单元系的相变 热力学
第6章 单组元相图及纯晶体的凝固 笔记及课后习题详解 (已整理 袁圆 2014.8.6)
第6章单组元相图及纯晶体的凝固6.1 复习笔记一、单元系相变的热力学及相平衡1.相平衡条件和相律组元:组成一个体系的基本单元,如单质(元素)和稳定化合物,称为组元。
相:体系中具有相同物理与化学性质的且与其他部分以界面分开的均匀部分,称为相。
相律:F=C-P+2;式中,F为体系的自由度数,它是指不影响体系平衡状态的独立可变参数(如温度、压力、浓度等)的数目;C为体系的组元数;P为相数。
常压下,F=C-P+1。
2.单元系相图单元系相图是通过几何图像描述由单一组元构成的体系在不同温度和压条件下可能存在的相及多相的平衡。
图6-1 水的相图图6-2 Fe在温度下的同素异构转变上述相图中的曲线所表示的是两相平衡时温度和压力的定量关系,可由克劳修斯(Clausius)一克拉珀龙(Clapeyron)方程决定,即式中,为相变潜热;为摩尔体积变化;T是两相平衡温度。
有些物质在稳定相形成前,先行成自由能较稳定相高地亚稳定相。
二、纯晶体的凝固1.液态结构(1)液体中原子间的平均距离比固体中略大;(2)液体中原子的配位数比密排结构晶体的配位数减小;(3)液态结构的最重要特征是原子排列为长程无序,短程有序,存在结构起伏。
2.晶体凝固的热力学条件(6.1)式中,,是熔点T m与实际凝固温度T之差;L m是熔化热。
晶体凝固的热力学条件表明,实际凝固温度应低于熔点T m,即需要有过冷度△T。
3.形核晶体的凝固是通过形核与长大两个过程进行的,形核方式可以分为两类:均匀形核和非均匀形核。
(1)均匀形核①晶核形成时的能量变化和临界晶核新相晶核是在母相中均匀地生成的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响假定晶胚为球形,半径为r,当过冷液中出现一个晶胚时,总的自由能变化:(6.2)由,可得晶核临界半径:(6.3)代入公式(1),可得:(6.4)由式可知,过冷度△T越大,临界半径则越小,则形核的几率越大,晶核数目增多。
工程热力学相图相变分析
凝固收缩物质
凝固膨胀物质
6
2、吉布斯相律( Gibbs phase rule )
相平衡系统中热力状态的自由度数, 即可独立变化
的强度参数的数目 F C p 2
F为独立强度量的数目;C为组元数;p为相数
例如,单相物系如液态水,可以有两个独立变化的强 度量, 即温度T 和压力p 都可自由变化,有两个自由度。
热力学面上三个两相区:
气液、液固、气固
三个两相区在p-T相图上的 投影是三条曲线:
汽化曲线、熔解曲线、升 华曲线
它们的交点称为三相点, 是 三相线在p - T 图上的投影。
三相线是物质处于固、液、 气三相平衡共存的状态点 的集合。
热力学面
4
P-T气 液固三 相图
投影
凝固收缩物质
投影
定温压缩 CO2
dS=-dS=- dH T
dS= dH T
dS= dH T
TdS-dH=0
d(TS-H)=0 系统TS-H达到最大值,或者说
H-TS达到最小值。
d(TS-H)=0
系统TS-H达到最大值,或者说 H-TS达到最小值。
吉布斯函数(自由焓) G=H-TS dG=0
等温、等压条件下, 封闭系统的自发过程朝吉布斯函 数G 减小的方向进行, 系统平衡态的吉布斯函数G 最 小, 即为平衡的吉布斯判据:
化学平衡条件都涉及促使质量转移 的势—“化学势”。
质量不变单元系统热力学能 dU TdS pdV
变质量单元系统热力学能 U U(S,V , n)
dU
U S
V ,n
dS
U V
S ,n
dV
U n
V ,S
dn
dU TdS pdV dn
热力学_统计物理学答案第三章
后
pv 3 = a(v − 2b)
RT a ⎛ p + a ⎞(v − b ) = RT ; p= − 2 ⎜ 2 ⎟ v ⎠ v −b v ⎝
极值点组成的曲线:
RT 2a RT a = 3 ;由 = p+ 2 2 v−b (v − b ) v v
⎞ ⎟ ⎟ ⎠V
⎛ ∂S ⎞ ⎛ ∂µ ⎞ ⎜ ⎟ = −⎜ ⎟ ⎝ ∂n ⎠T ,V ⎝ ∂T ⎠V ,n (2) 由式(3.2.6)得:
⎛ ∂ 2G ⎞ ⎛ ∂ 2G ⎞ ⎛ ∂µ ⎞ ⎛ ∂V ⎞ ⎟ ⎜ ⎟ = =⎜ ⎟ ⎜ ⎟ =⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎝ ∂n ⎠T , p ⎝ ∂p∂n ⎠ T ⎝ ∂n∂p ⎠ T ⎜ ⎝ ∂p ⎠T , n
ww
=⎜
∂(T , S ) ∂ (V , T ) ∂(T , S ) ⎛ ∂p ⎞ ⋅ ⋅ ⎟ + ⎝ ∂V ⎠ S ∂ (V , T ) ∂(V , S ) ∂(V , T )
∂ (V , T ) ⎛ ∂p ⎞ ⋅ =⎜ ⎟ + ⎝ ∂V ⎠ S ∂(V , S ) ⎛ ∂p ⎞ ⎛ ∂T ⎞ =⎜ ⎟ + ⎜ ⎟ ⎝ ∂V ⎠ S ⎝ ∂S ⎠ V
∂V ⎞ ⎛ ∂p ⎞ ⎛ ⎟ ⋅ CV =⎜ ⎟ ⋅⎜ ⎜ ⎝ ∂V ⎠ S ⎝ ∂p ⎟ ⎠T
w.
kh da
后 课
⎛ ∂G ⎞ ⎜ ⎟ =µ ⎝ ∂n ⎠T ,V
证:
(1) 开系吉布斯自由能
答 案
∂µ ⎞ ⎛ ∂µ ⎞ ⎛ ∂S ⎞ 习题 3.4 求 证 : ( 1) ⎛ ⎜ ⎟ = − ⎜ ⎟ ;( 2) ⎜ ⎜ ∂p ⎟ ⎟ =− ⎝ ∂T ⎠ V , n ⎝ ∂n ⎠T ,V ⎝ ⎠T,n
学基础-第6章-单组元相图及纯晶体的凝固
7
第六章
单组元相图及纯晶体的凝固
二、晶体凝固的热力学条件 恒压时,dG/dT=-S,因SL>SS , G △G 故有:(dG/dT)L<(dG/dT)s 曲线GL-T与Gs-T必相交,交点对
(3) 螺位错生长机制(光滑界面的横向生长)
螺位错提供永不消失的小台阶,长大速度较慢
生长特点: ★不需在固-液界面上反复形核,不需形核功,生长连续; ★生长速率为:vg=μ3△Tk2 (μ3为常数)
27
第六章
单组元相图及纯晶体的凝固
五、结晶动力学及凝固组织
单组元相图及纯晶体的凝固
(2)二维晶核台阶生长(光滑界面 的横向生长) 生长特点:
★需要不断地形成新的二维晶核, 需形核功,生长不连续;
★晶体生长需要较大动态过冷度 △Tk(1~2℃); ★生长速率:vg=μ2exp(-b/△Tk) 式中,μ2、b为常数
二维晶核形核
26
第六章
单组元相图及纯晶体的凝固
固相晶面上原子所占位置分数 x
23
第六章
单组元相图及纯晶体的凝固
凝固时的固-液界面微观和宏观形态 粗糙界面:界面微观粗 糙,而宏观平直。
液 液
光滑界面:微观为由许多光滑 的小平面组成,而宏观不平。
液
液
固
微观
固
宏观
固
微观
固
宏观
粗糙界面中原子的堆放
光滑界面中原子的堆放
24
第六章
单组元相图及纯晶体的凝固
3
)
单组元相图及纯晶体的凝固
自由能随温度变化的示意图
(2) 纯晶体的凝固
在一定温度下,从一相转变为另一相的自由能变化为
GV
LmT Tm
式中,ΔT=Tm-T,是熔点Tm与实际凝固温度T之差。
由上式可知,要使 ΔGv<0,必须使ΔT>0,即 T<Tm,故ΔT称为过冷度。晶 体凝固的热力学条件表明,实际凝固温度应低于熔点Tm,即需要有过冷度。
GS x 1 x x ln x 1 x ln(1 x)
NT kTm 式中,k是玻尔兹曼常数; Tm是熔点;x是界面上被固相原子占据位置的分数;
而 ,其中Lm为熔化热, ,是界面原子的平均配位数;是晶体配位数。
恒小于1。
(2) 纯晶体的凝固
将上式按 GS 与x的关系作图,并改变值,得到一系列曲线,如下图所示。 NT kTm
晶体长大方式和生长递率 晶体的长大方式与上述的界面构造有关,可有连续长大、二维形核、螺型位错 长大等方式。 a.连续长大
对于粗糙界面,由于界面上约有一半的原子位置空着,故液相的原子可以进 入这些位置与晶体结合起来,晶体便连续地向液相中生长,故这种生长方式为 垂直生长。对于大多数金属来说,由于动态过冷度很小,因此其平均生长速率 与过冷度成正比,即
dG= Vdp- SdT。 在等压时,dp=0,故上式简化为:
dG S dT 由于熵恒为正值,所以自由能是随温度增高而减小。
(2) 纯晶体的凝固
纯晶体的液、固两相的自由 能随温度变化规律如.右图所示。 这样,两条斜率不同的曲线必 然相交于一点,该点表示液、 固两相的自由能相等,故两相 处于平衡而共存,此温度即为 理论凝固温度,也就是晶体的 熔点Tm。事实上,在此两相共 存温度,既不能完全结晶,也 不能完全熔化,要发生结晶则 体系必须降至低于Tm温度, 而发生熔化则必须高于Tm。
RT03-第三章+热力学第三定律
§3-4 单元复相系的平衡性质
一、单元系的相图
实验指出: 在不同的温度和压强下,一个单元系可以分别处于气相、 液相和固相。 有些物质的固相还可以有不同的晶格结构,不同的晶格结 构也是不同的相,例如,固态的冰 固态的冰在高压情况下晶格结构可能 固态的冰 完全不同。 有些物质的液相在不同的物理条件下,物理性质完全不同, 对应的微观结构也完全不同,例如,液体氦 液体氦可能存在超流现象。 液体氦
2. 孤立系统的熵判据 孤立系统约束条件: 体积不变(假设只有体积变化功) 内能不变 热力学第二定律说明: 孤立系统的熵永不减少 熵最大的态就是平衡态
在体积和内能保持不变的时候,相对于某一平衡 态的虚变动后的状态的熵较小:
∆S < 0 (孤立系统稳定平衡的充分必要条件)
∆S = 0 (中性平衡条件)
dG = − SdT + Vdp
开放系统的物质的量 n 可能发生变化,因此上式可以直接推广为:
dG = − SdT + Vdp + µdn
dG = − SdT + Vdp + µdn
上式第三项表示在温度和压强不变时,由于物质的量改变dn所引起 的吉布斯函数的改变,其中:
∂G µ ≡ ∂n T , p
称为化学势 化学势,它描述温度和压强不变时,增加1mol物质时吉布斯函数的改变。 化学势 由于G 是广延量,故:
G (T , p, n) = nGm (T , p)
µ ≡ Gm (T , p)
即化学势,就是摩尔吉布斯函数,这个结论适用于单元系。 吉布斯函数是T,p,n为独立变量的特性函数,如果已知G(T,p,n), 则其他热力学量为:
∂G S = − ∂T p ,n
热力学与统计物理——第03章单元系的相变习题解ok
第三章 单元系的相变习题3.3试由0>v C 及0)(<∂∂T V p 证明0>p C 及0)(<∂∂S Vp 。
证: 由式(2.2.1) T C C V p =-⇒VT p ⎪⎭⎫⎝⎛∂∂pT V ⎪⎭⎫ ⎝⎛∂∂ =P Cp T H ⎪⎭⎫ ⎝⎛∂∂=pT S T ⎪⎭⎫⎝⎛∂∂;=V C V T U ⎪⎭⎫⎝⎛∂∂V T S T ⎪⎭⎫ ⎝⎛∂∂= =dp dV V p T ⎪⎭⎫ ⎝⎛∂∂dT T p V⎪⎭⎫⎝⎛∂∂+=dp +⎪⎭⎫ ⎝⎛∂∂dV V p S dS S p V⎪⎭⎫ ⎝⎛∂∂=+⎪⎭⎫ ⎝⎛∂∂dV V p S V S p ⎪⎭⎫ ⎝⎛∂∂⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂dT T S dV V S V T⇒=⎪⎭⎫ ⎝⎛∂∂T V p VS p ⎪⎭⎫ ⎝⎛∂∂T V S ⎪⎭⎫ ⎝⎛∂∂+SV p ⎪⎭⎫⎝⎛∂∂ (1) =⎪⎭⎫ ⎝⎛∂∂V T p VS p ⎪⎭⎫ ⎝⎛∂∂TT S ⎪⎭⎫ ⎝⎛∂∂ (2) 由麦氏关系(2.2.3)代入(1)式中 ⇒=⎪⎭⎫ ⎝⎛∂∂S V T -VS p ⎪⎭⎫⎝⎛∂∂⇒=⎪⎭⎫ ⎝⎛∂∂T V p -⎪⎭⎫ ⎝⎛∂∂S V p SV T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂T V S -⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂S V S T ,,()()T V T S ,,∂∂ =+⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂T V S T ,,()()⋅∂∂S V T V ,,()()T V S T ,,∂∂ =+⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂S V T V ,,()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T =+⎪⎭⎫ ⎝⎛∂∂S V p V S T ⎪⎭⎫ ⎝⎛∂∂()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T 由式(2.2.5) ⇒V C V T S T ⎪⎭⎫ ⎝⎛∂∂=;即0>=⎪⎭⎫⎝⎛∂∂VV C T S T . 于是: 0>=⎪⎭⎫ ⎝⎛∂∂T V p +⎪⎭⎫⎝⎛∂∂S V p 正数于是: SV p ⎪⎭⎫⎝⎛∂∂<0=P C P T S T ⎪⎭⎫ ⎝⎛∂∂()()=∂∂=p T p S T ,,()()⋅∂∂V S p S T ,,()()=∂∂p T V S ,,⋅⎪⎭⎫ ⎝⎛∂∂SV p T ()()p T V S ,,∂∂ ⋅⎪⎭⎫ ⎝⎛∂∂=S V p T ()()⋅∂∂V T V S ,,()()=∂∂p T V T ,,⋅⎪⎭⎫ ⎝⎛∂∂S V p T V T S ⎪⎭⎫ ⎝⎛∂∂Tp V ⎪⎪⎭⎫ ⎝⎛∂∂⋅ ⋅⎪⎭⎫⎝⎛∂∂=SV p V TC p V ⋅⎪⎪⎭⎫⎝⎛∂∂ 0>V C ; 因而0>P C习题3.7试证明在相变中物质摩尔内能的变化为:1p dT U L T dp ⎛⎫∆=-⋅ ⎪⎝⎭如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简。
热学 (7 第九章 相变)
四、气液两相图
汽化曲线, 是液态和气态的分界线
饱和蒸汽压与温度的关系 沸点与外界压强的关系
汽化曲线终点就是临界点K 汽化曲线始点O是三相点
§9.3 克拉珀龙方程
一、方程的推导
两相平衡时的温度T和压强p有函数关系,相平衡曲线
气液二相图 汽化曲线
固液二相图 熔化曲线
Q1 ml
A m(2 1) p
在凹(凸)液面情况下,分 子由气相进入液相的概率比 平页面情况的概率大(小)
3、过饱和蒸气、凝结核、云室
若没有足够的凝结核,或凝结核过小,即使蒸气压强超过 该温度下的饱和蒸气压,液滴仍不能形成并长大,因而出现 过饱和现象,这样的蒸气称为过饱和蒸气压,或过冷蒸气。
4、云及人工降雨
暖云:大小水滴共存 冷云:由冰晶组成 混合云:由冰晶和水滴组成
pk
Vmk
Tk
pk
a
V2 2 mk
Vmk
b
R Tk
a 27b2
a
2 9b2
3b
b
R
8a 27bR
对比物态方程
3
2
3
1
8
对应态定理: 一切物质在相同的对比压强和对比温度下, 就有相
同的对比体积了.
8a Tk 27bR Vmk 3b
a pk 27b2
临界比容:液态的最大比容 临界压强:液态的最大饱和蒸汽压 临界温度:等温压缩使气体液化的最高温度
pk, k Tk之间的关系
临界系数
热力学与统计物理答案第三章
第三章 单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最小. (b )在,S p 不变的情形下,稳定平衡态的H 最小. (c )在,H p 不变的情形下,稳定平衡态的S 最小. (d )在,F V 不变的情形下,稳定平衡态的T 最小. (e )在,G p 不变的情形下,稳定平衡态的T 最小. (f )在,U S 不变的情形下,稳定平衡态的V 最小. (g )在,F T 不变的情形下,稳定平衡态的V 最小.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动. 由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4)),在虚变动中必有đ,U T S W δδ<+ (1)式中U δ和S δ是虚变动前后系统内能和熵的改变,đW 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变化,T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的平衡判据.(a ) 在,S V 不变的情形下,有0,đ0.S W δ==根据式(1),在虚变动中必有0.U δ< (2)如果系统达到了U 为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,有0,đ,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极小的状态,它的焓不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最小.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有đ.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,đ,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最大.(d )由自由能的定义F U TS =-和式(1)知在虚变动中必有đ.F S T W δδ<-+在F 和V 不变的情形下,有0,đ0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最小.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有đ.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,đ,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最小.(f )在,U S 不变的情形下,根据式(1)知在虚变动中心有đ0.W >上式表明,在,U S 不变的情形下系统发生任何的宏观变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最小.(g )根据自由能的定义F U TS =-和式(1)知在虚变动中必有δδđ.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有đ0W > (8)上式表明,在,F T 不变的情形下,系统发生任何宏观的变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最小.3.2 试由式(3.1.12)导出式(3.1.13) 解:式(3.1.12)为()()22222222δδ2δδδ0.S S S S U U V V U U V V ⎡⎤⎛⎫⎛⎫∂∂∂=++<⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎣⎦(1)将2δS 改写为2δδδδδδδ.S S SS S U V U U V V UU V U U VV V⎡∂∂∂∂⎤⎡∂∂∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪⎪ ⎪⎪⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦(2)但由热力学基本方程TdS dU pdV =+可得1,,V U S S p U T V T∂∂⎛⎫⎛⎫== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 代入式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T ⎡∂∂⎤⎡∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1δδδδ0.p U V T T ⎡⎤⎛⎫⎛⎫=+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4)以,T V 为自变量,有δδδV TU U U T V T V ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭δδ,V V p C T T p V T ⎡⎤∂⎛⎫=+- ⎪⎢⎥∂⎝⎭⎣⎦(5)111δδδV TT V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭21δ,T T =-(6) δδδV Tp p p T V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭211δδ.V T p p T p T V T T T V ⎡⎤∂∂⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦(7) 将式(5)—(7)代入式(4),即得()()22221δδδ0,V TC p S T V T T V ∂⎛⎫=-+< ⎪∂⎝⎭ (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V ∂⎛⎫<⎪∂⎝⎭证明0p C >及0.S p V ∂⎛⎫< ⎪∂⎝⎭ 解:式(2.2.12)给出2.p V TVT C C ακ-=(1)稳定性条件(3.1.14)给出0,0,V Tp C V ∂⎛⎫>< ⎪∂⎝⎭ (2)其中第二个不等式也可表为10,T TV V p κ⎛⎫∂=-> ⎪∂⎝⎭ (3) 故式(1)右方不可能取负值. 由此可知0,p V C C ≥> (4)第二步用了式(2)的第一式.根据式(2.2.14),有.S S VT p TV p C C Vp κκ⎛⎫∂ ⎪∂⎝⎭==⎛⎫∂ ⎪∂⎝⎭ (5) 因为V p C C 恒正,且1V pCC ≤,故0,S TV V p p ⎛⎫⎛⎫∂∂≤< ⎪ ⎪∂∂⎝⎭⎝⎭ (6) 第二步用了式(2)的第二式.3.4 求证:(a ),,;V n T V S T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (b ),,.T p t n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 解:(a )由自由能的全微分(式(3.2.9))dF SdT pdV dn μ=--+ (1)及偏导数求导次序的可交换性,易得,,.V n T VS T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这是开系的一个麦氏关系.(b ) 类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn μ=-++ (3)可得,,.T pT n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (4)这也是开系的一个麦氏关系.3.5 求证:,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭解:自由能F U TS =-是以,,T V n 为自变量的特性函数,求F 对n 的偏导数(,T V 不变),有,,,.T V T V T VF U S T n n n ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (1)但由自由能的全微分dF SdT pdV dn μ=--+可得,,,,,T VT V V nF n S n T μμ∂⎛⎫= ⎪∂⎝⎭∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1),即有,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)3.6 两相共存时,两相系统的定压热容量p pSC T T ∂⎛⎫= ⎪∂⎝⎭,体胀系数1pV V T α∂⎛⎫= ⎪∂⎝⎭和等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭均趋于无穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变. 两相系统吸取热量而温度不变表明它的(定压)热容量p C 趋于无穷. 在上述过程中两相系统的体积也将发生变化而温度保持不变,说明两相系统的体胀系数1pV V T α∂⎛⎫= ⎪∂⎝⎭也趋于无穷. 如果在平衡温度下,以略高(相差无穷小)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从比容较高的相转移到比容较低的相,使两相系统的体积发生改变. 无穷小的压强导致有限的体积变化说明,两相系统的等温压缩系数1T T V V p κ⎛⎫∂=- ⎪∂⎝⎭也趋于无穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足.m m m U H p V ∆=∆-∆ (1)平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ∆=克拉珀龙方程(式(3.4.6))给出,mdp L dT T V =∆ (3) 即.m L dTV T dp∆=(4) 将式(2)和式(4)代入(1),即有1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭(5) 如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为2.dp LpdT RT= (6) 式(5)简化为1.m RT U L L ⎛⎫∆=- ⎪⎝⎭(7)3.8 在三相点附近,固态氨的蒸气压(单位为Pa )方程为3754ln 27.92.p T =-液态氨的蒸气压力方程为3063ln 24.38.p T=-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸气压方程是固相与气相的两相平衡曲线,液态氨的蒸气压方程是液相与气想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1) 由此解出195.2.t T K =将t T 代入所给蒸气压方程,可得5934Pa.t p =将所给蒸气压方程与式(3.4.8)In Lp A RT=-+ (2) 比较,可以求得443.12010J,2.54710J.L L =⨯=⨯升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=⨯溶升汽3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m pV LC C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ 如果β相是蒸气,可看作理想气体,α相是凝聚相,上式可简化为,p LC C Tββα=-并说明为什么饱和蒸气的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升高1K 所吸收的热量C βα为.mm m p T dS S S dp C T T T dT T p dTββββα⎛⎫⎛⎫⎛⎫∂∂==+⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ (1) 式(2.2.8)和(2.2.4)给出,.m p pm m T pS T C T S V p T ββββ⎛⎫∂= ⎪∂⎝⎭⎛⎫⎛⎫∂∂=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1)可得.m p pV dp C C T T dT βββα⎛⎫∂=- ⎪∂⎝⎭ (3) 将克拉珀龙方程代入,可将式(3)表为.m p m m pV LC C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ (4) 如果β相是气相,可看作理想气体,α相是凝聚相,mm V V αβ ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为.p LC C Tββα=-(5) C βα是饱和蒸气的热容量. 由式(5)可知,当p L C Tβ<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ 如果β相是气相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα=- (1)相变潜热随温度的变化率为.mm m m p T p T H H H H dL dp dp dT T p dT T p dTββαα⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂=+-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 式(2.2.8)和(2.2.10)给出,,p pp TH C T H V V T p T ∂⎛⎫= ⎪∂⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dT βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+---⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦将式中的dpdT用克拉珀龙方程(3.4.6)代入,可得,m m p p m mp p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ (4)这是相变潜热随温度变化的公式.如果β相是气相,α相是凝聚相,略去m V α和m pV T α⎛⎫∂ ⎪∂⎝⎭,并利用m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利用上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不大,定压热容量可以看作常量,试证明蒸气压方程可以表为ln ln .Bp A C T T=-+ 解: 式(3.4.7)给出了蒸气与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1) 一般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2) 在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代入式(1),得021,p pC C L dL p dT RT RTβα-=+ (4) 积分,即有ln ln ,Bp A C T T=-+ (5) 其中0,,p pC LB C A R C βα==是积分常数.3.12 蒸气与液相达到平衡. 以mdV dT表示在维持两相平衡的条件下,蒸气体积随温度的变化率. 试证明蒸气的两相平衡膨胀系数为111.m m dV L V dT T RT ⎛⎫=- ⎪⎝⎭解:蒸气的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦(1) 将蒸气看作理想气体,m pV RT =,则有11,11.m p m m m T V V T T V V p p∂⎛⎫= ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭ (2)在克拉珀龙方程中略去液相的摩尔体积,因而有2.m dp L LpdT TV RT== (3) 将式(2)和式(3)代入式(1),即有111.m m dV L V dT T RT ⎛⎫=- ⎪⎝⎭(4)3.13 将范氏气体在不同温度下的等温线的极大点N 与极小点J 联起来,可以得到一条曲线NCJ ,如图所示. 试证明这条曲线的方程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范氏方程为2.m mRT ap V b V =-- (1) 求偏导数得()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (3) 等温线的极大点N 与极小点J 满足0,m Tp V ⎛⎫∂= ⎪∂⎝⎭ 即()232,mm RTaV V b =- 或()()32.m m mRT aV b V b V =-- (3) 将式(3)与式(1)联立,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的方程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸气;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ⎛⎫∂> ⎪∂⎝⎭,不满足平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表示肥皂泡外气体的压强,p γ表示泡内气体的压强,p α表示肥皂液的压强,根据曲面分界的力学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表面张力系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表面的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲面分界面的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα=-=- 解:以指标α和β表示两相. 在曲面分界的情形下,热平衡条件仍为两相的温度相等,即.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββμμ= (3)根据化学势的定义,m m m U TS pV μ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱氏对相变的分类,二级相变在相变点的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变. 因此,二级相变没有相变潜热和体积突变,在相变点两相的比熵和比体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的比熵和比体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)但v v v v .p Td υdT dp T p dT dp ακ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3) 同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂⎛⎫=- ⎪∂⎝⎭=- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出二级相变点压强随温度变化的斜率,称为爱伦费斯特方程.3.17 试根据朗道自由能式(3.9.1)导出单轴铁磁体的熵函数在无序相和有序相的表达式,并证明熵函数在临界点是连续的。
第2章 单元系相图
1.液体中原子间的平均距离比固体中稍大 2.液体中原子的配位数比密排结构的固体的配位数减少 3.液态原子排列混乱程度增加
2.2.1液态结构
1200℃时液态金属原子的状态
液态中部分原子排列方式与固态金属相似,构成短程有 序晶态小集团 这些小集团不稳定,尺寸大小不相等,时而产生,时而 消失,就是存在所谓的结构起伏 金属的结晶实际上就是近程规则排列的液态结构转变为 长程规则排列的固态结构的过程。
2.2.2 金属的凝固过程 二、结晶的热力学条件 --晶核形成时能量的变化 单位体积液相向固相转变的自由能的变化 GV
GV GS GL ( H S H L ) T ( S S S L )
凝固温度与Tm相差不大时,HS-HL近似等于熔化潜热- Lm(负号表示放热),则
dGV H m TdS
SIO2相平衡图
A
O
B
常压下,冰、水、汽三相能够共存吗?为什么?
答:不可以,根据相律,三相共存时,即只有在特定 温度和压力(T = 0.01℃,p = 611.73Pa)下,三相才能 共存。
2.2 纯金属的凝固
结晶相变是各种相变中最常见的相变,通过对结晶 相变的研究可揭示相变进行所必须的条件、相变规律 和相变后的组织与相变条件之间的变化规律,对材料 的制取、加工成型及性能的控制均有指导作用。
如果外界保持一个大气压,根 据相律,C=1,P=1则f =1。系 统中只有一个独立可变的变 数。因此单元系相图可以只用 一个温度轴来表示。
纯铁的相图
晶型转变线 H G F
δ-Fe
晶型δ-Fe 熔融曲线
液
E
压力
α-Fe
γ-Fe
B
C
气
第三章_单元系的相变_热力学统计物理
U p0 V
T0
代入平衡条件得到:
1 1 p p S U ( ) V ( 0 ) 0 T T0 T T0
9
上页得到: S U ( ) V (
1 T
1 T0
p T
p0 )0 T0
由于虚变动δU、δV 可任意变化,故上式要求:
UB U A W T
外界所作的功是
SB S A
W p(VB VA )
SB S A
U B U A p (VB V A ) T
G GB GA 0
在等温等压过程中,系统的吉布斯函数永不增 加。也就是说,在等温等压条件下,系统中发 生的不可逆过程总是朝着吉布斯函数减少的方 向进行的。
T T0
p p0
结果表明:达到平衡时整个系统的温度和压强是均匀的!
2、稳定平衡
近似有 而
~ S 2 S0 2 S 0 2~ S 2S 0
2
可以证明:
2 S0 2 S
2S 2S 2S 2S (U ) 2 2 UV 2 (V ) 2 0 U 2 UV V
4
二、热平衡的判据(热动平衡条件)
1、基本平衡判据
根据熵增加原理,孤立系统中发生的趋于平衡的过程 必朝着熵增加的方向进行。
熵判据:孤立系统平衡态是熵最大的态。 相对于平衡态的虚变动后的态的熵变小。 孤立系统处在稳定平衡状态的必要充分条件:
1 1 S S 2! S 3! S
U n H n F n
pdV dn
T ,V
18
定义:巨热力势
材料科学基础(上海交大)_第6章.答案
第6章 单组元相图及纯晶体凝固
6.1 单元系相变的热力学与相平衡
6.2 纯晶体的凝固
6.3 气固相变与薄膜生长
重点与难点:
• • • • • 结晶的热力学、结构和能量条件; 相律的应用; 克劳修斯——克拉珀龙方程的应用; 亚稳相出现的原因; 均匀形核的临界晶核半径和形核功的推 导; 润湿角的变化范围及其含义;
• 两条斜率不同的自由能曲线必然相交于一点
• 液、固两相的自由能相等 • 两相处于平衡而共存。 事实上, Tm—既不能完全结晶,也不能完全熔化 • 要发生结晶则体系必须降至低于Tm温度, • 而发生熔化则必须高于Tm 。
(2) 热力学条件
a △T>0, △Gv<0-过冷是结晶的
必要条件(之一)。
b △T越大, △Gv越小-过冷度越
图6.4
大, 越有利于结晶。
c △Gv的绝对值为凝固过程的驱 动力。
ΔT=Tm-T,是熔点Tm与实际凝固温度T之差 Lm是熔化热,
要使 ΔGv<0,必须使Δ T>0,即 T<Tm,故ΔT
称为过冷度。
晶体凝固的热力学条件——实际凝固温度应低于
熔点Tm,即需要有过冷度,其中热分析实验装置示 意图见图6.5。
如果外界压力保持恒定(例如一个标准大气 压),那么单元系相图只要一个温度轴来表示,如 水的情况见图6.1(b)。根据相律,在汽、水、冰
的各单相区内(f=1),温度可在一定范围内变动。
在熔点和沸点处,两相共存,f=0,故温度不能变
动,即相变为恒温过程。
在单元系中,除了可以出现气、液、固三相之
间的转变外,某些物质还可能出现固态中的同素异
构转变,见图6.2和图6.3。
• bcc • fcc
《热力学与统计物理》第三章 单元系的相变
三.化学势分析
Vm
O K
范氏方程的平衡曲线
B T, p A T, p
J
J
K O
G
B G+L
D
N
L
A
M
R
p
D NR BA M
p
d SmdT Vmdp
p
dT 0 O pO Vmdp
NDJ段:Gm 最大, 不稳定 OKBAMR段:Gm 最小, 稳定
BN段: 亚稳 过饱和蒸气
JA段:
过热液体
两相平衡曲线:两相平衡共存,温 度和压强只有一个独立。
三相点:三相平衡共存,温度和压 强完全确定。
临界点:汽化线终点,温度高于此 点,无液相。由于临界点的存在, 从两相中任意一相的某一个状态出 发,可以经绕过临界点的任意路径 连续进行气—液的过渡而无需经过 相分离(或两相共存)的状态。
固 三相点 •
RT ln pr p
将上式代入*,以及p 2 ,得 :
r
2 v ln pr
r 107 m, pr r 108 m, pr r 109 m, pr
RTr
p
可见,液滴的平衡蒸汽压与液滴的半径有关
p 1.011; p 1.115; p 2.966;
三.中肯半径与过饱和蒸气
S U pV ,
T
S0
U0
p0V0
T0
2.稳定性条件
2S0 2S
系统的平衡条件
2S 2S 0
TdS
dU
pdV
S U
V
1 T
,
S V
U
p T
以 T,V 为自变量,有:
1 T
T
1 T
V
T
热力学与统计物理第三章
2020/4/4
17
由开系的基本热力学方程知: dU TdS pdV dn
S
U
p V
T
n
S
U
p V
T
n
由熵的广延性质: S S S
δS
1 T
1 T
δU
p T
p T
δV
T
T
δn
利用熵判据,平衡时总熵应有极大值,所以: δS 0
2020/4/4
18
T T 热平衡条件
独立变化。
• 相平衡曲线 在单元两相系中,由相平衡
条件所得到的T—p之间的关系p = p( T ),在T—p图上所描述的曲线
称为相平衡曲线。
AC—汽化线,分开气相区和液相区; AB—熔解线,分开液相区和固相区; 0A—升华线,分开气相区和固相区。
2020/4/4
24
单元两相平衡共存时,必须满足下面三个平衡条件:
第三章 单元系的相变
单元系:化学上纯的物质系统。 相:被一定边界包围,性质均匀的部分。
2020/4/4
1
§3.1 热动平衡判据
一、熵判据
• 虚变动
为了对系统的平衡态作出判断,必须考虑系统在平衡态 附近的一切可能的变动,这里面就有趋向平衡态的变动和 离开平衡态的变动。在热力学范围内,不考虑涨落现象, 系统一旦达到平衡态以后,其性质就不再发生变化了。因 此,在平衡态附近的一切可能的变动就是理论上虚拟的, 并不代表系统真实的物理过程,引进它的目的完全是为了 从数学上方便地导出系统的平衡条件。这类似于理论力学 中的“虚位移”概念。并以δ表示之。
它对各种平衡态系统包括化学平衡系统均成立。
2020/4/4
22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极小点 拐点
p
2 p
Vm
T
0
Vm2
T
0
p
2 p
Vm
T
0
Vm2
T
0
极大点
p
Vm
T
0
2 p
Vm2
T
0
p
a Vm2
Vm
b
RT
Tc
8a 27Rb
pc
a 27b2
Vmc 3b
RTc 8 2.667 临界系数 pcVmc 3
范氏物质系统有相同的临界系数。
1 T , p 2 T , p 两相以任意比例共存 G n1 n2 常数
T1 T2 T3 T p1 p2 p3 p
中性平衡
1 T , p 2 T , p 3 T , p 三相点方程
p
1 T , p 2 T , p
1
1 T dT , p dp 2 T dT , p dp
G 0
T,p 不变,平衡态 G 极小。
定温定压系发生的一切过程朝 着自由焓减小的方向进行。
平衡态的必要条件 δG 0
δ2G 0 ΔG 0 ΔG 0
极小值 稳定平衡 最小极值 稳定平衡 较大极值 亚稳平衡
常数值 中性平衡
§3.2 开系热力学基本方程
1. 化学势
单元单相
Gm
G n
d SmdT Vmdp
(U T0S p0V ) 0
2. 热动平衡及其稳定性条件
U U(S,V )
ΔS δS ΔV δV
ΔU δU 1 δ2U 2
ΔS~ δS~ 1 δ2S~ 2
δU U δS U δV TδS pδV S V V S
δ2U
2U S 2
(δS )2
2U VS
δSδV
单元系的相变
组元 组成物质系统的化学成分 相 被一定边界包围,性质均匀的部分
1. 热动平衡判据 2. 开系热力学基本方程 3. 单元系的复相平衡 4. 气液相变和临界点
§3.1 热动平衡判据
1. 熵判据
孤立系 dS 0
U,V 不变,平衡态 S 极大。
对系统的状态虚变动,熵的虚变动
ΔS δS 1 δ2S 2
S,p 不变,平衡态 H 极小。
定熵定压系发生的一切过程朝 着焓减小的方向进行。
平衡态的必要条件 δH 0
δ2H 0 ΔH 0 极小值 稳定平衡 最小极值 稳定平衡 较大极值 亚稳平衡
ΔH 0 常数值 中性平衡
5. 自由能判据
(U T0S p0V ) 0
T T0 ΔT 0 V 0
T V
V T
平衡稳定性条件 S CV 0 p 1 0
T V T
V T V T
δTδS
δpδV
T S
(δS)2 p
V p
S
(δp)2
0
平衡稳定性条件 T T 0 S p Cp
V p
S
V S
0
3. 内能判据
(U T0S p0V ) 0 S,V 不变,平衡态 U 极小。
Vm
4. 范氏等温线
p
T Tc pc
T Tc Vmc
p
a Vm2
Vm
b
RT
曲线 存线
与实验共 不符。
极值点间,一个 p 对应三个V ,
p
Vm
T
0 ,平衡不稳定。
T Tc
两极值点合并 为临界点。
Vm
范氏方程能近似描述系统的气相或液相,但不能描述 气液平衡共存状态。
范氏方程的临界点
v1 1.043103 m3 Kg1 v2 1673103 m3 Kg1
dp dT
l TΔv
3.62 103
Pa K1
0.0357
pn
K1
例3 固液气三相点三种相变潜热的关系
熔解热 汽化热 升华热
Lls Hml Hms Lgl Hmg Hml Lgs Hmg Hms
Lgs Lgl Lls
平衡态的必要条件 δS 0
δ2S 0 ΔS 0
极大值 稳定平衡 最大极值 稳定平衡 较小极值 亚稳平衡
ΔS 0 常数值 中性平衡
媒质很大,有恒定的温度和压强。
媒质 系统 孤立大系统
ΔS0
ΔU 0
p0ΔV0 T0
ΔU ΔU0 0 ΔV ΔV0 0
ΔS~ ΔS ΔS0 0
ΔS~ ΔS ΔU p0ΔV 0 T0
热平衡条件 T T0 力平衡条件 p p0
δ2S~ δ2U 0
δTδS δpδV 0
T0
S S(T , V ) p p(T, V )
δS S δT S δV T V V T
δp p δT p δV
T V
V T
S p V T T V
δTδS δpδV S (δT )2 p (δV )2 0
T
Tc
p
pc
Vm
Vmc
3
2
1 3
8
3
范氏对比方程
对应态定律 各种气(液)体的对比方程相同, 与具体物性无关。
Vm
O K
J
J
K O
范氏方程的平衡曲线 B T , p A T , p
G
d SmdT Vmdp
B G+L
p
dT 0 O pO Vmdp
D A
N M
L R
NDJ段:Gm 最大 不稳定
U
n S,V
H G TS U pV
dH TdS Vdp dn
H H (S, p, n)
T H S p, n
V
H p
S, n
H
n S, p
F G pV U TS
dF SdT pdV dn
F F(T, V , n)
S F T V , n
p F V T , n
Vm2 T
p
Vm1 T
p
Vm2
Vm1
pVm2 RT
Vm2 T
p
Vm2 T
dL
dT
C p,m 2
C p,m1
Cp,m 近似看作常数
L L0 Cp,m2 Cp,m1 T
dp dT
p R
L0 T2
C
p,m2
T
C p,m1
ln p L0 Cp,m2 Cp,m1 ln T A
lim S
T 0
S0
0
等温线 T 0 与等熵线 S 0 重合。
2. 低温物性
lim
T 0
V T
p
lim
T 0
S p
T
0
lim
T 0
p
0
lim
T 0
p T
p 1pn T 273.15 K l 3.35105 J Kg1
v1 1.0907 103 m3 Kg1 v2 1.00013103 m3 Kg1
dT dp
TΔv l
0.742 107
K Pa1
0.00752 K
pn1
例2 水的沸点随压强的变化
p 1pn T 373.15 K l 2.257 106 J Kg1
ΔV 0 U 0
ΔS 0
定熵定容系发生的一切过程朝 着内能减小的方向进行。
平衡态的必要条件 δU 0
δ2U 0 ΔU 0 极小值 稳定平衡 最小极值 稳定平衡 较大极值 亚稳平衡
ΔU 0 常数值 中性平衡
4. 焓判据
(U T0S p0V ) 0
p p0 p 0 H 0 ΔS 0
p1 p2
1
T1
2
T2
dn1
0
物质从高化学势部分 移至低化学势部分。
化学势差促使粒子流动。
2. 平衡性质
p 固
三相点 •
熔解线
液 C•
三个相区:一相单独存在, 温度和压强可独立变化。
两相平衡曲线:两相平衡
临界点
共存,温度和压强只有一 个独立。
汽化线 三相点:三相平衡共存,温
气
度和压强完全确定。
p
dp
dL
Cp,m2 Cp,m1
dT
Vm2
Vm1
T
Vm2 T
p
T
Vm1 T
p
dp
dL dT
Cp,m2
Cp,m1
Vm2
Vm1
T
Vm2 T
p
T
Vm1 T
p
dp dT
Cp,m2
C p,m1
L T
Vm2 T
p
Vm1 T
p
Vm 2
L Vm1
2. 开系基本方程
dG nd dn dG SdT Vdp dn
G G(T, p, n)
S G T p, n
V
G p
T
,
n
G
n T , p
U G TS pV
dU TdS pdV dn
U U (S, V , n)
T U S V , n
p U V S, n
升华线
T
气液固三相相图
临界点:汽化线终点,温度 高于此点,无液相。饶过此 点,液气两相可连续转变, 无两相共存阶段。
p
1 T , p 2 T , p
T1 T2 T p1 p2 p
1
1 T , p 2 T , p 两相平衡曲线方程
1 T , p 2 T , p
2
T
1 T , p 2 T , p 1相单独存在 G (1 x)n1 xn2 最小
蒸气压方程
饱和蒸气 与凝聚相(气相或液相)达到平衡的蒸气
dp dT