红外光谱分析法x

合集下载

红外光谱分析法

红外光谱分析法

第一节 基本理论
一、红外吸收光谱的测定与表示法
1. 测定方法 红外光谱测定时所需样品极少,一般为1~5mg。 *固体样品有三种处理方法:
1)配成溶液, 2)与饱和烃如医用石蜡油研成胡状 3)与粉状溴化钾压片,一般用1~2mg样品,与200mg溴化 钾压制成片,可避免溶剂干扰。 *液体样品处理方法: 若不配成溶液,一小滴就够,可直接放在两片吸收池窗板中 间进行测定,叫液膜法。
图2-5正辛烷的红外光谱 (Ⅰ):2960~2850cm-1; (Ⅱ)-CH2-的剪式振动:1465cm-1; (Ⅲ)δ -CH3 (对称):1380cm-1; (Ⅳ)的平面摇摆振动:~725cm-1
43
CH3
(21)375CcHm-1两CH个3:强度当接分近子的中吸出收现带异,丙基时,甲基的1380cm-1带分裂为1385、 (3) -C(CH3)3:叔丁基与异丙基相似,也使1380cm-1带发生分裂,
另一部分光透过,若将其透过的光用单色器进行色散,就可以得到
一带暗条的谱带。若以波长或波数为横坐标,以百分吸收率为纵坐
标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,获得红
外振动信息。
14
红外吸收光谱的图谱多以波长(或波数 )为横坐标,以表示吸收峰的位置;若 用吸收百分率(adsorption%)表示吸收 强度时,吸收峰向上,但是通常以透射 百分率(transmittance%)表示。
振动或称伸张振动),常用符号“S”或
“ν”表示。
H
H
H
H
C
C
对称伸缩振动(νSCH2)
非对称伸缩振动(νasCH2)
2、弯曲振动:
面内弯曲振动 面外弯曲振动 (1)面内弯曲振动:分为剪式和平面摇摆弯曲振动两种。

红外吸收光谱分析法

红外吸收光谱分析法

红外吸收光谱分析法
一、红外吸收光谱分析法概述
红外吸收光谱分析法是一种利用物质的红外光吸收能力来探测它们的物质组成的技术。

它特别适用于有机化合物和无机化合物的光谱分析。

通过分析红外吸收光谱,可以检测物质中的有机键、C-H键、C-O键或N-H 键的存在和位置,从而鉴定出物质的化学结构和性质。

红外光吸收法的原理是,物质中的分子、晶体或其他结构会在不同的波长处吸收光,产生光谱,这些吸收光谱是物质的独特特征,反映出物质的特性。

根据这种特性,分析用不同波长的光照射样品,并从所得到的光谱中提取出电子激发、分子振动等信息,从而得到物质的结构和性质。

二、红外吸收光谱分析法基本原理
红外吸收光谱分析法的原理是,当物质受到红外幅射的照射时,它的分子会产生振动和旋转,这些振动和旋转的能量会转化为更高能量的电子跃迁。

这些电子跃迁会引起物质材料吸收一些具有特定波长的红外光,从而产生在不同波长的吸收光谱,通过分析这些吸收光谱,就可以求取物质分子的结构和性质。

红外光谱分析法

红外光谱分析法

理论振动数( 峰数) 理论振动数 ( 峰数 )
设分子的原子数为n, 设分子的原子数为 , 对非线型分子,理 对非线型分子 理 论振动数=3n-6 论振动数 分子, 如H2O分子,其振 分子 动数为3 动数为 ×3-6=3 对线型分子, 对线型分子,理论 振动数=3n-5 振动数 分子, 如CO2分子,其理 论振动数为3 论振动数为 ×3-5=4
4000~400/cm-1
分子振动转动 (常用区) 常用区)
远红外(转动区 远红外 转动区) 转动区 (25-1000 m)
400~10/cm-1
分子转动
分区及波长范围
跃迁类型
3. 红外光谱特点 1)红外吸收只有振-转跃迁,能量低; )红外吸收只有振 转跃迁 能量低; 转跃迁, 2)应用范围广:除单原子分子及单核分子外,几乎所有有 )应用范围广:除单原子分子及单核分子外, 机物均有红外吸收; 机物均有红外吸收; 3)分子结构更为精细的表征:通过 谱的波数位置,波峰 )分子结构更为精细的表征:通过IR谱的波数位置 谱的波数位置, 数目及强度确定分子基团,分子结构; 数目及强度确定分子基团,分子结构; 4)定量分析; )定量分析; 5)固,液,气态样均可用,且用量少,不破坏样品; ) 气态样均可用,且用量少,不破坏样品; 6)分析速度快. )分析速度快. 7)与色谱等联用(GC-FTIR)具有强大的定性功能. ) 具有强大的定性功能.
2)多原子分子 ) 多原子分子的振动更为复杂 ,但可将其分解为多个简 但可将其分解为多个简 正振动来研究. 正振动来研究. 简正振动基本形式 伸缩振动ν 原子沿键轴方向伸缩, 伸缩振动ν:原子沿键轴方向伸缩,键长变化但键角不变 的振动. 的振动. 变形振动δ 基团键角发生周期性变化, 变形振动δ:基团键角发生周期性变化,但键长不变的振 弯曲振动或变角振动. 动.又称 弯曲振动或变角振动. 下图给出了各种可能的振动形式( 下图给出了各种可能的振动形式 ( 以甲基和亚甲基为 例).

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动

5红外光谱分析

5红外光谱分析

伸缩
3700-3500 3600-3000 1420-1350 1500-1340 1500-1200 1200-1010 1100-800
弯曲
1200-600 1650-1600 900-800 900-700 800-600 680-580 560-420
42
红外-拉曼
5 典型红外图谱(7)
化学键 -CH3 -CH-
16
红外-拉曼
4 红外分析方法(3)
17
4 红外分析方法(5)
红外光谱测定中的样品处理技术 1
液体样品 固体样品 气体样品
液膜法 溶液法 水溶液测定
压片法 调糊法(或重烃油法,Nujol法) 薄膜法 ATR法、显微红外、DR、PAS、RAS 气体池
18
红外光谱测定中的样品处理技术 2
1液膜法
用组合窗板进行测定
(KBr从4000-250cm-1都是透明的,即 不产生红外吸收)
34
红外-拉曼
5 典型红外图谱(1)
3500 cm-1: O-H stretching vibrations. 1600 cm-1 :O-H bending vibration band.
~1100 cm-1:Si-O-Si fundamental vibration.
➢Examination of materials that are not amenable to the film analysis method
➢Analysis of extremely thin films applies on the top surfaces
➢Sample in solution
12
红外-拉曼
3 红外吸收产生的原理(8)

红外光谱解析方法

红外光谱解析方法

红外光谱解析方法红外光谱解析方法是一种常用的分析化学方法,可以用于对化合物的结构进行研究和鉴定。

红外光谱解析方法主要利用化合物在红外光的作用下,不同官能团的振动与转动引起红外光吸收的特性来分析化合物的结构。

本文将介绍一些常用的红外光谱解析方法,并给出一些结构分析实例。

首先,红外光谱解析方法通常是通过红外光谱仪测量化合物在特定波数范围内的光谱图像,然后根据不同官能团的振动频率和光谱峰的位置、强度等特征来进行结构分析。

以下是一些常用的红外光谱解析方法:1. 官能团峰位置分析法:不同官能团具有不同的红外光谱吸收特点,可以通过观察红外光谱图中各个官能团的吸收峰的位置来判断化合物中存在的官能团。

例如,羧酸官能团的C=O振动通常在1700-1725 cm^-1之间,酮和酰胺官能团的C=O振动通常在1650-1750 cm^-1之间。

2.官能团峰强度分析法:通过观察红外光谱图中各个官能团的吸收峰的强度可以推测化合物中该官能团的相对含量。

例如,苯环的C-H伸缩振动通常表现为较强的峰,而取代基的C-H伸缩振动通常较弱。

3.官能团复合分析法:化合物通常由多个官能团组成,各个官能团的振动频率和位置可以相互影响。

通过综合分析化合物中多个官能团的吸收峰的位置、强度等特征,可以进一步确定化合物的结构。

例如,当化合物同时含有羟基和羧基时,其红外光谱图中会出现OH和CO的吸收峰,它们的相对位置和强度可以提供更多的结构信息。

下面给出一个红外光谱解析的实例:假设有一个未知化合物,它的分子式为C5H10O,并测得其红外光谱图如下:(图略)根据红外光谱图,我们可以进行如下的结构分析:从红外光谱图中我们可以观察到两个很强的特征峰,一个位于2750-2850 cm^-1之间,一个位于1725-1740 cm^-1之间。

根据我们的经验,2750-2850 cm^-1之间的峰通常是C-H的伸缩振动,而1725-1740 cm^-1之间的峰通常是C=O的伸缩振动。

红外光谱测试分析

红外光谱测试分析

红外光谱测试分析引言:红外光谱测试是一种常用的实验技术,用于分析样品的化学结构、官能团及其化学环境。

它是通过观察和记录样品在红外区域(4000至400 cm^-1)的吸收、散射或透射红外辐射而得到的。

红外光谱测试广泛应用于有机、无机、生物、聚合物等领域。

本文将介绍红外光谱测试的原理、仪器、样品制备以及数据分析等内容。

一、红外光谱测试原理红外光谱测试基于物质与红外辐射的相互作用。

红外光谱仪将红外辐射通过样品,然后测量样品吸收、散射或透射的光强。

红外辐射包含许多波长,在红外区域中的每种波长都与特定的分子振动模式相对应。

当样品中的分子振动发生时,它们会吸收特定波长的红外光,从而产生特征峰。

根据这些特征峰的位置和强度可以推断样品的化学组成和结构。

二、红外光谱测试仪器红外光谱测试仪器主要由光源、样品盒、分光器和探测器等组成。

常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散红外光谱仪(dispersive IR)。

其中,FTIR光谱仪具有高分辨率、高灵敏度和快速测量的优点,被广泛应用于科研和工业领域。

三、样品制备样品制备是红外光谱测试的关键步骤之一、样品可以是固体、液体或气体。

对于固体样品,常用的方法是将样品与适合的红外吸收剂混合,然后挤压成适当的片状样品。

对于液体样品,可以使用液态电池夹持装置保持样品在红外光束中。

对于气体样品,需要将气体置于透明的气室中,并对室内气体进行红外光谱的测量。

四、红外光谱数据分析红外光谱数据分析是针对测得的吸收谱进行的。

常见的红外光谱数据分析包括鉴定功能性团、质谱相关性分析和量子化学计算等。

鉴定功能性团是通过对比样品的吸收峰位置和精确峰位表进行的。

质谱相关性分析是利用红外光谱和质谱数据之间的相关性,为红外光谱的解释提供重要信息。

量子化学计算是通过计算得到的理论红外光谱与实际测量的红外光谱进行比对,以验证实验结果的准确性。

结论:红外光谱测试是一种重要的化学分析技术,广泛应用于化学、材料、药物和环境等领域。

红外光谱法测定样品方法

红外光谱法测定样品方法

红外光谱法测定样品方法红外光谱法是一种常用的分析方法,可以用于测定样品的化学成分和结构。

其工作原理是利用物质分子中的化学键振动和拉伸引起的特定波长的吸收现象,通过检测样品对不同波长红外光的吸收程度,从而获得样品的红外光谱图。

红外光谱仪的基本组成包括光源、样品室、光学系统、探测器和数据处理系统。

红外光谱仪一般采用四种基本的工作模式:透射模式、反射模式、透射反射混合模式和表面增强红外吸收模式,根据不同的样品特点选择适合的测定模式。

1.样品制备:样品要求纯净、干燥,避免杂质的干扰。

固态样品通常需要研磨成粉末,以增加样品的表面积和散射效应。

液态样品则需用溶剂适当稀释,以保证光路的透明度。

2.样品固定:根据测定模式的不同,将样品放置在特定的测定池或夹具上。

在透射模式中,样品通常被压入透明的窗片中,以保证样品对红外光的透射性。

在反射模式中,样品直接固定在反射盘上,以测量样品与红外光的反射能力。

3.仪器校准:校准红外光谱仪是保证测量结果准确性的重要步骤。

通常需要进行背景校准和波数标定。

背景校准是采集背景信号,以消除光源和仪器的背景干扰。

波数标定是通过参考样品的红外光谱特征峰来确定仪器的波数刻度,常用的参考样品包括聚乙烯和聚苯乙烯等。

4. 开始测量:在校准完成后,可以开始测量样品的红外光谱了。

通常测量范围为4000 cm-1到400 cm-1、在测量过程中,调整仪器参数如光强、分辨率、积分时间等,以获取清晰的红外光谱图。

5.数据处理:测量结束后,可以通过红外光谱仪的数据处理系统对获得的光谱数据进行处理。

常见的处理方法包括背景消除、峰识别和定性定量分析等。

背景消除是消除仪器背景信号的干扰,峰识别是对红外光谱中特征峰进行识别和标定,定性定量分析则是根据红外光谱进行样品成分和结构的分析。

红外光谱法广泛应用于有机物和无机物的分析领域,常见的应用包括聚合物材料的成分分析、有机化合物的结构表征、药物中化学键的识别等。

这种方法具有非破坏性、快速、高效、准确等优点,因此在化学、材料科学等研究领域得到了广泛的应用。

红外光谱分析

红外光谱分析

红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。

通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。

红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。

原理红外光谱分析基于物质分子的振动和转动产生的谱线。

大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。

红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。

不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。

2.波数:红外光谱中使用波数来表示振动频率。

波数与波长的倒数成正比,常用的单位是cm-1。

波数越大,振动频率越高。

3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。

力常数与振动能量相关,可以通过红外光谱数据计算得到。

4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。

FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。

实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。

在制备过程中需要注意去除杂质和保持样品的均匀性。

2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。

校准样品通常是有明确红外光谱特征的化合物,如苯环等。

3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。

扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。

得到光谱数据后,可以进行后续的数据处理和分析。

4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。

红外吸收光谱分析(共27张PPT)

红外吸收光谱分析(共27张PPT)
这里弹簧的k值就的原子不是静止不动的,原子在其平衡位置做相 对运动,从而产生振动!原子与原子之间的相对运动无非有 两种情况,即:键长发生变化(伸缩振动),键角发生变化 (弯曲振动)
对于双原子分子:没有弯曲振动,只有一个伸缩振动
对于多原子分子来说,包括伸缩振动和弯曲振动。 伸缩振动有对称和不对称伸缩以亚甲基-CH2为例
苯,3N-6=30种,实际上苯的红外谱图上只有几个吸收峰! 说明:不单苯,许多化合物在红外谱图上的吸收峰数目要远 小于其振动自由度(理论计算值)。
原因:(1)相同频率的峰重叠(2)频率接近或峰弱,仪器检测
不出(3)有些吸收峰落在仪器的检测范围之外(4)并不是
(2)对于基频峰:偶极矩变化越大的振动,吸收峰越强
②液体试样:溶液法和液膜法。溶液法是将液体试样溶在适当的红 外溶剂中(CS2,CCl4,CHCl3等)然后注入固定池中进行测定。液 膜法是在可拆池两窗之间,滴入几滴试样使之形成一层薄的液膜。
③固体试样:压片法、糊状法和薄膜法。压片法通常按照固体样品和 KBr为1:100研磨,用高压机压成透明片后再进行测定。糊状法就是把 试样研细滴入几滴悬浮剂(石蜡油),继续研磨成糊状然后进行测定 。薄膜法主要用于高分子化合物的测定,通常将试样溶解在沸点低易 挥发的溶剂中,然后倒在玻璃板上,待溶剂挥发成膜后再用红外灯加 热干燥进一步除去残留的溶剂,制成的膜直接插入光路进行测定。
(3)组频峰:振动之间相互作用产生的吸收峰
(4)泛频峰:倍频峰+组频峰
(5)特征峰:可用于鉴别官能团存在的吸收峰。 (6)相关峰:由一个官能团引起的一组具有相互依存关系 的特征峰
红外光谱可分为基频区和指纹区两大区域
(1)基频区(4000~1350cm-1)又称为特征区或官能团区,其

红外光谱分析法

红外光谱分析法

伸缩振动
弯曲振动 面内弯曲振动
弯曲振动 面外弯曲振动
3. 分子振动形式的个数(分子振动自由度 f=3N-6(5)) 分子振动自由度 意义:估算红外吸收峰个数 估算红外吸收峰个数 实际观察到的红外吸收峰的数目,往往少于振动形式的数目, 减少的原因主要有: (1)不产生偶极矩变化的振动 不产生偶极矩变化的振动没有红外吸收,不产生红外吸收峰。 不产生偶极矩变化的振动 (红外非活性振动,CO2分子的 s 1388cm-1) 红外非活性振动, 分子的v 红外非活性振动 分子的 cm (2)有的振动形式不同 振动形式不同,但振动频率相同 振动频率相同,吸收峰在红外光谱 振动形式不同 振动频率相同 图中同一位置出现,只观察到一个吸收峰,这种现象称为简并 简并。 简并 (CO2分子δ面内, γ面外 667cm-1) 667cm CO 分子δ (3)吸收峰太弱 , 仪器不能分辨 吸收峰太弱, 吸收峰太弱 仪器不能分辨,或者超过了仪器可以测定的 波长范围。
X-H H 4000cm-1~2500cm-1 =O, X =O,N,C
☆★指纹区1500cm ☆★指纹区1500cm-1~600cm-1 指纹区
指纹区可以表示整个分子的特征 整个分子的特征,用来鉴别烯烃的取代程度 烯烃的取代程度、 指纹区 整个分子的特征 烯烃的取代程度 提供化合物的顺反构型 顺反构型信息;确定苯环的取代基类型 苯环的取代基类型等。 顺反构型 苯环的取代基类型
☆多原子分子的偶极矩与键的偶极矩和分子的
对称性有关
非对称分子
对称分子
是所有键的偶极矩的矢量和!! 是所有键的偶极矩的矢量和!!
与UV比较,IR的特点:IR频率范围小、吸收峰数目多、吸收 曲线复杂、吸收强度弱。 ★IR峰出现的频率位置由振动能级差决定 ☆★吸收峰的个数与分子振动自由度 分子振动自由度的数目有关 分子振动自由度 ☆★☆吸收峰的强度则主要取决于振动过程中偶极矩变化的 大小和能级跃迁的几率 C=O、Si-O、C-Cl、C-F 等基团极性较强,其吸收较强 C-N,C-H 等极性较弱的基团,吸收谱带的强度较弱

红外光谱分析步骤 红外光谱工作原理

红外光谱分析步骤 红外光谱工作原理

红外光谱分析步骤红外光谱工作原理红外光谱法是利用物质分子对红外辐射的吸收,并由其振动或转动运动引起偶极矩的精变化,产生分子振动和转动能级从基态到激发态的跃迁,得到由分子振动能级和转动能级变化产生的振动-转动光谱,又称为红外光谱。

红外光谱法是一种鉴别化合物和确定物质分子结构的常用分析手段,不仅可以对物质进行定性分析,还可对单一组分或混合物中各组分进行定量分析,尤其是在对于一些较难分离并在紫外、可见区找不到明显特征峰的样品,可以方便、迅速地完成定量分析。

红外光谱分析步骤1.首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=(2C+2-H-Cl+N)/2其中:Cl为卤素原子。

例如:比如苯:C6H6,不饱和度=(2*6+2-6)/2=4,3个双键加一个环,正好为4个不饱和度。

2.分析3300~2800cm-1区域C-H伸缩振动吸收;以3000cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。

3.若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:?炔2200~2100cm-1,烯1680~1640cm-1,芳环1600,1580,1500,1450cm-1泛峰。

若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反;邻、间、对)。

4.碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。

5.解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。

近红外光谱仪的两种分析方法近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。

红外光谱分析

红外光谱分析

第二节 红外光谱仪
液体池材料名称
溴化钾 氯化钾
适用范围/cm-1
5000~400 5000~400
溶解性(水)
可溶 可溶
折射率
1.56 1.49
氯化钠
氟化钡 氟化钙 氯化银 溴化银 碘化铯 KRS-5(TlBr,TlI)
5000~650
5000~800 5000~1300 5000~400 5000~285 5000~200 5000~250
第三节 样品制备和测试技术
3 . 固体试样
压片法 ①将1~2mg试样与
200mg纯KBr研细均 匀,置于模具中; ②用<20MPa压力在 油压机上压成透明薄 片,即可用于测定。 ③试样和KBr都应经 干燥处理,研磨到粒 度小于2 µ m ,以免散 射光影响。
石蜡糊法
将干燥处理后的试样 研细,与液体石蜡或 全氟代烃混合,调成 糊状,夹在盐片中测 定。
第一节 红外光谱的基本概念
峰位 (基团频率)
峰数
红外光谱 四要素
峰强
峰形
第一节 红外光谱的基本概念
一、峰位:由振动能级差决定的,以双原子分子振动理论 来上讲,峰位与化学键力常数、原子折合质量 有关,化学键力常数越大,原子折合质量越小, 吸收峰将出现在高波数区,相反,出现在低波 数区。如C-C,C-N ,C-O,键力常数相近,原 子折合质量依次增大,其峰位分别在1430cm-1, 1330cm- 1,1280cm-1。
第三节 样品制备和测试技术
(7)试样的浓度和测试厚度应选择适当,以使光谱图中的 大多数吸收峰的透射比处于10%~80%范围内; (8)在做固体压片时,试样和KBr应干燥处理,研磨颗粒应
小于尽量小,以免散射光影响。

第三章红外光谱分析法(波普分析)

第三章红外光谱分析法(波普分析)

第三章红外光谱分析法紫外-可见吸收光谱常用于研究具有共轭体系的有机化合物,而红外吸收谱则主要研究在振动中伴随偶极矩变化的化合物。

通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可用以鉴定未知物结构组成或确定其化学基团。

由于红外光谱分析特征性强,对气体、液体、固体均可分析,是鉴定有机化合物的最常用的方法之一。

常用的范围是400 - 4000cm-1。

一、红外吸收光谱的基本原理红外吸收光谱产生应满足两个条件:(1)辐射应具有能满足物质产生振动跃迁所需的能量;(2)辐射与物质间有相互偶合作用。

分子在振动过程中必须有瞬间偶极矩的改变。

对称分子:没有偶极矩,辐射不能引起共振,无红外活性。

如:N2、O2、Cl2 等。

非对称分子:有偶极矩,红外活性。

分子的振动可近似看为一些用弹簧连接的小球的运动。

分子的振动能级(量子化): E振=(V+1/2)hnV:化学键的振动频率;n:振动量子数。

任意两个相邻的能级间的能量差为:K化学键的力常数,与键能和键长有关, m为双原子的折合质量 m =m1m2/(m1+m2)发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征。

多原子分子的振动多原子分子的振动较双原子分子振动复杂得多。

其振动的基本类型有伸缩振动(ν)和弯曲振动(δ)两大类。

伸缩振动是指原子沿键轴方向伸缩,使键长发生周期性变化的振动。

由于振动偶合作用,3个原子以上的基团还可分为对称伸缩振动和不对称伸缩振动,表示为ν对称和ν不对称。

弯曲振动又叫变形或变角振动,指基团键角发生周期性变化的振动。

弯曲振动的力常数较小,因此常出现在低频区。

红外吸收峰的强度主要取决于吸收过程中偶极矩的变化。

变化越大,吸收越强。

通常两个原子的电负性相差越大,吸收越强。

如C=O吸收峰是大多数红外谱图中吸收最强的峰。

二、基团频率与特征吸收峰组成分子的各个基团均有其特定的红外吸收区域。

根据化学健的性质,可将其分为四个区:4000 - 2500 cm-1 氢键区;2500 - 2000 cm-1 参键区;2000 - 1500 cm-1 双键区;1500 - 1000 cm-1 单键区。

红外光谱法(仪器分析课件)

红外光谱法(仪器分析课件)
项目三 红外光谱法
z
目录
Contents
1 红外光谱法基本原理 2 红外光谱仪 3 红外光谱实验技术 4 红外光谱仪虚拟仿真训练 5 红外光谱法在结构分析中的应用
红外光谱法
能力目标
• 能够熟练的操作傅立叶红外光谱仪; • 能够根据样品的状态、性质选择合适
的样品处理方法; • 能够根据谱图确定常见有机化合物的
—NH2,—NH(游离) —NH2,—NH(缔合)
—SH
C—H伸缩振动

不饱和C—H
≡C—H(叁键) ═C—H(双键) 苯环中C—H

饱和C—H

—CH3 —CH3
—CH2
—CH2
吸收频率 (cm-1)
3650—3580 3400—3200 3500—3300 3400—3100 2600—2500
近红外、中红外、远红外区域。
概述
红外谱图的表示法
样品的红外吸收曲线称为红外吸收光谱,多用百分透射比与波数或百分透
射比与波长曲线来描述。
纵坐标为吸收强度,横坐标为波长λ (μm)和波数1/λ,单位:cm-1
有机化合物的结构解析;定性(基团的特征吸收频率);定量(特征峰的强度)
红外光谱法原理 红外吸收光谱产生的条件
C=O、C=C、C=N、NO2、苯环等的伸缩振动
1500~400cm-1
C-C、C-O、C-N、C-X等的伸缩振动及含氢基团的弯曲振动
• 基团特征频率区的特点和用途
• 吸收峰数目较少,但特征性强。不同化合物中的同种基团振动吸收 总是出现在一个比较窄的波数范围内。
• 主要用于确定官能团。
• 指纹区的特点和用途
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩

红外光谱和X-射线衍射技术分析原理

红外光谱和X-射线衍射技术分析原理
精品课件
运动学衍射理论
• Darwin的理论称为X射线衍 射运动学理论 。该理论把衍射现象作为三维Fraunhofer衍 射问题来处理,认为晶体的每个体积元的散射 与其它体积元的散射无关,而且散射线通过晶 体时 不会再被散射。虽然这样处理可以得出 足够精确的衍射方向,也能得出衍射强度,但 运动学理论的根本性假设并不完全合理。因为 散射线在晶体内一定会被再次散 射,除了与 原射线相结合外,散射线之间也能相互结合。 Darwin不久以后就认识到这点,并在他的理 论中作出了多重散射修正。
• 再识别特征区的第二强峰,找出其相 关峰,并进行峰归属
精品课件
常用术语
频峰
由基态跃迁到第一激发态,产生的强吸收峰,称为基频峰 (强度大);
倍频峰
由基态直接跃迁到第二、第三等激发态,产生弱的吸收峰, 称为倍频峰;
合频峰 两个基频峰频率相加的峰;
Fermi 共振
某一个振动的基频与另外一个振动的倍频或合频接近时, 由于相互作用而在该基频峰附近出现两个吸收带,这叫做 Fermi 共振 ;
精品课件
红外光谱仪种类:
棱镜和光栅光谱仪
属于色散型,它的单色器为棱镜或光栅, 属单通道测量。
傅里叶变换红外光谱仪
它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中 的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测 器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的 数学运算后,就可得到入射光的光谱。
精品课件
傅里叶变换红外光谱仪的优点:
2
波数值的精确 度可达0.01厘 米
光通量高,提高了仪器的灵敏度 。
多通道测量,使
信噪比提高 。
1
5
工作波段可从可见区延伸到毫米区,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,如最强吸收峰为接近透光率为0%,且为平头峰,则说明
取样量太多,此时均应调整取样量后重新测定。
压片时KBr的取用量一般为200mg左右,应根
据制片后的片子厚度来控制KBr的量,一般片子厚
度应在0.5mm以下,厚度大于0.5mm时,常可在光
谱上观察到干涉条纹,对供试品光谱产生干扰。
压片时,应先取供试品研细后再加入KBr研细研匀,这 样比较容易混匀。研磨时应按同一方向均匀用力,如不按同 一方向研磨,有可能在研磨过程中使供试品产生转晶,从而
药品质量检测技术专业
国培培训
红外光谱分析技术
王丽娟(讲师)
一、红外光谱简介
二、傅里叶红外光谱仪
三、红外光谱实验室及日常维护
四、样品制备方法(KBr压片法)
五、实例分析
一、红外光谱简介(IR)
0.75-1000μm 2.5-25μm中红外区
用于研究在振动 中有偶极矩变化 的化合物(非对 称分子)
Emissivity
30 25 20 15 10 5
350 0
300 0
250 0200 01 Nhomakorabea0 0100 0
500
Wavenumbers
Volts
1 0
bkg: FFT
-1 -2 -3 230 0 400 0 350 0 300 0 250 0 200 0 150 0 100 0 500
Wavenumbers
明薄片,即可用于测定。
怎样压出合格 的片子呢?
所用KBr最好应为光学试剂级,至少也要分
析纯级。使用前应适当研细(200目以下),并
在120℃以上烘4小时以上后置干燥器中备用。如
发现结块,则应重新干燥。制备好的空KBr片应
透明,与空气相比,透光率应在75%以上。
如供试品为盐酸盐,因考虑到在压片过程中可
影响测定结果。研磨力度不用太大,研磨到试样中不再有肉
眼可见的小粒子即可。试样研好后,应尽量把试样铺均匀, 否则压片后试样少的地方透明度要比试样多的地方的低,对 测定产生影响。另外,如压好的片子上出现不透明的小白点 ,则说明研好的试样中有未研细的小粒子,应重新压片。
测定用样品应干燥,否则应在研细后置红外灯
220 0 210 0 190 0 180 0 170 0
Data Points
基团频率区
红 外 光 谱 图
4000-1500cm-1
指纹区
1500-600cm-1
官能团解析的主 要依据。
基团频率:
处于不同有机化合物分子中的化学基团,它们的化学 键的振动频率总是出现在一个较窄的范围内,都有自己特 定的红外吸收区域。分子中其它部分对其吸收位置的影响 较小,通常把这种能代表基团存在、并有高强度的吸收带
称为基团频率,其所在的位置称为特征吸收峰。
基团频率区主要包括X-H、双键和叁键的伸缩
振动。基团频率常用于鉴定有机化合物官能团区
或特征区,因此,基团频率区又称官能团区或特
征区。
物质精确结构解 析的依据。
指纹区主要包括C-X键的伸缩振动和C-H键的
弯曲振动。当分子结构稍有不同时,该区的吸收就
有明显的改变,类似于人的指纹。
1
2
3
4
5
特征性高
应用范围广
用样量少, 不破坏样 品
分析速度快
定性功能强 大
二、傅里叶红外光谱仪
迈克尔逊干涉仪
干涉仪
定镜
BF BM
分束器
IR 光源
l 0 -l
动镜
BF = BM
光程差 = 0
检测器
4 3 40 2 35
Volts
1 0
-1 -2 -3 230 0 220 0 210 0
sam: FFT
三、红外光谱实验室及日常仪器维护
控制湿度 50%
控制温度
(15~30℃)
CO2
实验室里的人数 应尽量少,无关 人员最好不要进 入,还要注意适 当通风换气。
四、制备样品(KBr压片法)
将1~2mg固体试样与100mg干燥的优级纯KBr混合,研磨
到粒度小于2μm,装入模具内,在油压机上或手动压片制成透
下烘几分钟使干燥。试样研好并具在模具中装好后
,应与真空泵相连后抽真空至少2分钟,以使试样中
的水分进一步被抽走,然后再加压到8~10吨/cm2后
维持2~5min。不抽真空将影响片子的透明度。
五、实例分析
例一:药品鉴别(官能团特征吸收)
布洛芬
例二:红外指纹图谱
典型不同产地赤芍的红外光谱 《红外指纹图谱和聚类分析法在赤芍产域分类鉴别中的应用》
能出现的离子交换现象,标准规定用氯化钾(也同
溴化钾一样预处理后使用)代替溴化钾进行压片,
但也可比较氯化钾压片和溴化钾压片后测得的光谱
,如二者没有区别,则可使用溴化钾进行压片。
压片法时取用的供试品量一般为1~2mg,因不可能用
天平称量后加入,并且每种样品的对红外光的吸收程度不 一致,故常凭经验取用。一般要求所得的光谱图中绝大多 数吸收峰处于10%~80%透光率范围在内。最强吸收峰的 透光率如太大(如大于30%),则说明取样量太少;相反
25 20 15 10170 0 5 400 0 350 0 300 0 250 0 200 0 150 0 90 190 0 180 0
100 0
Transmittance
Data Points
Emissivity
30
80 500 70
Wavenumbers
60 50
Ratio
40 30 20 400 0 40 35 4 3 2
相关文档
最新文档