 (1)散点图如图:(2)由表格计算得∑i =14x i y i =52.5,x =3.5,y=3.5,∑i =14x 2i =54,所以b ^=0.7,a^=1.05,所以y ^=0.7x +1.05,回归直线如上图;(3)将x =10代入回归直线方程得y ^=0.7×10+1.05=8.05(小时), 所以预测加工10个零件需要8.05小时.22.(本小题满分12分)为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下:(1) (2)描述解释变量x 与预报变量y 之间的关系; (3)计算相关指数.【解】 (1)所作散点图如图所示.(2)由散点图看出样本点分布在一条指数型函数y =c 1e c 2x 的周围,于是令z =ln y ,则第- 11 -页 共11页 由计算得:z ^=0.69x +1.115,则有y ^=e 0.69x +1.115.(3)2i =∑i =16(y i -y ^i )2=4.816 1,∑i =16 (y i -y )2=24 642.8, R 2=1-4.816 124 642.8≈0.999 8, 即解释变量“天数”对预报变量“繁殖细菌个数”解释了99.98%.。

2021-2022年高中数学 综合测试 新人教A版选修1-2

2021-2022年高中数学 综合测试 新人教A版选修1-2

2021-2022年高中数学综合测试新人教A版选修1-2在本模块中,学生将学习统计案例、推理与证明、数系扩充及复数的引入、框图。

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。

推理一般包括合情推理和演绎推理。

合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。

归纳、类比是合情推理常用的思维方法。

在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。

演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。

合情推理和演绎推理之间联系紧密、相辅相成。

证明通常包括逻辑证明和实验、实践证明,数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。

在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。

在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。

框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。

高中数学选修1-2(人教A 版)综合测试题及参考答案

高中数学选修1-2(人教A 版)综合测试题及参考答案

高中数学选修1-2(人教A 版)综合测试题一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.独立性检验,适用于检查______变量之间的关系 ( )A.线性B.非线性C.解释与预报D.分类2.样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b y ˆˆˆ+=的关系( )A.在直线上B.在直线左上方C. 在直线右下方D.在直线外 3.复平面上矩形ABCD 的四个顶点中,C B A 、、所对应的复数分别为i 32+、i 23+、i 32--,则D点对应的复数是 ( )A.i 32+-B.i 23--C.i 32-D.i 23-4.在复数集C内分解因式5422+-x x 等于( )A.)31)(31(i x i x --+-B.)322)(322(i x i x --+-^C.)1)(1(2i x i x --+-D.)1)(1(2i x i x -+++5.已知数列 ,11,22,5,2,则52是这个数列的 ( ) A.第6项 B.第7项 C.第19项 D.第11项6.用数学归纳法证明)5,(22≥∈>*n N n n n成立时,第二步归纳假设正确写法是( ) A.假设k n =时命题成立 B.假设)(*∈=N k k n 时命题成立 C.假设)5(≥=n k n 时命题成立 D.假设)5(>=n k n 时命题成立 7.2020)1()1(i i --+的值为 ()A.0B.1024C.1024-D.10241- 8.确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2k 的观测值k 必须( ) A.大于828.10 B.小于829.7 C.小于635.6 D.大于706.2 、 9.已知复数z满足||z z -=,则z的实部()A.不小于0B.不大于0C.大于0D.小于0 10.下面说法正确的有 ( ) (1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。

高中数学选修1-2试题及答案(打印)(1)

高中数学选修1-2试题及答案(打印)(1)

高二数学选修1-2模块测试题(文科)一、选择题:(本大题共14小题,每小题5分,共70分) 1.若复数3i z =-,则z 在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是 ( ) A .6B .21C .156D .2318.若=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ) A .512 B .537 C .6 D .8 4.用火柴棒摆“金鱼”,如图所示:( )按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 ( ) A .62n - B .82n - C .62n + D .82n + 5.计算1i1i -+的结果是 ( ) A .i B .i -C .2D .2-6.已知x 与y 之间的一组数据:则a bx y+=ˆ必过点 ( )A .(2,2)B .(1,2)C .(1.5,0)D .(1.5,4) 7.求135101S =++++的流程图程序如右图所示, 其中①应为 ( ) A.101?A = B .101?A ≤ C .101?A >…① ② ③D .101?A ≥7.已知a +b +c =0,则ab +bc +ca 的值( )A .大于0B .小于0C .不小于0D .不大于09.对相关系数r ,下列说法正确的是 ( ) A .||r 越大,线性相关程度越大 B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越近0,线性相关程度越小 10.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①9090180A B C C ++=︒+︒+>︒,这与三角形内角和为180︒相矛盾,90A B ==︒不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A 、B 、C 中有两个直角,不妨设90A B ==︒,正确顺序的序号为 ( ) A .①②③B .③①②C .①③②D .②③①11.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K ≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间 ( ) A .有95%的把握认为两者有关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病 12.类比平面内 “垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:( )①垂直于同一条直线的两条直线互相平行 ②垂直于同一个平面的两条直线互相平行 ③垂直于同一条直线的两个平面互相平行④垂直于同一个平面的两个平面互相平行则正确的结论是 ( )A .①②B .②③C .③④D .①④13.若定义运算:()()a a b a b b a b ≥⎧⊗=⎨<⎩,例如233⊗=,则下列等式不能成立....的是 ( )A .a b b a ⊗=⊗ B .()()a b c a b c ⊗⊗=⊗⊗ C .222()a b a b ⊗=⊗D ()()()c a b c a c b ⋅⊗=⋅⊗⋅(0c >)14.已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( )A .21nn + B .311n n -+ C .212n n ++ D .22nn + 二、填空题:(本大题共4小题,每小题5分,共20分)1.现有爬行、哺乳、飞行三类动物,其中蛇、地龟属于爬行动物;河狸、狗属于哺乳动物;鹰、长尾雀属于飞行动物,请你把下列结构图补充完整.2.已知,x y ∈R ,若i 2i x y +=-,则x y -= . 3.在等比数列{}n a 中,若91a =,则有121217(17n n a a a a a a n -⋅⋅⋅=⋅⋅⋅<,且)n *∈N 成立,类比上述性质,在等差数列{}n b 中,若70b =,则有 . 4.观察下列式子:212311+=,313422+=,414533+=,515644+=,,归纳得出一般规律为 . 三、解答题:(本大题共3小题,共28分)1.(12分)(1)已知方程03)12(2=-+--i m x i x 有实数根,求实数m 的值。

高中数学选修1-2综合测试题(人教A版)

高中数学选修1-2综合测试题(人教A版)

A .输出m ;交换m 和n 的值B .交换m 和n 的值;输出 mC .输出n ;交换m 和n 的值D .交换m 和n 的值;输出n7.按照图1――图3的规律,第10个图中圆点的个数为( )个.A . 40B . 36C . 44D . 52&已知二次函数 f (x ) =ax bx c 的导数为f'(x ) , f '(0) 0,对于任意实数 x 都有、选择题:1 .下列命题正确的是( ) A .虚数分正虚数和负虚数 B .实数集与复数集的交集为实数集 c .实数集与虚数集的交集是 {0}2 .下列各式中,最小值等于 2的是( D .纯虚数集与虚数集的并集为复数 ) 2 x y x +5 尺 1 x x A .B. --------------- C . tan D . 2 2 y x x 2 4 tan 寸 1 3.已知三次函数 f (x ) = -x 3- (4m v 1)x 2+ (15m -2n v 7)x + 2 在 x € ( —a, )是增函数,3 则m 的取值范围是( ) A . n <2 或 n >4 B . — 4<n < — 2 C . 2<n <4 D .以上皆不正确 4. 函数f x 的定义域为 a,b ,导函数「x 在a,b 内的图像如图所示, 则函数f x 在a, b 内有极小值点 A . 1个 B . 2个 C . 3个 D . 4个5. 下面对相关系数r 描述正确的是() A . r 0表明两个变量负相关 B . r 1表明两个变量正相关C . r 只能大于零D . | r |越接近于0,两个变量相关关系越弱 6.下面的程序框图的作用是输出两数中的较大者,则①②处分别为( )f(x) _0」 f ⑴的最小值为 f'(0) A . 3 B 5 C .2 D 3 2 2 9.下表为某班 5位同学身高x (单位: cm )与体重 y (单位 kg ) 的数据, 若两个量间的回归直线方程为 y=1.16x ・a ,则a 的值为( ) A . -121.04 B . 123.2 C . 21 D . -45.1216. 若x,厂 R 且满足x 3^2,则3x 27y 1的最小值是1 ]2 117. 若a 0,贝y a " . a ■: —2的最大值为 __________________a V a三、解答题: 10.用反证法证明命题:“ a,b,c,d R , a b =1, c d =1,且 ac bd 1,则 a,b,c,d 中至少有一个负数”时的假设为( A . a, b,c,d 中至少有一个正数 B . a, b, c, d 全为正数 C . a,b, c,d 全都大于等于 0 D . a,b,c,d 中至多有一个负数 二、填空题: 11.关于x 的4- i = 0的实数解为 12. 用支付宝在淘宝网购物有以下几步: ②淘宝网站收到买家的收货确认信息, 无问题,在网上确认收货;④买家登录淘宝网挑选商品; 司发货给买家. 13. 将正整数 ①买家选好商品,点击购买按钮,并付款到支付宝; 将支付宝里的货款付给卖家; ③买家收到货物,检验 ⑤卖家收到购买信息,通过物流公 他们正确的顺序依次为 _________ 1,2,3,……按照如图的规律排列,则100应在第列. 7 8 9 1015141314.已知函数 3f (x ) =x ax 在R 上有两个极值点,则实数 a 的取值范围是15.若 a b 0,则 a 1b(a 「b) 的最小值是 ______________218.复数z = 1 -i a -3a 2 i ( a R),(1 )若Z=z,求|z|; (2)若在复平面内复数z对应的点在第一象限,求a的范围.19.证明不等式:*一y (其中x, y皆为正数).y x320.设函数f(x)=x -6x 5,x R.(1 )求f (x)的单调区间和极值;(2)若关于x的方程f(x) =a有3个不同实根,求实数a的取值范围.(3)已知当* (1「:)时,f(x) _k(x-1)恒成立,求实数k的取值范围21.已知x =1是函数f (x) =mx3_3(m亠1)x2亠nx亠1的一个极值点,其中m, n三R, m:::0(1)求m与n的关系式;(2)求f (x)的单调区间;(3)当x •[」,1],函数y二f (x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围。

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:(1+i )3(1-i )2等于()A .1+iB .-1+iC .1-iD .-1-i解析:(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=-1-i. 答案:D2.如图所示的框图是结构图的是( ) A.P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q B.Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件C.D.入库→找书→阅览→借书→出库→还书 解析:选项C 为组织结构图,其余为流程图. 答案:C3.若大前提:任何实数的平方都大于0,小前提:a ∈R ,结论:a 2>0,那么这个演绎推理出错在()A .大前提B .小前提C .推理形式D .没有出错 答案:A4.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是()A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误解析:对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.答案:A5.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为()A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -9D .9(n -1)+(n -1)=10n -10解析:易知等式的左边是两项和,其中一项为序号n ,另一项为序号n -1的9倍,等式右边是10n -9.猜想第n 个等式应为9(n -1)+n =10n -9. 答案:B6.已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:因为(1-i )2z=1+i ,所以z =(1-i )21+i =(1-i )2(1-i )(1+i )(1-i )=(1+i 2-2i )(1-i )1-i 2=-2i (1-i )2=-1-i.答案:D7.根据如下样本数据得到的回归方程为y ^=bx +a ,则( )A.a >0,b C .a <0,b >0D .a <0,b <0解析:作出散点图如下:观察图象可知,回归直线y ^=bx +a 的斜率b <0, 当x =0时,y ^=a >0.故a >0,b <0. 答案:B8.下列推理正确的是( )A .如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥2lg a ·lg bD .若a 为正实数,ab <0,则a b +b a=-⎝⎛⎭⎪⎫-a b +-b a ≤-2⎝ ⎛⎭⎪⎫-a b ·⎝ ⎛⎭⎪⎫-b a =-2解析:A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.D 利用基本不等式,推理正确.答案:D9.下面的等高条形图可以说明的问题是()A .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C .此等高条形图看不出两种手术有什么不同的地方D .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析:由等高条形图知,D 正确. 答案:D10.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数B .a ,b ,c 都大于1C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾所以a ,b ,c 中至少有一个不小于12.答案:D11.已知直线l ,m ,平面α,β且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β.其中正确命题的个数是() A .1B .2C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B12.执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:输入x =0,y =1,n =1,得x =0,y =1,x 2+y 2=1<36,不满足条件;执行循环:n =2,x =12,y =2,x 2+y 2=14+4<36,不满足条件;执行循环:n =3,x =32,y =6,x 2+y 2=94+36>36,满足条件,结束循环,输出x =32,y =6,所以满足y =4x . 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·某某卷)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:a -i 2+i =15(a -i)(2-i)=2a -15-a +25i依题意a +25=0,所以a =-2.答案:-214.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为______________________________________________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.(2017·卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________; ②该小组人数的最小值为________.解析:设男学生人数、女学生人数、教师人数分别为a ,b ,c ,则有2c >a >b >c ,且a ,b ,c ∈Z.①当c =4时,b 的最大值为6;②当c =3时,a 的值为5,b 的值为4,此时该小组人数的最小值为12.答案:①6②1216.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为______.解析:首先把两组值代入回归直线方程得⎩⎨⎧3b ^+a ^=17,8b ^+a ^=22,解得⎩⎨⎧b ^=1,a ^=14. 所以回归直线方程是y ^=x +14. 答案:y ^=x +14三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)复数z =1+i ,某某数a ,b ,使az +2b z -=(a +2z )2. 解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎪⎨⎪⎧a =-2,b =-1,或⎩⎪⎨⎪⎧a =-4,b =2.所以a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)设a ,b ,c 为一个三角形的三边,S =12(a +b +c ),且S 2=2ab ,求证:S <2a .证明:因为S 2=2ab ,所以要证S <2a ,只需证S <S 2b,即b <S .因为S =12(a +b +c ),只需证2b <a +b +c ,即证b <a +c .因为a ,b ,c 为三角形三边, 所以b <a +c 成立,所以S <2a 成立. 19.(本小题满分12分)观察以下各等式:tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°, tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°, tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°. 分析上述各式的共同特点,猜想出表示一般规律的等式,并加以证明. 解:表示一般规律的等式是:若A +B +C =π,则tan A +tan B +tan C =tan A ·tan B ·tan C . 证明:由于tan(A +B )=tan A +tan B1-tan A tan B ,所以tan A +tan B =tan(A +B )(1-tan A tan B ). 而A +B +C =π,所以A +B =π-C .于是tan A +tan B +tan C =tan(π-C )(1-tan A tan B )+tan C =-tan C +tan A tanB tanC +tan C =tan A ·tan B ·tan C .故等式成立.20.(本小题满分12分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值;(2)当a >0且b a >14时,证明该方程没有实数根.解:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,所以⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)证明:原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .因为a >0,所以b a ≤14,这与题设b a >14相矛盾,故原方程无实数根.21.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解:设等差数列{a n }的公差为d ,则⎩⎨⎧a 1=1+2,3a 1+3d =9+32,联立得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 从而(q +2)2=(p +2)(r +2), 所以(q 2-pr )+(2q -p -r )2=0. 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0, 所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x -=110i=8010=8,=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料 (灿若寒星 精心整理制作)
数学选修1-2测试卷A (含答案)
一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)
1.独立性检验,适用于检查______变量之间的关系 ( )
A.线性
B.非线性
C.解释与预报
D.分类
2.样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b y ˆˆˆ+=的关系( )
A.在直线上
B.在直线左上方
C. 在直线右下方
D.在直线外 3.复平面上矩形ABCD 的四个顶点中,C B A 、、所对应的复数分别为i 32+、i 23+、
i 32--,
则D 点对应的复数是 ( ) A.i 32+- B.i 23-- C.i 32- D.i 23-
4.在复数集C 内分解因式5422
+-x x 等于 ( ) A.)31)(31(i x i x --+- B.)322)(322(i x i x --+- C.)1)(1(2i x i x --+- D.)1)(1(2i x i x -+++
5.已知数列 ,11,22,5,2,则52是这个数列的 ( ) A.第6项 B.第7项 C.第19项 D.第11项
6.用数学归纳法证明)5,(22
≥∈>*
n N n n n
成立时,第二步归纳假设正确写法是( ) A.假设k n =时命题成立 B.假设)(*
∈=N k k n 时命题成立 C.假设)5(≥=n k n 时命题成立 D.假设)5(>=n k n 时命题成立 7.2020
)1()
1(i i --+的值为 ( )
A.0
B.1024
C.1024-
D.10241- 8.确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2
k 的观测值k 必须( )
A.大于828.10
B.小于829.7
C.小于635.6
D.大于706.2 9.已知复数z 满足||z z -=,则z 的实部 ( ) A.不小于0 B.不大于0 C.大于0 D.小于0 10.下面说法正确的有 ( ) (1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;
(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。

A.1个
B.2个
C.3个
D.4个
11.命题“对于任意角θθθθ2cos sin cos ,4
4=-”的证明:
“θθθθθθθθθ2cos sin cos )sin )(cos sin (cos sin cos 2
2
2
2
2
2
4
4
=-=+-=-”过程应用了 ( )
A.分析发
B.综合法
C.综合法、分析法结合使用
D.间接证法 12.程序框图的基本要素为输入、输出、条件和 ( ) A.判断 B.有向线 C.循环 D.开始
二、填空题(本大题共4小题,每小题4分,共16分。

把答案填在题中的横线上。


13.回归分析中相关指数的计算公式__________2
=R 。

14.从 ),4321(16941,321941),21(41,11+++-=-+-++=+-+-=-=,概括
出第n 个式子为___________。

15.指出三段论“自然数中没有最大的数字(大前提),9是最大的数字(小前提),所
以9不是最大的数(结论)”中的错误是___________。

16.已知
i a i
i 31)1(3
+=+-,则__________=a 。

三、解答题(本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

) 17.(12分)(1)已知方程03)12(2
=-+--i m x i x 有实数根,求实数m 的值。

(2)C z ∈,解方程i zi z z 212+=-⋅。

18.(12分)考查小麦种子经灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如 下表所示:
试按照原实验目的作统计分析推断。

19.(12分)有人要走上一个楼梯,每步可向上走一级台阶或二级台阶,我们用n a 表示 该人走到n 级台阶时所有可能不同走法的种数,试寻求n a 的递推关系。

20.(12分)已知R d c b a ∈、、、,且,11
>+=+=+bd ac d c b a ,求证:d c b a 、、、中至少有一个是负数。

种子灭菌 种子未灭菌 合计
黑穗病 26 184 210 无黑穗病 50 200 250
合计 76 384 460
21.(12分)某校高一.2班学生每周用于数学学习的时间x (单位:h )与数学成绩y (单位:分)之间有如下数据: x 24 15 23 19 16 11 20 16 17 13 y 92 79 97 89
64
47
83
68
71
59
某同学每周用于数学学习的时间为18小时,试预测该生数学成绩。

22.(14分)若10000531>++++n ,试设计一个程序框图,寻找满足条件的最小整数。

参考答案
一、选择题
1.D ;
2.A ;
3.D ;
4.B ;
5.B ;
6.C ;
7.A ;
8.B ;
9.B ;10.C ;11.B ;12.C 。

二、填空题
13.∑∑---
=2
1
2)()ˆ(1y y
y
y
i
n
i i i

14.2
)
1()1()
1(169411
21
+-=-++-+-++n n n n n ; 15.大前提中的“数字”泛指整数,而小前提中的“数字”指的是数码,所以得出错误的结论;
16.i 32--。

三、解答题
17. 解:(1)设方程的实根为0x ,则03)12(02
0=-+--i m x i x , 因为R m x ∈、0,所以方程变形为0)12()3(0020=+-++i x m x x ,
由复数相等得⎪⎩⎪⎨⎧=+=++01203002
0x m x x ,解得⎪⎪⎩
⎪⎪⎨
⎧=-=121
210m x ,
故12
1
=
m 。

(2)设),(R b a bi a z ∈+=,则i bi a i bi a bi a 21)(2))((+=+--+, 即i ai b b a 21222
2
+=-++。

由⎩⎨⎧=++=-1222
2b b a a a 得⎩⎨⎧=-=011
1b a 或⎩⎨⎧-=-=2122b a , i z z 211--=-=∴或。

18.解:841.38.4384
76250210)5018420026(4602
2
>≈⨯⨯⨯⨯-⨯⨯=
k ,
∴有95℅的把握认为小麦种子灭菌与否跟发生黑穗病有关。

19.解:由实验可知2,121==a a ,第三级台阶可以从第二级台阶上一步走一级台阶走上来;或从第一级台级上一步走二级台阶走上来。

因此,123a a a +=。

类比这种走法,第n 级台级可以从第1-n 台阶上一步走一级台阶走上来;或从第2-n 级台级上一步走二级台阶走上来,于是有递推关系式:)3(21≥+=--n a a a n n n 。

20.证明:假设d c b a 、、、都是非负数 因为1=+==d c b a , 所以1))((=++d c b a ,
又bd ac bc ad bd ac d c b a +>+++=++))((,
所以1≤+bd ac ,
这与已知1>+bd ac 矛盾。

所以d c b a 、、、中至少有一个是负数。

21.解:因为学习时间与学习成绩间具有相关关系。

可以列出下表并用科学计算器进行计算。

i 1 2 3 4 5 6 7 8 9 10
i x 24 15 23 19 16 11 20 16 17 13 i y 92 79 97 89 64 47 83 68 71 59 i i y x
2208
1185
2231
1691
1024
517
1660
1088
1207
767
4.17=x 9.74=y
318210
1
2=∑=i i
x
58375101
2
=∑=i i y 1357810
1
=∑=i i i y x
于是可得53.34
.1544
.5451010ˆ2
10
1
210
1
≈=
--=∑∑==x
x
y x y
x b
i i
i i
i , 5.134.1753.39.74ˆ≈⨯-=-=x b y a
, 因此可求得回归直线方程5.1353.3ˆ+=x y
, 当18=x 时,7704.775.131853.3ˆ≈=+⨯=y
, 故该同学预计可得77分左右。

22.解:
开始
=
sum
1
=
i
?
10000

sum
i
sum sum+
=
1
+
=i
i
1
+
=i
i
结束否
是。

相关文档
最新文档